Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Design and Synthesis
2.2. Photophysical and Photochemical Properties
2.2.1. Photophysical Properties
2.2.2. GSH-Responsive Behavior
2.2.3. ROS-Triggered CPT Release
2.3. Preparation and Characterization of BTC NPs and BCC NPs
2.4. In Vitro Assessments
2.4.1. GSH-Responsive Intracellular Fluorescence
2.4.2. Intracellular ROS Level
2.4.3. Intracellular CPT Release
2.4.4. Cytotoxicity Assays
2.5. In Vivo Studies
3. Materials and Methods
3.1. General
3.1.1. Synthesis of BTC
3.1.2. Synthesis of BCC
3.2. Photophysics and Photochemistry Investigations
3.2.1. GSH-Responsive Fluorescence Emission
3.2.2. Intramolecular FRET Process Evaluation
3.2.3. Photoinduced CPT Release
3.3. Preparation and Characterization of BTC NPs and BCC NPs
3.3.1. Preparation of BTC NPs and BCC NPs
3.3.2. Characterization of BTC NPs and BCC NPs
3.4. In Vitro Studies
3.4.1. GSH-Responsive Intracellular Fluorescence
3.4.2. Intracellular ROS Measurement
3.4.3. Intracellular CPT Release
3.4.4. Photocytotoxicity Assay
3.4.5. Cell Apoptosis Assay
3.5. In Vivo Studies
3.5.1. In Vivo Fluorescence Imaging Study
3.5.2. In Vivo Antitumor Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michael, M.D.; Louise, L.J. The Role of Inflammation in Progression of Breast Cancer: Friend or Foe? (Review). Int. J. Oncol. 2015, 47, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Wang, B.; Li, B.; Huang, X.; Guo, H.; Liu, Y.; Chen, B.; Zhao, S.; Wu, S.; Li, W.; et al. Collection on Reports of Molecules Linked to Epithelial-Mesenchymal Transition in the Process of Treating Metastasizing Cancer: A Narrative Review. Ann. Transl. Med. 2021, 9, 946. [Google Scholar] [CrossRef] [PubMed]
- Sakaue-Sawano, A.; Kobayashi, T.; Ohtawa, K.; Miyawaki, A. Drug-induced Cell Cycle Modulation Leading to Cell-cycle Arrest, Nuclear Mis-segregation, or Endoreplication. BMC Cell Biol. 2011, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Z.; Dong, S.; Zhao, S.; Liu, K.; Tan, Y.; Jiang, X.; Assaraf, Y.; Qin, B.; Chen, Z.; Zou, C. Novel Nanomedicines to Overcome Cancer Multidrug Resistance. Drug Resist. Updates 2021, 58, 100777. [Google Scholar] [CrossRef] [PubMed]
- Chudy, M.; Tokarska, K.; Jastrzębska, E.; Bułka, M.; Drozdek, S.; Lamch, Ł.; Wilk, K.; Brzózka, Z. Lab-on-a-chip Systems for Photodynamic Therapy Investigations. Biosens. Bioelectron. 2018, 101, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Gao, J.; Ding, Y.; Lu, Y.; Wei, Q.; Cui, D.; Fan, J.; Li, X.; Zhu, E.; Lu, Y.; et al. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. Adv. Sci. 2021, 8, 2100876. [Google Scholar] [CrossRef]
- Wan, Y.; Fu, L.; Li, C.; Lin, J.; Huang, P. Conquering the Hypoxia Limitation for Photodynamic Therapy. Adv. Mater. 2021, 33, 2103978. [Google Scholar] [CrossRef]
- Zhuang, Z.; Dai, J.; Yu, M.; Li, J.; Shen, P.; Hu, R.; Lou, X.; Zhao, Z.; Tang, B. Type I Photosensitizers Based on Phosphindole Oxide for Photodynamic Therapy: Apoptosis and Autophagy Induced by Endoplasmic Reticulum Stress. Chem. Sci. 2020, 11, 3405–3417. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ding, D. Recent Advances of Transition Ir(III) Complexes as Photosensitizers for Improved Photodynamic Therapy. VIEW 2021, 2, 20200179. [Google Scholar] [CrossRef]
- Majerník, M.; Jendželovský, R.; Vargová, J.; Jendželovská, Z.; Fedoročko, P. Multifunctional Nanoplatforms as A Novel Effective Approach in Photodynamic Therapy and Chemotherapy, to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2022, 14, 1075. [Google Scholar] [CrossRef]
