Shrunken Pore Syndrome Is Frequently Occurring in Severe COVID-19
Abstract
:1. Introduction
2. Results
3. Discussion
Strengths and Limitations
4. Materials and Methods
4.1. Study Population
4.2. Kidney Function
4.3. Ethical Approval
4.4. Laboratory Analyses
4.5. Calculations of Renal Performance
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grubb, A. Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: Simultaneous use of cystatin C- and creatinine-based GFR-prediction equations, clinical data and an internal quality check. Scand. J. Clin. Lab. Investig. 2010, 70, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grubb, A.; Nyman, U.; Björk, J. Improved estimation of glomerular filtration rate (GFR) by comparison of eGFRcystatin C and eGFRcreatinine. Scand. J. Clin. Lab. Investig. 2012, 72, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyman, U.; Grubb, A.; Sterner, G.; Björk, J. Different equations to combine creatinine and cystatin C to predict GFR. Arithmetic mean of existing equations performs as well as complex combinations. Scand. J. Clin. Lab. Investig. 2009, 69, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Grubb, A. Glomerular filtration and shrunken pore syndrome in children and adults. Acta Paediatr. 2021, 110, 2503–2508. [Google Scholar] [CrossRef] [PubMed]
- Grubb, A.; Lindström, V.; Jonsson, M.; Bäck, S.E.; Åhlund, T.; Rippe, B.; Christensson, A. Reduction in glomerular pore size is not restricted to pregnant women. Evidence for a new syndrome: ‘Shrunken pore syndrome’. Scand. J. Clin. Lab. Investig. 2015, 75, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Purde, M.T.; Nock, S.; Risch, L.; Medina Escobar, P.; Grebhardt, C.; Nydegger, U.E.; Stanga, Z.; Risch, M. The cystatin C/creatinine ratio, a marker of glomerular filtration quality: Associated factors, reference intervals, and prediction of morbidity and mortality in healthy seniors. Transl. Res. 2016, 169, 80–90.e81-82. [Google Scholar] [CrossRef] [Green Version]
- Åkesson, A.; Lindström, V.; Nyman, U.; Jonsson, M.; Abrahamson, M.; Christensson, A.; Björk, J.; Grubb, A. Shrunken pore syndrome and mortality: A cohort study of patients with measured GFR and known comorbidities. Scand. J. Clin. Lab. Investig. 2020, 80, 412–422. [Google Scholar] [CrossRef]
- Xhakollari, L.; Grubb, A.; Jujic, A.; Bachus, E.; Nilsson, P.M.; Leosdottir, M.; Christensson, A.; Magnusson, M. The Shrunken pore syndrome is associated with poor prognosis and lower quality of life in heart failure patients: The HARVEST-Malmö study. ESC Heart Fail. 2021, 8, 3577–3586. [Google Scholar] [CrossRef]
- Herou, E.; Dardashti, A.; Nozohoor, S.; Zindovic, I.; Ederoth, P.; Grubb, A.; Bjursten, H. The mortality increase in cardiac surgery patients associated with shrunken pore syndrome correlates with the eGFR(cystatin C)/eGFR(creatinine)-ratio. Scand. J. Clin. Lab. Investig. 2019, 79, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Linné, E.; Elfström, A.; Åkesson, A.; Fisher, J.; Grubb, A.; Pettilä, V.; Vaara, S.T.; Linder, A.; Bentzer, P. Cystatin C and derived measures of renal function as risk factors for mortality and acute kidney injury in sepsis—A post-hoc analysis of the FINNAKI cohort. J. Crit. Care 2022, 72, 154148. [Google Scholar] [CrossRef]
- Hansson, M.; Gustafsson, R.; Jacquet, C.; Chebaane, N.; Satchell, S.; Thunberg, T.; Ahlm, C.; Fors Connolly, A.M. Cystatin C and α-1-Microglobulin Predict Severe Acute Kidney Injury in Patients with Hemorrhagic Fever with Renal Syndrome. Pathogens 2020, 9, 666. [Google Scholar] [CrossRef] [PubMed]
- Chams, N.; Chams, S.; Badran, R.; Shams, A.; Araji, A.; Raad, M.; Mukhopadhyay, S.; Stroberg, E.; Duval, E.J.; Barton, L.M.; et al. COVID-19: A Multidisciplinary Review. Front. Public Health 2020, 8, 383. [Google Scholar] [CrossRef] [PubMed]
- Luther, T.; Eckerbom, P.; Cox, E.; Lipcsey, M.; Bülow, S.; Hultström, M.; Martinez Torrente, F.; Weis, J.; Palm, F.; Francis, S.; et al. Decreased renal perfusion during acute kidney injury in critical COVID-19 assessed by magnetic resonance imaging: A prospective case control study. Crit. Care 2022, 26, 262. [Google Scholar] [CrossRef] [PubMed]
