Targeted Methylation Profiling of Single Laser-Capture Microdissected Post-Mortem Brain Cells by Adapted Limiting Dilution Bisulfite Pyrosequencing (LDBSP)
Abstract
:1. Introduction
2. Results
2.1. LDBSP Allows for Methylation Profiling of Pools of 50 LCM-Collected Neurons
2.2. LDBSP on Pools of 50 Neurons Occasionally Renders Reactions with More than One Target Allele
2.3. An Integrated Analysis of CpG Read-Outs for LDBSP Data with Correction for Multi-Allele Reactions
2.4. Gene-Specific Changes in the CpG Methylation Data Based on the Novel Integrative Analysis
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Sample Collection
4.3. Immunohistochemistry
4.4. Laser-Capture Microdissection
4.5. DNA Isolation and Sodium Bisulfite Treatment
4.6. Multiplex Polymerase Chain Reaction
4.7. Singleplex Polymerase Chain Reaction
4.8. Bisulfite Pyrosequencing
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Laser capture microdissected cells (pools of 50 cells) in 8 µL Tris-Ethylenediaminetetraacetic acid (TE) buffer or phosphate-buffered saline (PBS)
- FastStart™ Taq DNA Polymerase (Sigma Aldrich, cat. no. 12032929001)
- EZ DNA Methylation-Direct Kit (Zymo Research, cat. no. D5020)
- Agarose
- DNA loading dye, e.g., Orange G DNA Loading Dye (ThermoFisher Scientific, cat. no. R0631)
- Nucleic acid gel stain, e.g., GelsGelStarTM Nucleic Acid Gel Stain (Lonza, cat. no. 50535)
- DNA 100 bp ladder, e.g., 100 bp DNA Ladder (ThermoFisher Scientific, cat. no. 15628050)
- PyroMark Gold Q96 CDT reagent kit (Qiagen, cat. no. 972824)
- Manual pipettes
- Multichannel pipette
- Pipette filtered tips
- Eppendorf LoBind microcentrifuge tubes (Merck KGaA, Darmstadt, Germany, cat. no. 022431021)
- TipOne Low Retention Tips (STARLAB, Hamburg, Germany, cat. no. S1180-8810)
- Eppendorf® ThermoMixer® F1.5 (Sigma Aldrich, cat. no. EP5384000012)
- Microcentrifuge with PCR tube adaptors
- Thermal cycler
- Thin-walled PCR tubes, 0.2 mL
- PyroMark pyrosequencing system (Qiagen)
- Gel electrophoresis equipment
- Add 790 μL of M-Solubilization Buffer to a tube of CT Conversion Reagent
- Add 300 μL of M-Dilution Buffer to the tube of CT Conversion Reagent
- Mix at room temperature with frequent vortexing or shaking for 10 min
- Add 160 μL of M-Reaction Buffer to the tube of CT Conversion Reagent
- Mix an additional 1 min
- Add 24 mL of 100% ethanol to the 6 mL M-Wash Buffer concentrate (D5020)
- Briefly centrifuge the tube with laser capture microdissected cells
- Add 11 µL M-Digestion Buffer (2X) to the sample
- Add 1 µL of Proteinase K to the sample
- Briefly vortex and centrifuge the tube
- Incubate the sample in a heating block at 50°C for overnight
- After incubation, transfer the digested sample to a PCR tube
- By using the same pipet tip, take 143 µL CT Conversion Reagent
- Use the CT Conversion Reagent to wash out the digestion tube
- Add the CT Conversion Reagent to the sample containing PCR tube
- Briefly vortex and centrifuge the tube
- Place the PCR tube in a thermal cycler and perform the following steps:
- 98 °C for 8 min
- 64 °C for 3.5 h
- 4 °C storage
- Add 200 µL of M-Binding Buffer into a Zymo-Spin™ IC Column and place the column into a provided Collection Tube
