Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders
Abstract
:1. Introduction
2. Pathology of Proteins Modification
2.1. The Common Mechanisms of Protein Misfolding and Aggregation
2.1.1. Disruption to the ER under Stress
2.1.2. Defects in Chaperone Proteins
2.1.3. Disruption of Autophagy Processes
2.2. Mechanisms of Protein Misfolding and Aggregation in Mental Disorders
2.2.1. Stress in the Endoplasmic Reticulum
2.2.2. Chaperone Proteins
2.2.3. Autophagy
2.2.4. Therapeutic Approaches
3. Aggregating Proteins in Neurodegenerative and Mental Disorders
3.1. Amyloid
3.2. Tau Protein
3.3. α-Synuclein
3.4. DISC-1
3.5. Disbindin-1
3.6. CRMP1
3.7. SNAP25 in the SNARE Complex
3.8. TRIOBP
3.9. NPAS3
3.10. Aggregates of GluA1 Subunits of AMPA Receptors Caused by the Dysfunction of the CNTNAP2 Protein
3.11. FABP
3.12. Ankyrin-G
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Triggiani, V.; Tafaro, E.; Giagulli, V.A.; Sabbà, C.; Resta, F.; Licchelli, B.; Guastamacchia, E. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr. Metab. Immune Disord.—Drug Targets 2009, 9, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx). Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 14 May 2022).
- Heninger, G.R.; Delgado, P.L.; Charney, D.S. The Revised Monoamine Theory of Depression: A Modulatory Role for Monoamines, Based on New Findings From Monoamine Depletion Experiments in Humans. Pharmacopsychiatry 1996, 29, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Ménard, C.; Hodes, G.; Russo, S. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 2016, 321, 138–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howes, O.; McCutcheon, R.; Stone, J. Glutamate and dopamine in schizophrenia: An update for the 21st century. J. Psychopharmacol. 2015, 29, 97–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Mann, D.M.; Masliah, E.; McKee, A.C.; Montine, T.J.; et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J. Neuropathol. Exp. Neurol. 2012, 71, 362–381. [Google Scholar] [CrossRef]
- Schrag, A.; Taddei, R.N. Depression and anxiety in Parkinson’s disease. International review of neurobiology. Int. Rev. Neurobiol. 2017, 133, 623–655. [Google Scholar]
- Waddington, J.L.; Zhen, X.; O’Tuathaigh, C.M. Developmental genes and regulatory proteins, domains of cognitive impairment in schizophrenia spectrum psychosis and implications for antipsychotic drug discovery: The example of dysbindin-1 isoforms and beyond. Front. Pharmacol. 2020, 10, 1638. [Google Scholar] [CrossRef]
- Winsky-Sommerer, R.; de Oliveira, P.; Loomis, S.; Wafford, K.; Dijk, D.J.; Gilmour, G. Disturbances of sleep quality, timing and structure and their relationship with other neuropsychiatric symptoms in Alzheimer’s disease and schizophrenia: Insights from studies in patient populations and animal models. Neurosci. Biobehav. Rev. 2019, 97, 112–137. [Google Scholar] [CrossRef]
- Sukhorukov, V.S.; Voronkova, A.S.; Baranich, T.I.; Gofman, A.A.; Brydun, A.V.; Knyazeva, L.A.; Glinkina, V.V. Molecular Mechanisms of Interactions between Mitochondria and the Endoplasmic Reticulum: A New Look at How Important Cell Functions are Supported. Mol. Biol. 2022, 56, 59–71. [Google Scholar] [CrossRef]
- Yoshida, H. ER stress and diseases. FEBS J. 2007, 274, 630–658. [Google Scholar] [CrossRef] [PubMed]
- Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Samali, A. Endoplasmic reticulum stress signalling–from basic mechanisms to clinical applications. FEBS J. 2019, 286, 241–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, C.; Wang, Y.; Zhang, H.; Han, F. The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis 2017, 22, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 2013, 1833, 3460–3470. [Google Scholar] [CrossRef] [Green Version]
- Hetz, C.; Chevet, E.; Harding, H.P. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 2013, 12, 703–719. [Google Scholar] [CrossRef]
- Gardner, B.M.; Pincus, D.; Gotthardt, K.; Gallagher, C.M.; Walter, P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 2013, 5, a013169. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Sharma, D.; Kalia, K.; Tiwari, V. Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: The dawn of new therapeutic approaches. Neurosci. Biobehav. Rev. 2017, 83, 589–603. [Google Scholar] [CrossRef]
- Sakurai, K.; Nishiguchi, N.; Shirakawa, O.; Nushida, H.; Ueno, Y.; Maeda, K.; Hayashi, Y. Lack of association between endoplasmic reticulum stress response genes and suicidal victims. Kobe J. Med. Sci. 2007, 53, 151–155. [Google Scholar]
- Fukunaga, K.; Moriguchi, S. Stimulation of the sigma-1 receptor and the effects on neurogenesis and depressive behaviors in mice. Adv. Exp. Med. Biol. 2017, 964, 201–211. [Google Scholar]
- Kudo, T.; Kanemoto, S.; Hara, H.; Morimoto, N.; Morihara, T.; Kimura, R.; Tabira, T.; Imaizumi, K.; Takeda, M. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 2008, 15, 364–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.L.; Li, W.; Cheetham, M.E. Molecular chaperones and neuronal proteostasis. Semin. Cell Dev. Biol. 2015, 40, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryskalin, L.; Limanaqi, F.; Frati, A.; Busceti, C.L.; Fornai, F. mTOR-related brain dysfunctions in neuropsychiatric disorders. Int. J. Mol. Sci. 2018, 19, 2226. [Google Scholar] [CrossRef] [PubMed]
- Polajnar, M.; Žerovnik, E. Impaired autophagy: A link between neurodegenerative and neuropsychiatric diseases. J. Cell. Mol. Med. 2014, 18, 1705–1711. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290, 1717–1721. [Google Scholar] [CrossRef]