- Luther, T.; Bülow-Anderberg, S.; Larsson, A.; Rubertsson, S.; Lipcsey, M.; Frithiof, R.; Hultström, M. COVID-19 patients in intensive care develop predominantly oliguric acute kidney injury. Acta Anaesthesiol. Scand. 2021, 65, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Hultström, M.; Lipcsey, M.; Wallin, E.; Larsson, I.M.; Larsson, A.; Frithiof, R. Severe acute kidney injury associated with progression of chronic kidney disease after critical COVID-19. Crit. Care 2021, 25, 37. [Google Scholar] [CrossRef]
- Frithiof, R.; Bergqvist, A.; Järhult, J.D.; Lipcsey, M.; Hultström, M. Presence of SARS-CoV-2 in urine is rare and not associated with acute kidney injury in critically ill COVID-19 patients. Crit. Care 2020, 24, 587. [Google Scholar] [CrossRef]
- Larsson, A.O.; Hultström, M.; Frithiof, R.; Nyman, U.; Lipcsey, M.; Eriksson, M.B. Differential Bias for Creatinine- and Cystatin C- Derived Estimated Glomerular Filtration Rate in Critical COVID-19. Biomedicines 2022, 10, 2708. [Google Scholar] [CrossRef]
- Larsson, A.O.; Hultström, M.; Frithiof, R.; Lipcsey, M.; Nyman, U.; Eriksson, M.B. Estimated glomerular filtration rates are higher when creatinine-based equations are compared with a cystatin C-based equation in coronavirus disease 2019. Acta Anaesthesiol. Scand. 2022. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Zhou, H.; Yang, M.; He, X.; Xu, N. eGFR, cystatin C and creatinine in shrunken pore syndrome. Clin. Chim. Acta 2019, 498, 1–5. [Google Scholar] [CrossRef]
- Öberg, C.M.; Rippe, B. Quantification of the electrostatic properties of the glomerular filtration barrier modeled as a charged fiber matrix separating anionic from neutral Ficoll. Am. J. Physiol. Ren. Physiol. 2013, 304, F781–F787. [Google Scholar] [CrossRef] [PubMed]
- Rippe, B.; Öberg, C.M. Counterpoint: Defending pore theory. Perit. Dial. Int. 2015, 35, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsushita, H.; Tanaka, R.; Suzuki, Y.; Sato, Y.; Itoh, H. Effects of dose and type of corticosteroids on the divergence between estimated glomerular filtration rates derived from cystatin C and creatinine. J. Clin. Pharm. Ther. 2020, 45, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.L.; Ge, N.; Zhen, Y.; Zhao, Q.; Liu, C. Corticosteroids Significantly Increase Serum Cystatin C Concentration without Affecting Renal Function in Symptomatic Heart Failure. Clin. Lab. 2016, 62, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.R.; Ge, N.; Wang, Y.; Zhai, J.L.; Liu, C. Corticosteroids significantly increase cystatin C levels in the plasma by promoting cystatin C production in rats. Ren. Fail. 2019, 41, 698–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjarnadóttir, M.; Grubb, A.; Olafsson, I. Promoter-mediated, dexamethasone-induced increase in cystatin C production by HeLa cells. Scand. J. Clin. Lab. Investig. 1995, 55, 617–623. [Google Scholar] [CrossRef]
- Nyman, U.; Grubb, A.; Larsson, A.; Hansson, L.O.; Flodin, M.; Nordin, G.; Lindström, V.; Björk, J. The revised Lund-Malmö GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin. Chem. Lab. Med. 2014, 52, 815–824. [Google Scholar] [CrossRef]
- Björk, J.; Grubb, A.; Larsson, A.; Hansson, L.O.; Flodin, M.; Sterner, G.; Lindström, V.; Nyman, U. Accuracy of GFR estimating equations combining standardized cystatin C and creatinine assays: A cross-sectional study in Sweden. Clin. Chem. Lab. Med. 2015, 53, 403–414. [Google Scholar] [CrossRef]
- Björk, J.; Grubb, A.; Sterner, G.; Nyman, U. Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand. J. Clin. Lab. Investig. 2011, 71, 232–239. [Google Scholar] [CrossRef]
- Cervantes-Pérez, E.; Cervantes-Guevara, G.; Martínez-Soto Holguín, M.C.; Cervantes-Pérez, L.A.; Cervantes-Pérez, G.; Cervantes-Cardona, G.A.; González-Ojeda, A.; Fuentes-Orozco, C.; Ramírez-Ochoa, S. Medical Nutrition Therapy in Hospitalized Patients With SARS-CoV-2 (COVID-19) Infection in a Non-critical Care Setting: Knowledge in Progress. Curr. Nutr. Rep. 2020, 9, 309–315. [Google Scholar] [CrossRef]
- Dardashti, A.; Nozohoor, S.; Grubb, A.; Bjursten, H. Shrunken Pore Syndrome is associated with a sharp rise in mortality in patients undergoing elective coronary artery bypass grafting. Scand. J. Clin. Lab. Investig. 2016, 76, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Hansson, M.; Gustafsson, R.; Jacquet, C.; Chebaane, N.; Satchell, S.; Thunberg, T.; Ahlm, C.; Fors Connolly, A.-M. Pathogens-09-00666-s001 Supplementary Figures. Available online: https://www.mdpi.com/2076-0817/9/8/666/htm (accessed on 27 October 2022).