- Alves, S.; Calori, I.; Tedesco, A. Photosensitizer-based Metal-organic Frameworks for Highly Effective Photodynamic Therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 131, 112514. [Google Scholar] [CrossRef]
- Nishiyama, N.; Morimoto, Y.; Jang, W.; Kataoka, K. Design and Development of Dendrimer Photosensitizer-incorporated Polymeric Micelles for Enhanced Photodynamic Therapy. Adv. Drug Deliv. Rev. 2009, 61, 327–338. [Google Scholar] [CrossRef]
- Brown, J.M. Tumor Microenvironment and the Response to Anticancer Therapy. Cancer Biol. Ther. 2002, 1, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Wiese, M.; Stefan, S.M. The A-B-C of Small-molecule ABC Transport Protein Modulators: From Inhibition to Activation–A Case Study of Multidrug Resistance-associated Protein 1 (ABCC1). Med. Res. Rev. 2019, 39, 2031–2081. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, Y.W.; He, X.; Yu, Y.; Han, R.; Li, Y.; Yang, C.; Hu, D.; Qian, Z. Polymeric Nanoparticles with ROS-responsive Prodrug and Platinum Nanozyme for Enhanced Chemophotodynamic Therapy of Colon Cancer. Adv. Sci. 2020, 7, 2001853. [Google Scholar] [CrossRef]
- Liu, L.; Qiu, W.; Li, B.; Zhang, C.; Sun, L.; Wan, S.; Rong, L.; Zhang, X. A Red Light Activatable Multifunctional Prodrug for Image-guided Photodynamic Therapy and Cascaded Chemotherapy. Adv. Funct. Mater. 2016, 26, 6257–6269. [Google Scholar] [CrossRef]
- Yang, C.; Wen, F.; Du, Y.; Luo, M.; Lu, Y.; Liu, Y.; Lin, H. A Hypoxia-Activated Prodrug Conjugated with a BODIPY-BasedPhotothermal Agent for Imaging-Guided Chemo-PhotothermalCombination Therapy. ACS Appl. Mater. 2022, 14, 40546–40558. [Google Scholar] [CrossRef]
- Tam, L.K.B.; Yu, L.; Wong, R.C.H.; Fong, W.P.; Ng, D.K.P.; Lo, P.C. Dual Cathepsin and Glutathione-Activated Dimeric and Trimeric Phthalocyanine-Based Photodynamic Molecular Beacons for Targeted Photodynamic Therapy. J. Med. Chem. 2021, 64, 17455–17467. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, H.; Chen, Z.; Dong, X.; Zhao, W.; Shi, Y.; Zhu, Q. Discovery of an Amino Acid-Modified Near-Infrared Aza-BODIPY Photosensitizer as an Immune Initiator for Potent Photodynamic Therapy in Melanoma. J. Med. Chem. 2022, 65, 3616–3631. [Google Scholar] [CrossRef]
- Chu, D.; Dong, X.; Zhao, Q.; Gu, J.; Wang, Z. Photosensitization Priming of Tumor Microenvironments Improves Delivery of Nanotherapeutics via Neutrophil Infiltration. Adv. Mater. 2017, 29, 1701021. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-Responsive Therapeutic Metallodrugs. Chem. Rev. 2019, 119, 1138–1192. [Google Scholar] [CrossRef] [PubMed]
- Gasser, S.; Lim, L.H.K.; Cheung, F.S.G. The Role of the Tumour Microenvironment in Immunotherapy. Endocr. Relat. Cancer 2017, 24, T283–T295. [Google Scholar] [CrossRef] [PubMed]
- Huai, Y.; Hossen, M.N.; Wilhelm, S.; Bhattacharya, R.; Mukherjee, P. Nanoparticle Interactions with the Tumor Microenvironment. Bioconjug. Chem. 2019, 30, 2247–2263. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Zou, Y.; Fong, W.; Ng, D.K.P. Multifunctional Molecular Therapeutic Agent for Targeted and Controlled Dual Chemo-and Photodynamic Therapy. J. Med. Chem. 2020, 63, 8512–8523. [Google Scholar] [CrossRef]