- Hailey, D.W.; Rambold, A.S.; Satpute-Krishnan, P.; Mitra, K.; Sougrat, R.; Kim, P.K.; Lippincott-Schwartz, J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010, 141, 656–667. [Google Scholar] [CrossRef] [Green Version]
- Bras, M.; Queenan, B.; Susin, S.A. Programmed cell death via mitochondria: Different modes of dying. Biochemistry 2005, 70, 231–239. [Google Scholar] [CrossRef]
- Burré, J.; Vivona, S.; Diao, J.; Sharma, M.; Brunger, A.T.; Südhof, T.C. Properties of native brain α-synuclein. Nature 2013, 498, E4–E6. [Google Scholar] [CrossRef] [Green Version]
- Hollville, E.; Romero, S.E.; Deshmukh, M. Apoptotic cell death regulation in neurons. FEBS J. 2019, 286, 3276–3298. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.Y.; Schröder, M.; Kaufman, R.J. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 2000, 275, 24881–24885. [Google Scholar] [CrossRef] [Green Version]
- Ghemrawi, R.; Khair, M. Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int. J. Mol. Sci. 2020, 21, 6127. [Google Scholar] [CrossRef] [PubMed]
- Sprenkle, N.T.; Sims, S.G.; Sánchez, C.L.; Meares, G.P. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol. Neurodegener. 2017, 12, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, S.; Saido, T.C. Critical review: Involvement of endoplasmic reticulum stress in the aetiology of Alzheimer’s disease. Open Biol. 2018, 8, 180024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jóźwiak-Bębenista, M.; Sokołowska, P.; Siatkowska, M.; Panek, C.A.; Komorowski, P.; Kowalczyk, E.; Wiktorowska-Owczarek, A. The Importance of Endoplasmic Reticulum Stress as a Novel Antidepressant Drug Target and Its Potential Impact on CNS Disorders. Pharmaceutics 2022, 14, 846. [Google Scholar] [CrossRef] [PubMed]
- Muneer, A.; Khan, R.M.S. Endoplasmic Reticulum Stress: Implications for Neuropsychiatric Disorders. Chonnam Med J. 2019, 55, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Scott, M.R.; Meador-Woodruff, J.H. Abnormal expression of ER quality control and ER associated degradation proteins in the dorsolateral prefrontal cortex in schizophrenia. Schizophr. Res. 2018, 197, 484–491. [Google Scholar] [CrossRef]
- Kurosawa, S.; Hashimoto, E.; Ukai, W.; Toki, S.; Saito, S.; Saito, T. Olanzapine potentiates neuronal survival and neural stem cell differentiation: Regulation of endoplasmic reticulum stress response proteins. J. Neural Transm. 2007, 114, 1121–1128. [Google Scholar] [CrossRef]
- Trinh, M.A.; Kaphzan, H.; Wek, R.C.; Pierre, P.; Cavener, D.R.; Klann, E. Brain-Specific Disruption of the eIF2α Kinase PERK Decreases ATF4 Expression and Impairs Behavioral Flexibility. Cell Rep. 2012, 1, 676–688. [Google Scholar] [CrossRef] [Green Version]
- So, J.; Warsh, J.J.; Li, P.P. Impaired Endoplasmic Reticulum Stress Response in B-Lymphoblasts from Patients with Bipolar-I Disorder. Biol. Psychiatry 2007, 62, 141–147. [Google Scholar] [CrossRef]
- Kakiuchi, C.; Ishigaki, S.; Oslowski, C.M.; Fonseca, S.G.; Kato, T.; Urano, F. Valproate, a Mood Stabilizer, Induces WFS1 Expression and Modulates Its Interaction with ER Stress Protein GRP94. PLoS ONE 2009, 4, e4134. [Google Scholar] [CrossRef]
- ABengesser, S.; Fuchs, R.; Lackner, N.; Birner, A.; Reininghaus, B.; Meier-Allard, N.; Wallner-Liebmann, S. Endoplasmic reticulum stress and bipolar disorder-almost forgotten therapeutic drug targets in the unfolded protein response pathway revisited. CNS Neurol. Disord. Drug Targets 2016, 15, 403–413. [Google Scholar] [CrossRef]
- Nevell, L.; Zhang, K.; Aiello, A.E.; Koenen, K.; Galea, S.; Soliven, R.; Zhang, C.; Wildman, D.E.; Uddin, M. Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study. Psychoneuroendocrinology 2014, 43, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, A.; Le Gal, K.; Södersten, K.; Vizlin-Hodzic, D.; Ågren, H.; Funa, K. Calcium-dependent intracellular signal pathways in primary cultured adipocytes and ANK3 gene variation in patients with bipolar disorder and healthy controls. Mol. Psychiatry 2015, 20, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Bown, C.D.; Wang, J.F.; Chen, B.; Young, L.T. Regulation of ER stress proteins by valproate: Therapeutic implications. Bipolar Disord. 2002, 4, 145–151. [Google Scholar] [CrossRef]
- Chen, W.; Duan, S.; Zhou, J.; Sun, Y.; Zheng, Y.; Gu, N.; Feng, G.; He, L. A case–control study provides evidence of association for a functional polymorphism −197C/G in XBP1 to schizophrenia and suggests a sex-dependent effect. Biochem. Biophys. Res. Commun. 2004, 319, 866–870. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Owczarek, A.; Suchanek, R.; Paul-Samojedny, M.; Fila-Danilow, A.; Borkowska, P.; Kucia, K.; Kowalski, J. Heat shock protein 70 gene polymorphisms are associated with paranoid schizophrenia in the Polish population. Cell Stress Chaperones 2014, 19, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, V.; Ottis, P.; Pum, M.; Huston, J.P.; Korth, C. Generation, purification, and characterization of cell-invasive DISC1 protein species. J. Vis. Exp. 2012, 66, e4132. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K. Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication. J. Pharmacol. Sci. 2015, 127, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Mitsuda, T.; Omi, T.; Tanimukai, H.; Sakagami, Y.; Tagami, S.; Okochi, M.; Kudo, T.; Takeda, M. Sigma-1Rs are upregulated via PERK/eIF2α/ATF4 pathway and execute protective function in ER stress. Biochem. Biophys. Res. Commun. 2011, 415, 519–525. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Pokrass, M.J.; Klauer, N.R.; E De Credico, N.; Su, T.-P. Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin. Ther. Targets 2014, 18, 1461–1476. [Google Scholar] [CrossRef] [Green Version]