- Peng, X.M.; Zhou, Z.G.; Glorioso, J.C.; Fink, D.J.; Mata, M. Tumor necrosis factor-alpha contributes to below-level neuropathic pain after spinal cord injury. Ann. Neurol. 2006, 59, 843–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fellström, B.; Helmersson-Karlqvist, J.; Lind, L.; Soveri, I.; Thulin, M.; Ärnlöv, J.; Kultima, K.; Larsson, A. Albumin Urinary Excretion Is Associated with Increased Levels of Urinary Chemokines, Cytokines, and Growth Factors Levels in Humans. Biomolecules 2021, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- C-reactive Protein · Homo Sapiens (Human) · Gene: CRP (PTX1). Available online: https://www.uniprot.org/uniprotkb/P02741/entry (accessed on 29 September 2022).
- Depraetere, S.; Willems, J.; Joniau, M. Stimulation of CRP secretion in HepG2 cells: Cooperative effect of dexamethasone and interleukin 6. Agents Actions 1991, 34, 369–375. [Google Scholar] [CrossRef]
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, L.; Li, Y.; Yao, Y.; Zeng, R. Shrunken Pore Syndrome Is Associated with Renal Function Decline in Female Patients with Kidney Diseases. Biomed. Res. Int. 2022, 2022, 2177991. [Google Scholar] [CrossRef]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Jamieson, D.J.; Rasmussen, S.A. An update on COVID-19 and pregnancy. Am. J. Obstet. Gynecol. 2022, 226, 177–186. [Google Scholar] [CrossRef]
- Larsson, A.; Lipcsey, M.; Hultström, M.; Frithiof, R.; Eriksson, M. Plasma Leptin Is Increased in Intensive Care Patients with COVID-19-An Investigation Performed in the PronMed-Cohort. Biomedicines 2021, 10, 4. [Google Scholar] [CrossRef]
- Pedone, C.; Roshanravan, B.; Scarlata, S.; Patel, K.V.; Ferrucci, L.; Incalzi, R.A. Longitudinal association between serum leptin concentration and glomerular filtration rate in humans. PLoS ONE 2015, 10, e0117828. [Google Scholar] [CrossRef] [Green Version]
- Kastarinen, H.; Kesäniemi, Y.A.; Ukkola, O. Leptin and lipid metabolism in chronic kidney failure. Scand. J. Clin. Lab. Investig. 2009, 69, 401–408. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Liu, Z.; Chen, D.; Zhou, L.; Hu, D.; Li, M.; Long, W.; Huang, Y.; Huang, J.; et al. Comparing the Value of Cystatin C and Serum Creatinine for Evaluating the Renal Function and Predicting the Prognosis of COVID-19 Patients. Front. Pharmacol. 2021, 12, 587816. [Google Scholar] [CrossRef] [PubMed]
- Helmersson-Karlqvist, J.; Lipcsey, M.; Ärnlöv, J.; Bell, M.; Ravn, B.; Dardashti, A.; Larsson, A. Cystatin C predicts long term mortality better than creatinine in a nationwide study of intensive care patients. Sci. Rep. 2021, 11, 5882. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, E.; Metnitz, B.; Sprung, C.L.; Timsit, J.F.; Lemaire, F.; Bauer, P.; Schlemmer, B.; Moreno, R.; Metnitz, P. End-of-life practices in 282 intensive care units: Data from the SAPS 3 database. Intensive Care Med. 2009, 35, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Moreno, R.P.; Metnitz, P.G.; Almeida, E.; Jordan, B.; Bauer, P.; Campos, R.A.; Iapichino, G.; Edbrooke, D.; Capuzzo, M.; Le Gall, J.R. SAPS 3--From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005, 31, 1345–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holten, A.R.; Nore, K.G.; Tveiten, C.; Olasveengen, T.M.; Tonby, K. Predicting severe COVID-19 in the Emergency Department. Resusc. Plus 2020, 4, 100042. [Google Scholar] [CrossRef]
- Section 2: AKI Definition. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089595/pdf/kisup201132a.pdf (accessed on 30 October 2022).