- Pipet the bisulfite converted sample into the Zymo-Spin™ IC Column
- By using the same pipet tip, take 200 µL of M-Binding Buffer
- Use the M-Binding Buffer to wash out the PCR tube used for bisulfite conversion
- Add the 200 µL of M-Binding Buffer to the sample containing Zymo-Spin™ IC Column
- Repeat step 9–11 once more
- Close the cap and mix by inverting the column several times
- Centrifuge at full speed (>10,000× g) for 30 s
- Discard the flow-through
- Add 100 µL of M-Wash Buffer to the column
- Centrifuge at full speed (>10,000× g) for 30 s
- Add 200 µL of M-Desulphonation Buffer to the column and let stand at room temperature (20–30 °C) for 15–20 min
- Centrifuge at full speed (>10,000× g) for 30 s
- Add 200 µL of M-Wash Buffer to the column
- Centrifuge at full speed (>10,000× g) for 30 s
- Add 200 µL of M-Wash Buffer to the column
- Centrifuge at full speed (>10,000× g) for 30 s
- Place the column into a 1.5 mL LoBind Eppendorf tube
- Add 10 µL of M-Elution Buffer directly to the column matrix
- Centrifuge for 30 s at full speed (>10,000× g) to elute the DNA
- Add 10 µL of M-Elution Buffer directly to the column matrix
- Centrifuge for 30 s at full speed (>10,000× g) to elute the DNA
- Prepare a single PCR mix containing the following reagents:
- 2.5 μL PCR buffer (10X) with 20 mM MgCl2 per reaction
- →
- 25 × 2.5 μL= 62.5 μL
- 0.5 μL 10 mM dNTP mix per reaction
- →
- 25 × 0.5 μL= 12.5 μL
- 1 μL of the forward primer (10 μM stock) per gene per reaction
- →
- 25 × 7 genes × 1 μL = 175 μL
- 1 μL of the reverse primer (10 μM stock) per gene per reaction
- →
- 25 × 7 genes × 1 μL = 175 μL
- 0.2 μL (5 U/μL) FastStart™ Taq DNA Polymerase per reaction
- →
- 0.2 ∗ 25 = 5 μL
- →
- Components ‘a’-‘e’; total volume = 430 µL
- Mix by shaking and then centrifuge the PCR mix
- Divide the PCR mix into two separate Eppendorf tubes according to the necessary volumes
- Tube 1, 22 reactions: 378.4 µL PCR mix
- →
- 430/25 × 22 = 378.4 µL
- Tube 2, 2 reactions: 34.4 µL PCR mix
- →
- 430/25 × 2 = 34.4 µL
- Add a required volume of H2O to both the PCR mixes (See details below)
- Tube 1, 22 reactions: 151.6 µL H2O
- →
- 22 reactions × 25 µL total volume = 550 µL
- →
- Minus 378.4 µL PCR mix = 171.6 µL
- →
- Minus 20 µL bisulfite converted DNA = 151.6 µL
- Tube 2, 2 reactions: 13.6 µL H2O
- →
- 2 reactions × 25 µL total volume = 50 µL
- →
- Minus 34.4 µL PCR mix = 15.6 µL
- →
- Minus 2 × 1 µL of template (Control DNA and/or H2O) = 13.6 µL
- Mix by shaking and then centrifuge the PCR mixes
- Add the complete PCR mix from ‘Tube 1′ to the 20 µL of bisulfite converted DNA
- Mix thoroughly by pipetting up-and-down
- By using the same pipet tip, dispense 25 µL of the mixture over 22 wells of a microtiter plate (mix thoroughly between dispensation steps)
- Dispense 24 microliter of the PCR mix from ‘Tube 2′ into 2 wells of a microtiter plate
- Add the necessary control templates to the latter 2 wells (e.g., positive and negative)
- Seal the micro-titer plate
- Place the micro-titer plate in a thermal cycler and perform the following steps:
- a.
- 95 °C for 5 min
- b.
- c.
- 72 °C for 7 min
- d.