- Chuang, D.-M. The Antiapoptotic Actions of Mood Stabilizers: Molecular Mechanisms and Therapeutic Potentials. Ann. N. Y. Acad. Sci. 2005, 1053, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Taldone, T.; Ochiana, S.O.; Patel, P.D.; Chiosis, G. Selective targeting of the stress chaperome as a therapeutic strategy. Trends Pharmacol. Sci. 2014, 35, 592–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Choi, B.R.; Kim, J.; LaFerla, F.M.; Park JH, Y.; Han, J.S.; Kim, J. Sulforaphane Upregulates the Heat Shock Protein Co-Chaperone CHIP and Clears Amyloid-β and Tau in a Mouse Model of Alzheimer’s Disease. Mol. Nutr. Food Res. 2018, 62, e1800240. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wu, P.; Yang, Q.; Xie, Y.; He, C.; Yin, L.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; et al. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur. J. Med. Chem. 2021, 220, 113473. [Google Scholar] [CrossRef]
- Cotrina, E.Y.; Gimeno, A.; Llop, J.; Jiménez-Barbero, J.; Quintana, J.; Prohens, R.; Arsequell, G. An Assay for Screening Potential Drug Candidates for Alzheimer’s Disease That Act as Chaperones of the Transthyretin and Amyloid-β Peptides Interaction. Chemistry 2020, 26, 17462–17469. [Google Scholar] [CrossRef]
- Wang, L.; Bergkvist, L.; Kumar, R.; Winblad, B.; Pavlov, P.F. Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Cells 2021, 10, 2596. [Google Scholar] [CrossRef]
- Campanella, C.; Pace, A.; Caruso Bavisotto, C.; Marzullo, P.; Marino Gammazza, A.; Buscemi, S.; Palumbo Piccionello, A. Heat shock proteins in Alzheimer’s disease: Role and targeting. Int. J. Mol. Sci. 2018, 19, 2603. [Google Scholar] [CrossRef] [Green Version]
- Horesh, Y.; Katsel, P.; Haroutunian, V.; Domany, E. Gene expression signature is shared by patients with Alzheimer’s disease and schizophrenia at the superior temporal gyrus. Eur. J. Neurol. 2011, 18, 410–424. [Google Scholar] [CrossRef]
- Merenlender-Wagner, A.; Malishkevich, A.; Shemer, Z.; Udawela, M.; Gibbons, A.S.; Scarr, E.; Dean, B.; Levine, J.M.; Agam, G.; Gozes, I. Autophagy has a key role in the pathophysiology of schizophrenia. Mol. Psychiatry 2015, 20, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Duan, X.; Liu, C.Y.; Jang, M.H.; Guo, J.U.; Pow-anpongkul, N.; Ming, G.L. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 2009, 63, 761–773. [Google Scholar] [CrossRef] [Green Version]
- Vucicevic, L.; Misirkic-Marjanovic, M.; Harhaji-Trajkovic, L.; Maric, N.; Trajkovic, V. Mechanisms and therapeutic significance of autophagy modulation by antipsychotic drugs. Cell Stress 2018, 2, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, F.; Gu, S.; Gu, Y.; Yin, J.; Fang, C.; Liu, L. Alteration in the mRNA expression profile of the autophagy-related mTOR pathway in schizophrenia patients treated with olanzapine. BMC Psychiatry 2021, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Park, S.J.; Kim, E.S.; Jo, Y.K.; Hong, J.; Cho, D.H. Sertindole, a potent antagonist at dopamine D2 receptors, induces autophagy by increasing reactive oxygen species in SH-SY5Y neuroblastoma cells. Biol. Pharm. Bull. 2012, 35, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Lee, K.S.; Choi, Y.K.; Lim, H.J.; Lee, H.G.; Lim, Y.; Lee, Y.H. The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis 2013, 34, 2080–2089. [Google Scholar] [CrossRef] [Green Version]
- Gould, T.D.; O’Donnell, K.C.; Dow, E.R.; Du, J.; Chen, G.; Manji, H.K. Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology 2008, 54, 577–587. [Google Scholar] [CrossRef] [Green Version]
- Cholewinski, T.; Pereira, D.; Moerland, M.; Jacobs, G.E. MTORC1 signaling as a biomarker in major depressive disorder and its pharmacological modulation by novel rapid-acting antidepressants. Ther. Adv. Psychopharmacol. 2021, 11, 20451253211036814. [Google Scholar] [CrossRef]
- Athira, K.V.; Mohan, A.S.; Chakravarty, S. Rapid acting antidepressants in the mTOR pathway: Current evidence. Brain Res. Bull. 2020, 163, 170–177. [Google Scholar]
- Komatsu, M.; Waguri, S.; Chiba, T.; Murata, S.; Iwata, J.I.; Tanida, I.; Tanaka, K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441, 880–884. [Google Scholar] [CrossRef]
- Tatarnikova, O.G.; Orlov, M.A.; Bobkova, N.V. Beta-amyloid and tau-protein: Structure, interaction, and prion-like properties. Biochemistry 2015, 80, 1800–1819. [Google Scholar] [CrossRef]
- Takamatsu, Y.; Ho, G.; Waragai, M.; Wada, R.; Sugama, S.; Takenouchi, T.; Hashimoto, M. Transgenerational interaction of Alzheimer’s disease with schizophrenia through amyloid evolvability. J. Alzheimer’s Dis. 2019, 68, 473–481. [Google Scholar] [CrossRef]
- Harkany, T.; O’Mahony, S.; Keijser, J.; Kelly, J.P.; Kónya, C.; Borostyánkői, Z.A.; Luiten, P.G. β-Amyloid (1-42)-induced cholinergic lesions in rat nucleus basalis bidirectionally modulate serotonergic innervation of the basal forebrain and cerebral cortex. Neurobiol. Dis. 2001, 8, 667–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Steffens, D.C.; Au, R.; Folstein, M.; Summergrad, P.; Yee, J.; Qiu, W.Q. Amyloid-associated depression: A prodromal depression of Alzheimer disease? Arch. Gen. Psychiatry 2008, 65, 542–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, J.J.; Lavakumar, M.; Tampi, D.; Balachandran, S.; Tampi, R.R. Frontotemporal dementia: Latest evidence and clinical implications. Ther. Adv. Psychopharmacol. 2018, 8, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Namekawa, Y.; Baba, H.; Maeshima, H.; Nakano, Y.; Satomura, E.; Takebayashi, N.; Arai, H. Heterogeneity of elderly depression: Increased risk of Alzheimer’s disease and Aβ protein metabolism. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 43, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Zare, N.; Khalifeh, S.; Khodagholi, F.; Shahamati, S.Z.; Motamedi, F.; Maghsoudi, N. Geldanamycin reduces Aβ-associated anxiety and depression, concurrent with autophagy provocation. J. Mol. Neurosci. 2015, 57, 317–324. [Google Scholar] [CrossRef]