- Ihsanullah, K.M.; Kumar, B.N.; Zhao, Y.; Muhammad, H.; Liu, Y.; Wang, L.; Liu, H.; Jiang, W. Stepwise-Activatable Hypoxia Triggered Nanocarrier-Based Photodynamic Therapy for Effective Synergistic Bioreductive Chemotherapy. Biomaterials 2020, 245, 119982. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Tan, Y.; Meng, W.; Huang, N.; Zhao, Y.; Yu, Z.; Huang, Z.; Zhang, W.; Sun, B.; Chen, J. Microenvironment-Driven Sequential Ferroptosis, Photodynamic Therapy, and Chemotherapy for Targeted Breast Cancer Therapy by a Cancer-Cell-Membrane-Coated Nanoscale Metal-Organic Framework. Biomaterials 2022, 282, 121449. [Google Scholar] [CrossRef]
- James, N.S.; Joshi, P.; Ohulchanskyy, T.Y.; Chen, Y.; Tabaczynski, W.; Durrani, F.; Shibata, M.; Pandey, R.K. Photosensitizer (PS)-Cyanine Dye (CD) Conjugates: Impact of the Linkers Joining the PS and CD Moieties and Their Orientation in Tumor-Uptake and Photodynamic Therapy (PDT). Eur. J. Med. Chem. 2016, 122, 770–785. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wu, W.; Cui, X.; Zhao, J.; Wu, M. Preparation of Bodipy–ferrocene Dyads and Modulation of the Singlet/Triplet Excited State of Bodipy via Electron Transfer and Triplet Energy Transfer. J. Mater. Chem. C Mater. 2016, 4, 2843–2853. [Google Scholar] [CrossRef]
- Bio, M.; Rajaputra, P.; You, Y. Photodynamic Therapy via FRET Following Bioorthogonal Click Reaction in Cancer Cells. Bioorg. Med. Chem. Lett. 2016, 26, 145–148. [Google Scholar] [CrossRef]
- Yang, G.; Sun, X.; Liu, J.; Feng, L.; Liu, Z. Light-Responsive, Singlet-Oxygen-Triggered On-Demand Drug Release from Photosensitizer-Doped Mesoporous Silica Nanorods for Cancer Combination Therapy. Adv. Funct. Mater. 2016, 26, 4722–4732. [Google Scholar] [CrossRef]
- Sasan, S.; Chopra, T.; Gupta, A.; Tsering, D.; Kapoor, K.K.; Parkesh, R. Fluorescence “turn-off” and Colorimetric Sensor for Fe2+, Fe3+, and Cu2+ Ions Based on a 2,5,7-Triarylimidazopyridine Scaffold. ACS Omega 2022, 7, 11114–11125. [Google Scholar] [CrossRef]
- Thapa, P.; Li, M.; Bio, M.; Rajaputra, P.; Nkepang, G.; Sun, Y.; Woo, S.; You, Y. Far-Red Light-Activatable Prodrug of Paclitaxel for the Combined Effects of Photodynamic Therapy and Site-Specific Paclitaxel Chemotherapy. J. Med. Chem. 2016, 59, 3204–3214. [Google Scholar] [CrossRef] [Green Version]
- Turan, I.S.; Cakmak, F.P.; Yildirim, D.C.; Cetin-Atalay, R.; Akkaya, E.U. Near-IR Absorbing BODIPY Derivatives as Glutathione-Activated Photosensitizers for Selective Photodynamic Action. Chemistry 2014, 20, 16088–16092. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Chen, J.; Stefflova, K.; Jarvi, M.; Li, H.; Wilson, B.C. Photodynamic Molecular Beacon as an Activatable Photosensitizer Based on Protease-Controlled Singlet Oxygen Quenching and Activation. Proc. Natl. Acad. Sci. USA 2007, 104, 8989–8994. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Yang, W.; Zhao, J. Switching of the Triplet Excited State of Styryl 2,6-Diiodo-Bodipy and its Application in Acid-Activatable Singlet Oxygen Photosensitizing. J. Org. Chem. 2014, 79, 10240–10255. [Google Scholar] [CrossRef]
- Deng, C.; Liu, Y.; Zhou, F.; Wu, M.; Zhang, Q.; Yi, D.; Yuan, W.; Wang, Y. Engineering of Dendritic Mesoporous Silica Nanoparticles for Efficient Delivery of Water-Insoluble Paclitaxel in Cancer Therapy. J. Colloid Interface Sci. 2021, 593, 424–433. [Google Scholar] [CrossRef]
- Harmatys, K.M.; Overchuk, M.; Chen, J.; Ding, L.; Chen, Y.; Pomper, M.G.; Zheng, G. Tuning Pharmacokinetics to Improve Tumor Accumulation of a Prostate-Specific Membrane Antigen-Targeted Phototheranostic Agent. Bioconjug. Chem. 2018, 29, 3746–3756. [Google Scholar] [CrossRef]
- Gulzar, A.; Xu, J.; Wang, C.; He, F.; Yang, D.; Gai, S.; Yang, P.; Lin, J.; Jin, D.; Xing, B. Tumour Microenvironment Responsive Nanoconstructs for Cancer Theranostic. Nano Today 2019, 26, 16–56. [Google Scholar] [CrossRef]