- 4 °C storage
- Each PCR reaction should contain the following reagents per tube (Total volume of 25 μL):
- 1 µL of Multiplex PCR product
- 2.5 μL PCR buffer (10X) with 20 mM MgCl2
- 0.5 μL 10 mM dNTP mix
- 1 μL of the forward primer (10 μM stock)
- 1 μL of the reverse primer (10 μM stock)
- 0.2 μL (5 U/μL) FastStart™ Taq DNA Polymerase
- 18.8 µL of H2O
- Place the micro-titer plate in a thermal cycler and perform the following steps:
- a.
- 95 °C for 5 min
- b.
- c.
- 72 °C for 7 min
- d.
- 4 °C storage
- Visualize the PCR products on a 2% agarose gel, using the Orange G DNA Loading Dye, the GelsGelStarTM Nucleic Acid Gel Stain, and a 100 bp ladder according to the manufacturer’s instructions.
- Identify which of the reactions yield a gene-specific PCR product
- Use the required amount of PCR product as suggested by the manufacturer’s instructions for subsequent pyrosequencing analysis.
- Please refer to the manufacturer’s instructions for details on bisulfite pyrosequencing
References
- van den Hove, D.L.; Riemens, R.J.; Koulousakis, P.; Pishva, E. Epigenome-wide association studies in Alzheimer’s disease; Achievements and challenges. Brain Pathol. 2020, 30, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Lardenoije, R.; Iatrou, A.; Kenis, G.; Kompotis, K.; Steinbusch, H.W.; Mastroeni, D.; Coleman, P.; Lemere, C.A.; Hof, P.R.; van den Hove, D.L.A.; et al. The epigenetics of aging and neurodegeneration. Prog. Neurobiol. 2015, 131, 21–64. [Google Scholar] [CrossRef]
- Gasparoni, G.; Bultmann, S.; Lutsik, P.; Kraus, T.F.J.; Sordon, S.; Vlcek, J.; Dietinger, V.; Steinmaurer, M.; Haider, M.; Mulholland, C.B.; et al. DNA methylation analysis on purified neurons and glia dissects age and Alzheimer’s disease-specific changes in the human cortex. Epigenetics Chromatin 2018, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Roubroeks, J.A.Y.; Smith, R.G.; van den Hove, D.L.A.; Lunnon, K. Epigenetics and DNA methylomic profiling in Alzheimer’s disease and other neurodegenerative diseases. J. Neurochem. 2017, 143, 158–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012, 13, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houseman, E.A.; Molitor, J.; Marsit, C.J. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 2014, 30, 1431–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, E.; Zaitlen, N.; Baran, Y.; Eng, C.; Hu, D.; Galanter, J.; Oh, S.; Burchard, E.G.; Eskin, E.; Zou, J.; et al. Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies. Nat. Methods 2016, 13, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, E.; Zaitlen, N.; Baran, Y.; Eng, C.; Hu, D.; Galanter, J.; Oh, S.; Burchard, E.G.; Eskin, E.; Zou, J.; et al. Correcting for cell-type heterogeneity in DNA methylation: A comprehensive evaluation. Nat. Methods 2017, 14, 218–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.C.; Beck, S.; Jaffe, A.E.; Koestler, D.C.; Hansen, K.D.; Houseman, A.E.; Irizarry, R.A.; Teschendorff, A.E. Correcting for cell-type heterogeneity in epigenome-wide association studies: Revisiting previous analyses. Nat. Methods 2017, 14, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Hajj, N.E.; Kuhtz, J.; Haaf, T. Limiting Dilution Bisulfite Pyrosequencing(R): A Method for Methylation Analysis of Individual DNA Molecules in a Single or a Few Cells. Methods Mol Biol. 2015, 1315, 221–239. [Google Scholar] [PubMed]