- Bilici, M.; Efe, H.; Köroğlu, M.A.; Uydu, H.A.; Bekaroğlu, M.; Değer, O. Antioxidative enzyme activities and lipid peroxidation in major depression: Alterations by antidepressant treatments. J. Affect. Disord. 2001, 64, 43–51. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, N.; Saini, A.; Nehru, B. Carbenoxolone reverses the amyloid beta 1–42 oligomer–induced oxidative damage and anxiety-related behavior in rats. Neurotox. Res. 2019, 35, 654–667. [Google Scholar] [CrossRef]
- Eyre, H.A.; Siddarth, P.; van Dyk, K.; St Cyr, N.; Baune, B.T.; Barrio, J.R.; Lavretsky, H. Neural correlates of apathy in late-life depression: A pilot [18F] FDDNP positron emission tomography study. Psychogeriatrics 2017, 17, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Donovan, N.J.; Locascio, J.J.; Marshall, G.A. Harvard Aging Brain Study. Longitudinal association of amyloid-β and anxious-depressive symptoms in cognitively normal older adults. Am. J. Psychiatry 2018, 175, 530–537. [Google Scholar] [CrossRef]
- Pîrşcoveanu DF, V.; Pirici, I.; Tudorică, V.A.L.E.R.I.C.A.; Bălşeanu, T.A.; Albu, V.C.; Bondari, S.; Pîrşcoveanu, M. Tau protein in neurodegenerative diseases-a review. Rom. J. Morphol. Embryol. 2017, 58, 1141–1150. [Google Scholar]
- Demirel, Ö.F.; Cetin, I.; Turan, Ş.; Yıldız, N.; Sağlam, T.; Duran, A. Total tau and phosphorylated tau protein serum levels in patients with schizophrenia compared with controls. Psychiatr. Q. 2017, 88, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Mukaetova-Ladinska, E.B.; Harrington, C.R.; Xuereb, J.; Roth, M.; Wischik, C.M. Biochemical, neuropathological, and clinical correlations of neurofibrillary degeneration in Alzheimer’s disease. In Treating Alzheimer’s and Other Dementias: Clinical Application of Recent Research Advances; Bergener, M., Finkel, S.I., Eds.; Springer: New York, NY, USA, 1995; pp. 57–80. [Google Scholar]
- Schönknecht, P.; Hempel, A.; Hunt, A.; Seidl, U.; Volkmann, M.; Pantel, J.; Schröder, J. Cerebrospinal fluid tau protein levels in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2003, 253, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Frisoni, G.B.; Prestia, A.; Geroldi, C.; Adorni, A.; Ghidoni, R.; Amicucci, G.; Giannakopoulos, P. Alzheimer’s CSF markers in older schizophrenia patients. Int. J. Geriatr. Psychiatry 2011, 26, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Zetterberg, H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef]
- Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med. 2018, 284, 643–663. [Google Scholar] [CrossRef]
- Pomara, N.; Bruno, D.; Sarreal, A.S.; Hernando, R.T.; Nierenberg, J.; Petkova, E.; Blennow, K. Lower CSF amyloid beta peptides and higher F2-isoprostanes in cognitively intact elderly individuals with major depressive disorder. Am. J. Psychiatry 2012, 169, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.S.; Capuano, A.W.; Boyle, P.A.; Hoganson, G.M.; Hizel, L.P.; Shah, R.C.; Bennett, D.A. Clinical-pathologic study of depressive symptoms and cognitive decline in old age. Neurology 2014, 83, 702–709. [Google Scholar] [CrossRef] [Green Version]
- Gatchel, J.R.; Donovan, N.J.; Locascio, J.J.; Schultz, A.P.; Becker, J.A.; Chhatwal, J.; Marshall, G.A. Depressive symptoms and tau accumulation in the inferior temporal lobe and entorhinal cortex in cognitively normal older adults: A pilot study. J. Alzheimers Dis. 2017, 59, 975–985. [Google Scholar] [CrossRef] [Green Version]
- Klotz, S.; Fischer, P.; Hinterberger, M.; Ricken, G.; Hönigschnabl, S.; Gelpi, E.; Kovacs, G.G. Multiple system aging-related tau astrogliopathy with complex proteinopathy in an oligosymptomatic octogenarian. Neuropathology 2021, 41, 72–83. [Google Scholar] [CrossRef]
- Miquel-Rio, L.; Alarcón-Arís, D.; Torres-López, M.; Cóppola-Segovia, V.; Pavia-Collado, R.; Paz, V.; Bortolozzi, A. Human α-synuclein overexpression in mouse serotonin neurons triggers a depressive-like phenotype. Rescue by oligonucleotide therapy. Transl. Psychiatry 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Ohtake, H.; Limprasert, P.; Fan, Y.; Onodera, O.; Kakita, A.; Takahashi, H.; La Spada, A.R. β-synuclein gene alterations in dementia with Lewy bodies. Neurology 2004, 63, 805–811. [Google Scholar] [CrossRef]
- Fujita, M.; Hagino, Y.; Takamatsu, Y.; Shimizu, Y.; Takamatsu, Y.; Ikeda, K.; Hashimoto, M. Early manifestation of depressive-like behavior in transgenic mice that express dementia with Lewy body-linked mutant β-synuclein. Neuropsychopharmacol. Rep. 2018, 38, 95–97. [Google Scholar] [CrossRef]
- Korth, C. Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. Prion 2012, 6, 134–141. [Google Scholar] [CrossRef]
- Yerabham, A.S.; Mas, P.J.; Decker, C.; Soares, D.C.; Weiergräber, O.H.; Nagel-Steger, L.; Korth, C. A structural organization for the Disrupted in Schizophrenia 1 protein, identified by high-throughput screening, reveals distinctly folded regions, which are bisected by mental illness-related mutations. J. Biol. Chem. 2017, 292, 6468–6477. [Google Scholar] [CrossRef] [Green Version]