- Li, M.; Cui, X.; Wei, F.; Wang, Z.; Han, X. Red Blood Cell Membrane-Coated Biomimetic Upconversion Nanoarchitectures for Synergistic Chemo-photodynamic Therapy. New J. Chem. 2021, 45, 22269–22279. [Google Scholar] [CrossRef]
- Meng, X.; Wang, J.; Zhou, J.; Tian, Q.; Qie, B.; Zhou, G.; Duan, W.; Zhu, Y. Tumor Cell Membrane-Based Peptide Delivery System Targeting the Tumor Microenvironment for Cancer Immunotherapy and Diagnosis. Acta Biomater. 2021, 127, 266–275. [Google Scholar] [CrossRef]
- Fu, X.; Yin, W.; Shi, D.; Yang, Y.; He, S.; Hai, J.; Hou, Z.; Fan, Z.; Zhang, D. Shuttle-shape Carrier-Free Platinum-Coordinated Nanoreactors with O2 Self-supply and ROS Augment for Enhanced Phototherapy of Hypoxic Tumor. ACS Appl. Mater. 2021, 13, 32690–32702. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, H.; Su, D.; Yang, D.; Liu, J. Enzyme-activated Multifunctional Prodrug Combining Site-specific Chemotherapy with Light-triggered Photodynamic therapy. Mol. Pharm. 2022, 19, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.; Dong, X.; Shi, X.; Zhang, C.; Wang, Z. Neutrophil-based Drug Delivery Systems. Adv. Mater. 2018, 30, 1706245. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Zhu, D.; Tao, X.; Gao, Y.; Zhu, H.; Mao, Z.; Ling, J. Gold Nanoparticles Coated with Polysarcosine Brushes to Enhance their Colloidal Stability and Circulation Time in vivo. J. Colloid Interface Sci. 2016, 483, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Luo, D.; Basilion, J.P. Photodynamic Therapy: Targeting Cancer Biomarkers for the Treatment of Cancers. Cancers 2021, 13, 2992. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Cheng, D.; Zhang, Y.; Liu, Y.; Ji, L.; Guo, R.; Chen, H.; Ren, X.; Chen, Z.; et al. Near-infrared Laser-triggered in Situ Dimorphic transformation of BF2-azadipyrromethene Nanoaggregates for Enhanced Solid Tumor Penetration. ACS Nano 2020, 14, 3640–3650. [Google Scholar] [CrossRef]
- Zhu, J.; Jiao, A.; Li, Q.; Lv, X.; Wang, X.; Song, X.; Li, B.; Zhang, Y.; Dong, X.C. Mitochondrial Ca2+-overloading by Oxygen/Glutathione Depletion-Boosted Photodynamic Therapy Based on a CaCO3 Nanoplatform for Tumor Synergistic Therapy. Acta Biomater. 2022, 137, 252–261. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, H.; Li, X.; Yang, D.; Liu, J. Red light Triggered Photodynamic-Chemo Combination Therapy Using a Prodrug Caged by Photosensitizer. Eur. J. Med. Chem. 2021, 2015, 113251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Xu, G.; Yang, X.; Liu, S.; Sun, Y.; Chen, L.; Liu, Q.; Liu, J. Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer. Int. J. Mol. Sci. 2022, 23, 15656. https://doi.org/10.3390/ijms232415656
Lu Z, Xu G, Yang X, Liu S, Sun Y, Chen L, Liu Q, Liu J. Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer. International Journal of Molecular Sciences. 2022; 23(24):15656. https://doi.org/10.3390/ijms232415656
Chicago/Turabian StyleLu, Ziyao, Gan Xu, Xiaozhen Yang, Shijia Liu, Yang Sun, Li Chen, Qinying Liu, and Jianyong Liu. 2022. "Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer" International Journal of Molecular Sciences 23, no. 24: 15656. https://doi.org/10.3390/ijms232415656
APA StyleLu, Z., Xu, G., Yang, X., Liu, S., Sun, Y., Chen, L., Liu, Q., & Liu, J. (2022). Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer. International Journal of Molecular Sciences, 23(24), 15656. https://doi.org/10.3390/ijms232415656