- El Hajj, N.; Trapphoff, T.; Linke, M.; May, A.; Hansmann, T.; Kuhtz, J.; Reifenberg, K.; Heinzmann, J.; Niemann, H.; Daser, A.; et al. Limiting dilution bisulfite (pyro)sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes. Epigenetics 2011, 6, 1176–1188. [Google Scholar] [CrossRef] [PubMed]
- Mattern, F.; Heinzmann, J.; Herrmann, D.; Lucas-Hahn, A.; Haaf, T.; Niemann, H. Gene-specific profiling of DNA methylation and mRNA expression in bovine oocytes derived from follicles of different size categories. Reprod. Fertil. Dev. 2017, 29, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Trapphoff, T.; El Hajj, N.; Zechner, U.; Haaf, T.; Eichenlaub-Ritter, U. DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum. Reprod. 2010, 25, 3025–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinzmann, J.; Hansmann, T.; Herrmann, D.; Wrenzycki, C.; Zechner, U.; Haaf, T.; Niemann, H. Epigenetic profile of developmentally important genes in bovine oocytes. Mol. Reprod. Dev. 2011, 78, 188–201. [Google Scholar] [CrossRef] [PubMed]
- Diederich, M.; Hansmann, T.; Heinzmann, J.; Barg-Kues, B.; Herrmann, D.; Aldag, P.; Baulain, U.; Reinhard, R.; Kues, W.; Weißgerber, C.; et al. DNA methylation and mRNA expression profiles in bovine oocytes derived from prepubertal and adult donors. Reproduction 2012, 144, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beach, T.G.; Sue, L.I.; Walker, D.G.; Roher, A.E.; Lue, L.; Vedders, L.; Connor, D.J.; Sabbagh, M.N.; Rogers, J. The Sun Health Research Institute Brain Donation Program: Description and experience, 1987–2007. Cell Tissue Bank 2008, 9, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Charnay, Y.; Léger, L. Brain serotonergic circuitries. Dialogues Clin. Neurosci. 2010, 12, 471. [Google Scholar] [CrossRef] [PubMed]
- Beach, T.G.; Adler, C.H.; Sue, L.I.; Serrano, G.; Shill, H.A.; Walker, D.G.; Lue, L.; Roher, A.E.; Dugger, B.N.; Maarouf, C.; et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2015, 35, 354. [Google Scholar] [CrossRef]
Singleplex PCR | RHBDF2 | OXT | TNXB | DNAJB13 | PGLYRP1 | C3 | LMX1B | Mean |
Number (+ percentage) of reactions with PCR product | 315 (19.89) | 241 (15.21) | 237 (14.96) | 416 (26.26) | 233 (14.71) | 189 (11.93) | 532 (33.59) | 309 (19.51) |
Allele estimation traditional LDBSP criteria | ||||||||
Number (+ percentage) of included reactions (1 allele) | 298 (94.60) | 220 (91.29) | 201 (84.81) | 346 (83.17) | 204 (87.55) | 186(98.41) | 474 (89.10) | 275.57 (89.18) |
Number (+ percentage) of excluded reactions (multi-allele/artifact) | 17 (5.40) | 21 (8.71) | 36 (15.19) | 70 (16.83) | 29 (12.45) | 3 (1.59) | 58 (10.90) | 33.43 (10.82) |
Allele estimation novel LDBSP criteria | ||||||||
Number (+ percentage) of reactions with 1 allele | 300 (95.24) | 232 (96.27) | 217 (91.56) | 356 (85.58) | 208 (89.27) | 186 (98.41) | 475 (89.29) | 282 (91.26) |
Number (+ percentage) of reactions with 2 alleles | 7 (2.22) | 3 (1.24) | 13 (5.49) | 23 (5.53) | 4 (1.72) | 0 (0.00) | 21 (3.95) | 10.14 (3.28) |