- Cukkemane, A.; Becker, N.; Zielinski, M.; Frieg, B.; Lakomek, N.A.; Heise, H.; Weiergräber, O.H. Conformational heterogeneity coupled with β-fibril formation of a scaffold protein involved in chronic mental illnesses. Transl. Psychiatry 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Zhu, S.; Abounit, S.; Korth, C.; Zurzolo, C. Transfer of disrupted-in-schizophrenia 1 aggregates between neuronal-like cells occurs in tunnelling nanotubes and is promoted by dopamine. Open Biol. 2017, 7, 160328. [Google Scholar] [CrossRef] [Green Version]
- Atkin, T.; Kittler, J. DISC1 and the aggresome: A disruption to cellular function? Autophagy 2012, 8, 851–852. [Google Scholar] [CrossRef] [Green Version]
- Ottis, P.; Bader, V.; Trossbach, S.V.; Kretzschmar, H.; Michel, M.; Leliveld, S.R.; Korth, C. Convergence of two independent mental disease genes on the protein level: Recruitment of dysbindin to cell-invasive disrupted-in-schizophrenia 1 aggresomes. Biol. Psychiatry 2011, 70, 604–610. [Google Scholar] [CrossRef]
- Trossbach, S.V.; Bader, V.; Hecher, L.; Pum, M.E.; Masoud, S.T.; Prikulis, I.; Korth, C. Misassembly of full-length Disrupted-in-Schizophrenia 1 protein is linked to altered dopamine homeostasis and behavioral deficits. Mol. Psychiatry 2016, 21, 1561–1572. [Google Scholar] [CrossRef] [Green Version]
- Kakuda, K.; Niwa, A.; Honda, R.; Yamaguchi, K.I.; Tomita, H.; Nojebuzzaman, M.; Kuwata, K. A DISC1 point mutation promotes oligomerization and impairs information processing in a mouse model of schizophrenia. J. Biochem. 2019, 165, 369–378. [Google Scholar] [CrossRef]
- Inta, D.; Meyer-Lindenberg, A.; Gass, P. Alterations in postnatal neurogenesis and dopamine dysregulation in schizophrenia: A hypothesis. Schizophr. Bull. 2011, 37, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Kaefer, K.; Malagon-Vina, H.; Dickerson, D.D.; O’Neill, J.; Trossbach, S.V.; Korth, C.; Csicsvari, J. Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization. Hippocampus 2019, 29, 802–816. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhu, C.; Shen, Y.; Xu, Q. The pathogenic mechanism of dysbindin-1B toxic aggregation: BLOC-1 and intercellular vesicle trafficking. Neuroscience 2016, 333, 78–91. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Shen, Y.; Xu, Q. Propagation of dysbindin-1B aggregates: Exosome-mediated transmission of neurotoxic deposits. Neuroscience 2015, 291, 301–316. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Ye, H.; Zhu, L.; Liu, J.; Wu, X.; Xu, Q. Increased dysbindin-1B isoform expression in schizophrenia and its propensity in aggresome formation. Cell Discov. 2015, 1, 15032. [Google Scholar] [CrossRef]
- Yamashita, N.; Goshima, Y. Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Mol. Neurobiol. 2012, 45, 234–246. [Google Scholar] [CrossRef]
- Quach, T.T.; Honnorat, J.; Kolattukudy, P.E.; Khanna, R.; Duchemin, A.M. CRMPs: Critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol. Psychiatry 2015, 20, 1037–1045. [Google Scholar] [CrossRef]
- Makihara, H.; Nakai, S.; Ohkubo, W.; Yamashita, N.; Nakamura, F.; Kiyonari, H.; Goshima, Y. CRMP 1 and CRMP 2 have synergistic but distinct roles in dendritic development. Genes Cells 2016, 21, 994–1005. [Google Scholar] [CrossRef]
- Yamashita, N.; Uchida, Y.; Ohshima, T.; Hirai, S.I.; Nakamura, F.; Taniguchi, M.; Goshima, Y. Collapsin response mediator protein 1 mediates reelin signaling in cortical neuronal migration. J. Neurosci. 2006, 26, 13357–13362. [Google Scholar] [CrossRef] [Green Version]
- Akinaga, S.; Harada, S.; Takahashi, M.; Kaneko, A.; Kolattukudy, P.; Goshima, Y. Loss of CRMP1 and CRMP2 results in migration defects of Purkinje cells in the X lobule of the mouse cerebellum. Brain Res. 2022, 1783, 147846. [Google Scholar]
- Knuesel, I. Reelin-mediated signaling in neuropsychiatric and neurodegenerative diseases. Prog. Neurobiol. 2010, 91, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Bader, V.; Tomppo, L.; Trossbach, S.V.; Bradshaw, N.J.; Prikulis, I.; Leliveld, S.R.; Lin, C.Y.; Ishizuka, K.; Sawa, A.; Ramos, A.; et al. Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Hum. Mol. Genet. 2012, 21, 4406–4418. [Google Scholar] [CrossRef]
- Alten, B.; Zhou, Q.; Shin, O.H.; Esquivies, L.; Lin, P.Y.; White, K.I.; Kavalali, E.T. Role of aberrant spontaneous neurotransmission in SNAP25-associated encephalopathies. Neuron 2021, 109, 59–72. [Google Scholar] [CrossRef]
- Karmakar, S.; Sharma, L.G.; Roy, A.; Patel, A.; Pandey, L.M. Neuronal SNARE complex: A protein folding system with intricate protein-protein interactions, and its common neuropathological hallmark, SNAP25. Neurochem. Int. 2019, 122, 196–207. [Google Scholar] [CrossRef]
- Cupertino, R.B.; Kappel, D.B.; Bandeira, C.E.; Schuch, J.B.; da Silva, B.S.; Müller, D.; Mota, N.R. SNARE complex in developmental psychiatry: Neurotransmitter exocytosis and beyond. J. Neural. Transm. 2016, 123, 867–883. [Google Scholar] [CrossRef]
- McNew, J.A.; Parlati, F.; Fukuda, R.; Johnston, R.J.; Paz, K.; Paumet, F.; Rothman, J.E. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 2000, 407, 153–159. [Google Scholar] [CrossRef]