- WMA DECLARATION OF HELSINKI—ETHICAL PRINCIPLES FOR MEDICAL RESEARCH INVOLVING HUMAN SUBJECTS. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 23 March 2022).
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef]
- Grubb, A.; Horio, M.; Hansson, L.O.; Björk, J.; Nyman, U.; Flodin, M.; Larsson, A.; Bökenkamp, A.; Yasuda, Y.; Blufpand, H.; et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin. Chem. 2014, 60, 974–986. [Google Scholar] [CrossRef]
- Werner, K.; Pihlsgård, M.; Elmståhl, S.; Legrand, H.; Nyman, U.; Christensson, A. Combining Cystatin C and Creatinine Yields a Reliable Glomerular Filtration Rate Estimation in Older Adults in Contrast to β-Trace Protein and β2-Microglobulin. Nephron 2017, 137, 29–37. [Google Scholar] [CrossRef]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989, 5, 303–311. [Google Scholar] [PubMed]
- Shuter, B.; Aslani, A. Body surface area: Du Bois and Du Bois revisited. Eur. J. Appl. Physiol. 2000, 82, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Nyman, U.; Grubb, A.; Lindström, V.; Björk, J. Accuracy of GFR estimating equations in a large Swedish cohort: Implications for radiologists in daily routine and research. Acta Radiol. 2017, 58, 367–375. [Google Scholar] [CrossRef] [PubMed]
Univariate Model | p-Value | Multivariate Model 1 | p-Value | |
---|---|---|---|---|
Odds Ratio (95%CL) | Odds Ratio (95%CL) | |||
Age (yrs) | 1.03 (1.00–1.05) | p = 0.005 | 1.02 (0.98–1.05) | n.s. |
Gender (female) | 6.50 (3.69–11.4) | p < 0.001 | 6.99 (3.40–14.3) | p < 0.001 |
BMI | 1.05 (1.01–1.09) | p = 0.005 | 1.07 (1.01–1.13) | p = 0.010 |
SAPS3 | 1.05 (1.01–1.08) | p = 0.002 | 1.05 (1.01–1.10) | p < 0.016 |
Chronic kidney disease > stage 2 | 0.99 (0.51–1.93) | n.s. | ||
CRP Day 1 | 0.99 (0.99–1.00) | n.s. | ||
Dialysis (yes) | 1.07 (0.46–2.50) | n.s. | ||
Dexamethasone (yes) | 2.11 (1.13–3.95) | p = 0.019 | 1.49 (0.70–3.18) | n.s. |
Preexisting Condition | Frequency | Preexisting Condition | Frequency |
---|---|---|---|
Pulmonary disease | 24% | Diabetes | 31% |
Pulmonary hypertension | <1% | Neurological disorder | 9% |
Hypertension | 58% | Steroid treatment | 10% |
Ischemic heart disease | 13% | ACEi or ARB | 41% |
Earlier thromboembolism | 11% | Anticoagulant | 28% |
Liver failure | 2% | BMI median (range) | 28 (18–67) |
Malignancy | 10% | Age median (range) | 64 (19–86) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larsson, A.O.; Hultström, M.; Frithiof, R.; Lipcsey, M.; Eriksson, M.B. Shrunken Pore Syndrome Is Frequently Occurring in Severe COVID-19. Int. J. Mol. Sci. 2022, 23, 15687. https://doi.org/10.3390/ijms232415687
Larsson AO, Hultström M, Frithiof R, Lipcsey M, Eriksson MB. Shrunken Pore Syndrome Is Frequently Occurring in Severe COVID-19. International Journal of Molecular Sciences. 2022; 23(24):15687. https://doi.org/10.3390/ijms232415687
Chicago/Turabian StyleLarsson, Anders O., Michael Hultström, Robert Frithiof, Miklos Lipcsey, and Mats B. Eriksson. 2022. "Shrunken Pore Syndrome Is Frequently Occurring in Severe COVID-19" International Journal of Molecular Sciences 23, no. 24: 15687. https://doi.org/10.3390/ijms232415687
APA StyleLarsson, A. O., Hultström, M., Frithiof, R., Lipcsey, M., & Eriksson, M. B. (2022). Shrunken Pore Syndrome Is Frequently Occurring in Severe COVID-19. International Journal of Molecular Sciences, 23(24), 15687. https://doi.org/10.3390/ijms232415687