Number (+ percentage) of reactions with 3 alleles | 8 (2.54) | 6 (2.49) | 7 (2.95) | 37 (8.89) | 21 (9.01) | 3 (1.59) | 36 (6.77) | 16.86 (5.46) |
Number (+ percentage) of multi-allele reactions | 15 (4.76) | 9 (3.73) | 20 (8.44) | 60 (14.42) | 25 (10.73) | 3 (1.59) | 57 (10.71) | 27 (8.74) |
Number (+ percentage) of recovered alleles | 338 (4.69) | 256 (3.56) | 264 (3.67) | 513 (7.13) | 279 (3.88) | 195 (2.71) | 625 (8.68) | 352.86 (4.90) |
Multivariate test | RHBDF2 | OXT | TNXB | DNAJB13 | PGLYRP1 | C3 | LMX1B |
Combined effect | 0.482 | 0.474 | 0.340 | 0.104 | 0.395 | 0.385 | 0.017 * |
Univariate tests | |||||||
CpG 1 | 0.193 | 0.544 | 0.160 | 0.214 | 0.962 | 0.328 | 0.449 |
CpG 2 | 0.063 | 0.048 * | 0.169 | 0.393 | 0.331 | 0.328 | 0.012 * |
CpG 3 | 0.305 | 0.005 ** | 0.380 | 0.882 | 0.527 | 0.328 | 0.010 ** |
CpG 4 | 0.288 | 0.407 | 0.595 | 0.778 | 0.090 | 0.312 | 0.310 |
CpG 5 | 0.142 | 0.581 | 0.657 | 0.575 | 0.519 | 1.000 | 0.040 * |
CpG 6 | 0.293 | 0.692 | 0.169 | 0.716 | 0.517 | 1.000 | 0.001 *** |
CpG 7 | 0.973 | 0.033 * | 0.212 | 0.922 | 0.863 | 0.328 | 0.008 ** |
CpG 8 | 0.047 * | 0.349 | 0.450 | 0.600 | 0.544 | 1.000 | - |
CpG 9 | 0.328 | 0.381 | 0.868 | 0.203 | 0.857 | - | - |
CpG 10 | 0.053 | 0.087 | 0.728 | - | - | - | - |
CpG 11 | 0.859 | 0.228 | 0.910 | - | - | - | - |
CpG 12 | 0.963 | 0.394 | - | - | - | - | - |
CpG 13 | 0.814 | - | - | - | - | - | - |
CpG 14 | 0.083 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riemens, R.J.M.; Kenis, G.; Nolz, J.; Susano Chaves, S.C.; Duroux, D.; Pishva, E.; Mastroeni, D.; Van Steen, K.; Haaf, T.; van den Hove, D.L.A. Targeted Methylation Profiling of Single Laser-Capture Microdissected Post-Mortem Brain Cells by Adapted Limiting Dilution Bisulfite Pyrosequencing (LDBSP). Int. J. Mol. Sci. 2022, 23, 15571. https://doi.org/10.3390/ijms232415571
Riemens RJM, Kenis G, Nolz J, Susano Chaves SC, Duroux D, Pishva E, Mastroeni D, Van Steen K, Haaf T, van den Hove DLA. Targeted Methylation Profiling of Single Laser-Capture Microdissected Post-Mortem Brain Cells by Adapted Limiting Dilution Bisulfite Pyrosequencing (LDBSP). International Journal of Molecular Sciences. 2022; 23(24):15571. https://doi.org/10.3390/ijms232415571
Chicago/Turabian StyleRiemens, Renzo J. M., Gunter Kenis, Jennifer Nolz, Sonia C. Susano Chaves, Diane Duroux, Ehsan Pishva, Diego Mastroeni, Kristel Van Steen, Thomas Haaf, and Daniël L. A. van den Hove. 2022. "Targeted Methylation Profiling of Single Laser-Capture Microdissected Post-Mortem Brain Cells by Adapted Limiting Dilution Bisulfite Pyrosequencing (LDBSP)" International Journal of Molecular Sciences 23, no. 24: 15571. https://doi.org/10.3390/ijms232415571
APA StyleRiemens, R. J. M., Kenis, G., Nolz, J., Susano Chaves, S. C., Duroux, D., Pishva, E., Mastroeni, D., Van Steen, K., Haaf, T., & van den Hove, D. L. A. (2022). Targeted Methylation Profiling of Single Laser-Capture Microdissected Post-Mortem Brain Cells by Adapted Limiting Dilution Bisulfite Pyrosequencing (LDBSP). International Journal of Molecular Sciences, 23(24), 15571. https://doi.org/10.3390/ijms232415571