- Broome, B.M.; Hecht, M.H. Nature disfavors sequences of alternating polar and non-polar amino acids: Implications for amyloidogenesis. J. Mol. Biol. 2000, 296, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Choi, U.B.; McCann, J.J.; Weninger, K.R.; Bowen, M.E. Beyond the random coil: Stochastic conformational switching in intrinsically disordered proteins. Structure 2011, 19, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.A.; Lahiri, D.K. Neuronal Differentiation Is Accompanied by Increased Levels of SNAP-25 Protein in Fetal Rat Primary Cortical Neurons: Implications in Neuronal Plasticity and Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 2006, 1086, 54–65. [Google Scholar] [CrossRef]
- Ramos-Miguel, A.; Barr, A.; Dwork, A.; Rosoklija, G.; Mann, J.; Honer, W. SA101. Characterization of Presynaptic SNAP-25 Aggregates in Human Postmortem Brain: A Novel Pathologic Index in Schizophrenia? Schizophr. Bull. 2017, 43 (Suppl. S1), S149. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Miguel, A.; Jones, A.A.; Sawada, K.; Barr, A.M.; Bayer, T.A.; Falkai, P.; Honer, W.G. Frontotemporal dysregulation of the SNARE protein interactome is associated with faster cognitive decline in old age. Neurobiol. Dis. 2018, 114, 31–44. [Google Scholar] [CrossRef]
- Thompson, P.M.; Sower, A.C.; Perrone-Bizzozero, N.I. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol. Psychiatry 1998, 43, 239–243. [Google Scholar] [CrossRef]
- Etain, B.; Dumaine, A.; Mathieu, F.; Chevalier, F.; Henry, C.; Kahn, J.P.; Jamain, S. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol. Psychiatry 2010, 15, 748–755. [Google Scholar] [CrossRef]
- Braida, D.; Guerini, F.R.; Ponzoni, L.; Corradini, I.; De Astis, S.; Pattini, L.; Sala, M. Association between SNAP-25 gene polymorphisms and cognition in autism: Functional consequences and potential therapeutic strategies. Transl. Psychiatry 2015, 5, e500. [Google Scholar] [CrossRef] [Green Version]
- Guerini, F.R.; Bolognesi, E.; Chiappedi, M.; Manca, S.; Ghezzo, A.; Agliardi, C.; Clerici, M. SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol. Res. 2011, 64, 283–288. [Google Scholar] [CrossRef]
- Kim, E.; Song, D.H.; Kim, N.W.; Sohn, I.J.; Cheon, K.A. The relationship between the SNAP-25 polymorphism and omission errors in Korean children with attention deficit hyperactivity disorder. Clin. Psychopharmacol. Neurosci. 2017, 15, 222. [Google Scholar] [CrossRef]
- Safari, M.R.; Omrani, M.D.; Noroozi, R.; Sayad, A.; Sarrafzadeh, S.; Komaki, A.; Taheri, M. Synaptosome-associated protein 25 (SNAP25) gene association analysis revealed risk variants for ASD, in Iranian population. J. Mol. Neurosci. 2017, 61, 305. [Google Scholar] [CrossRef]
- Bradshaw, N.J.; Yerabham, A.S.; Marreiros, R.; Zhang, T.; Nagel-Steger, L.; Korth, C. An unpredicted aggregation-critical region of the actin-polymerizing protein TRIOBP-1/Tara, determined by elucidation of its domain structure. J. Biol. Chem. 2017, 292, 9583–9598. [Google Scholar] [CrossRef] [Green Version]
- Zaharija, B.; Samardžija, B.; Bradshaw, N.J. The TRIOBP isoforms and their distinct roles in actin stabilization, deafness, mental illness, and cancer. Molecules 2020, 25, 4967. [Google Scholar] [CrossRef]
- Riazuddin, S.; Khan, S.N.; Ahmed, Z.M.; Ghosh, M.; Caution, K.; Nazli, S.; Friedman, T.B. Mutations in TRIOBP, which encodes a putative cytoskeletal-organizing protein, are associated with nonsyndromic recessive deafness. Am. J. Hum. Genet. 2006, 78, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Seipel, K.; O’Brien, S.P.; Iannotti, E.; Medley, Q.G.; Streuli, M. Tara, a novel F-actin binding protein, associates with the Trio guanine nucleotide exchange factor and regulates actin cytoskeletal organization. J. Cell Sci. 2001, 114, 389–399. [Google Scholar] [CrossRef]
- Shahin, H.; Walsh, T.; Sobe, T.; Rayan, A.A.; Lynch, E.D.; Lee, M.K.; Kanaan, M. Mutations in a novel isoform of TRIOBP that encodes a filamentous-actin binding protein are responsible for DFNB28 recessive nonsyndromic hearing loss. Am. J. Hum. Genet. 2006, 78, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Lan, J.; Zhu, Y.; Li, X.; Lai, X.; Xue, Y.; Huang, H. The E3 ubiquitin ligase HECTD3 regulates ubiquitination and degradation of Tara. Biochem. Biophys. Res. Commun. 2008, 367, 805–812. [Google Scholar] [CrossRef]
- Bradshaw, N.J.; Bader, V.; Prikulis, I.; Lueking, A.; Müllner, S.; Korth, C. Aggregation of the protein TRIOBP-1 and its potential relevance to schizophrenia. PLoS ONE 2014, 9, e111196. [Google Scholar] [CrossRef] [Green Version]
- Nucifora, L.G.; Wu, Y.C.; Lee, B.J.; Sha, L.; Margolis, R.L.; Ross, C.A.; Nucifora, F.C., Jr. A mutation in NPAS3 that segregates with schizophrenia in a small family leads to protein aggregation. Mol. Neuropsychiatry 2016, 2, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Kamnasaran, D.; Muir, W.J.; Ferguson-Smith, M.A.; Cox, D.W. Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J. Med. Genet. 2003, 40, 325–332. [Google Scholar] [CrossRef]
- Pickard, B.S.; Malloy, M.P.; Porteous, D.J.; Blackwood DH, R.; Muir, W.J. Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 136, 26–32. [Google Scholar] [CrossRef]
- Nurnberger, J.I., Jr.; Koller, D.L.; Jung, J.; Edenberg, H.J.; Foroud, T.; Guella, I. Psychiatric Genomics Consortium Bipolar Group. Identification of pathways for bipolar disorder: A meta-analysis. JAMA Psychiatry 2014, 71, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Arbez, N.; Nucifora, L.G.; Sell, G.L.; Delisi, L.E.; Ross, C.A.; Nucifora, F.C. A mutation in NPAS3 segregates with mental illness in a small family. Mol. Psychiatry 2014, 19, 7–8. [Google Scholar] [CrossRef]
- Kelly, J.W. Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct Biol. 1996, 6, 11–17. [Google Scholar] [CrossRef]
- Samardžija, B.; Pavešić Radonja, A.; Zaharija, B.; Bergman, M.; Renner, É.; Palkovits, M.; Bradshaw, N.J. Protein aggregation of NPAS3, implicated in mental illness, is not limited to the V304I mutation. J. Pers Med. 2021, 11, 1070. [Google Scholar] [CrossRef] [PubMed]
- Emiliani, F.E.; Sedlak, T.W.; Sawa, A. Oxidative stress and schizophrenia: Recent breakthroughs from an old story. Curr. Opin. Psychiatry 2014, 27, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grune, T.; Jung, T.; Merker, K.; Davies, K.J. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 2004, 36, 2519–2530. [Google Scholar] [CrossRef] [PubMed]
- Varea, O.; Martin-de-Saavedra, M.D.; Kopeikina, K.J.; Schürmann, B.; Fleming, H.J.; Fawcett-Patel, J.M.; Penzes, P. Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. Proc. Natl. Acad. Sci. USA 2015, 112, 6176–6181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, A.; Adamsky, K.; Vainshtein, A.; Frechter, S.; Dupree, J.L.; Rosenbluth, J.; Peles, E. Caspr and caspr2 are required for both radial and longitudinal organization of myelinated axons. J. Neurosci. 2014, 34, 14820–14826. [Google Scholar] [CrossRef] [Green Version]
- Peñagarikano, O.; Abrahams, B.S.; Herman, E.I.; Winden, K.D.; Gdalyahu, A.; Dong, H.; Geschwind, D.H. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011, 147, 235–246. [Google Scholar] [CrossRef]
- Alarcón, M.; Abrahams, B.S.; Stone, J.L.; Duvall, J.A.; Perederiy, J.V.; Bomar, J.M.; Sebat, J.; Wigler, M.; Martin, C.L.; Ledbetter, D.H.; et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am. J. Hum. Genet. 2008, 82, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Arking, D.E.; Cutler, D.J.; Brune, C.W.; Teslovich, T.M.; West, K.; Ikeda, M.; Chakravarti, A. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 2008, 82, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Gregor, A.; Albrecht, B.; Bader, I.; Bijlsma, E.K.; Ekici, A.B.; Engels, H.; Zweier, C. Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1. BMC Med. Genet. 2011, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.I.; Vrijenhoek, T.; Markx, S.; Janssen, I.M.; Van Der Vliet, W.A.; Faas BH, W.; Veltman, J.A. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol. Psychiatry 2008, 13, 261–266. [Google Scholar] [CrossRef]
- Glantz, L.A.; Lewis, D.A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 2000, 57, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutsler, J.J.; Zhang, H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010, 1309, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Serrando, M.; Casanovas, A.; Esquerda, J.E. Occurrence of glutamate receptor subunit 1–containing aggresome-like structures during normal development of rat spinal cord interneurons. J. Comp. Neurol. 2002, 442, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Arvindakshan, M.; Ghate, M.; Ranjekar, P.K.; Evans, D.R.; Mahadik, S.P. Supplementation with a combination of ω-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr. Res. 2003, 62, 195–204. [Google Scholar] [CrossRef]
- Vancassel, S.; Durand, G.; Barthelemy, C.; Lejeune, B.; Martineau, J.; Guilloteau, D.; Chalon, S. Plasma fatty acid levels in autistic children. Prostaglandins Leukot. Essent. Fat. Acids 2001, 65, 1–7. [Google Scholar] [CrossRef]
- Vaneev, A.N.; Gorelkin, P.V.; Garanina, A.S.; Lopatukhina, H.V.; Vodopyanov, S.S.; Alova, A.V.; Erofeev, A.S. In vitro and in vivo electrochemical measurement of reactive oxygen species after treatment with anticancer drugs. Anal. Chem. 2020, 92, 8010–8014. [Google Scholar] [CrossRef]
- Veerkamp, J.H.; Zimmerman, A.W. Fatty acid-binding proteins of nervous tissue. J. Mol. Neurosci. 2001, 16, 133–142. [Google Scholar] [CrossRef]
- Shimamoto, C.; Ohnishi, T.; Maekawa, M.; Watanabe, A.; Ohba, H.; Arai, R.; Yoshikawa, T. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies. Hum. Mol. Genet. 2014, 24, 2409. [Google Scholar] [CrossRef] [Green Version]
- Shioda, N.; Yabuki, Y.; Kobayashi, Y.; Onozato, M.; Owada, Y.; Fukunaga, K. FABP3 protein promotes α-synuclein oligomerization associated with 1-methyl-1, 2, 3, 6-tetrahydropiridine-induced neurotoxicity. J. Biol. Chem. 2014, 289, 18957–18965. [Google Scholar] [CrossRef] [Green Version]
- Oizumi, H.; Yamasaki, K.; Suzuki, H.; Hasegawa, T.; Sugimura, Y.; Baba, T.; Takeda, A. Fatty Acid-Binding Protein 3 Expression in the Brain and Skin in Human Synucleinopathies. Front. Aging Neurosci. 2021, 13, 648982. [Google Scholar] [CrossRef]
- Bennett, V.; Healy, J. Organizing the fluid membrane bilayer: Diseases linked to spectrin and ankyrin. Trends Mol. Med. 2008, 14, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Kopeikina, K.J.; Fawcett-Patel, J.M.; Leaderbrand, K.; Gao, R.; Schürmann, B.; Penzes, P. Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses. Neuron 2014, 84, 399–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, Z.; Vandeweyer, G.; van der Voet, M.; Waryah, A.M.; Zahoor, M.Y.; Besseling, J.A.; Rooms, L. Homozygous and heterozygous disruptions of ANK3: At the crossroads of neurodevelopmental and psychiatric disorders. Hum. Mol. Genet. 2013, 22, 1960–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, M.A.; O’Donovan, M.C.; Meng, Y.A.; Jones, I.R.; Ruderfer, D.M.; Jones, L.; Craddock, N. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 2008, 40, 1056–1058. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Parnell, E.; Kasherman, M.; Forrest, M.P.; Myczek, K.; Premarathne, S.; Penzes, P. Usp9X controls ankyrin-repeat domain protein homeostasis during dendritic spine development. Neuron 2020, 105, 506–521. [Google Scholar] [CrossRef]
- Johnson, B.V.; Kumar, R.; Oishi, S.; Alexander, S.; Kasherman, M.; Vega, M.S.; Kohane, I.S. Partial loss of USP9X function leads to a male neurodevelopmental and behavioral disorder converging on transforming growth factor β signaling. Biol. Psychiatry 2020, 87, 100–112. [Google Scholar] [CrossRef]
Protein | Functions | Mental Disorders | Object | Links |
---|---|---|---|---|
Beta-amyloid | Beta-amyloid is formed from its precursor APP (amyloid precursor protein). APP is essential for neuroplasticity, the formation of new synapses, and overall viability of neurons. | Schizophrenia | Human | [71] |
Behavioral disturbances | Animals | [77] | ||
Cognitive impairment and memory deficits | Human | [72,73,74,75,76,77,79] | ||
Anxiety and depressive disorders | Human | [80] | ||
Depression behavior | Rats | [77] | ||
Anxiety behavior | Rats | [78] | ||
tau protein | Takes part in the stabilization of microtubules and axonal transport, related to mitochondrial function, deficiencies in oxidative phosphorylation or apoptotic activity | Psychosis | Human | [83] |
Suicide attempt, severe depression and | Human | [89] | ||
Schizophrenia | Human | [82,84,85] | ||
Depression | Human | [86,87,88] | ||
α-synuclein | Regulates synaptic vesicle transport and neurotransmitter release | Depression | Mice | [92] |
β-synuclein | Suppresses the processes caused by α-synuclein and prevents neurodegeneration | Dementia with Lewy bodies | Human | [93] |
Dementia with Lewy bodies, memory impairment, and movement disorders | Transgenic mice that expressed P123H β-synuclein | [94] | ||
DISC-1 | The DISC-1 protein is functionally involved in many processes that regulate the development of the nervous system and brain maturation, such as neuronal proliferation, differentiation, migration, cytoskeletal modulation, and post-translational regulation through various signaling pathways. | Schizophrenia | Rats | [95,101] |
CRMP1 | Involved in microtubule regulation, highly expressed in the growing and adult nervous systems, play an important role in the development and maturation of neurons, mediates neuronal signaling in the developing brain, and promotes the reelin-dependent regulation of neuronal migration in the cerebral cortex, involved in Purkinje cell migration | Schizophrenia | Human | [108,109,110,111] |
Disbindin-1 | Represents a part of the lysosome-1-associated organelle biogenesis complex in the synapse, modulates NMDA receptors and D2 receptors on the membrane surface, and participates in vesicular transport | Schizophrenia | Human | [105,107] |
SNAP25 in the SNARE complex | Plays a central role in neuronal signaling, takes a part in the process of synaptic vesicles fusion with the presynaptic plasma membrane, which leads to the release of a neurotransmitter | schizophrenia and depression | Human | [115,116,122] |
TRIOBP | The TRIO and F-actin Binding Protein (TRIOBP) plays a role in the modulation of the actin cytoskeleton. | Schizophrenia | Human | [130,131] |
NPAS3 | Is involved in the regulation of neurogenesis, metabolism, and circadian rhythms | Schizophrenia | Human | [137,143,144,145] |
Aggregates of GluA1 subunits of AMPA receptors caused by the dysfunction of the CNTNAP2 protein | CNTNAP2 (Caspr2) is involved in neuron-glia interactions and clustering of K+ channels in myelinated axons, takes part in the development of spines, synapses, and dendrites and plays a role in the organization of the axolemma | Psychiatric disorders | Human, mice | [146,148] |
Autism | Mice | [155] | ||
FABP | Plays an important role in the transport of fatty acids insoluble ligands to various cell regions, such as the endoplasmic reticulum, mitochondria, and nucleus | Two causing aggregation frameshifting variants (FABP3 c.395delA (p.E132fs) and FABP7 .c.239delA (p.N80fs)) were observed exclusively in patients with schizophrenia and autism | Human (aggregation was shown in a cells culture) | [160] |
Ankyrin-G | Acts as a scaffold, linking plasma membrane proteins to the actin/β-spectrin cytoskeleton, and thus organizing proteins into domains on the plasma membrane, plays an important role in many neurobiological processes, including synaptic transmission and synaptic plasticity | Hyperactive behavior entailing possible neuropsychiatric disorders | Mice | [163,164] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochneva, A.; Zorkina, Y.; Abramova, O.; Pavlova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Pavlov, K.; Gurina, O.; Chekhonin, V. Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders. Int. J. Mol. Sci. 2022, 23, 14498. https://doi.org/10.3390/ijms232214498
Ochneva A, Zorkina Y, Abramova O, Pavlova O, Ushakova V, Morozova A, Zubkov E, Pavlov K, Gurina O, Chekhonin V. Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders. International Journal of Molecular Sciences. 2022; 23(22):14498. https://doi.org/10.3390/ijms232214498
Chicago/Turabian StyleOchneva, Aleksandra, Yana Zorkina, Olga Abramova, Olga Pavlova, Valeriya Ushakova, Anna Morozova, Eugene Zubkov, Konstantin Pavlov, Olga Gurina, and Vladimir Chekhonin. 2022. "Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders" International Journal of Molecular Sciences 23, no. 22: 14498. https://doi.org/10.3390/ijms232214498
APA StyleOchneva, A., Zorkina, Y., Abramova, O., Pavlova, O., Ushakova, V., Morozova, A., Zubkov, E., Pavlov, K., Gurina, O., & Chekhonin, V. (2022). Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders. International Journal of Molecular Sciences, 23(22), 14498. https://doi.org/10.3390/ijms232214498