Genome-Wide Characterization and Function Analysis of ZmERD15 Genes’ Response to Saline Stress in Zea mays L.
Abstract
:1. Introduction
2. Results
2.1. The ZmERD15 Members in Maize
2.2. Multiple Sequence Alignment and Evolutionary Analysis
2.3. Gene Structure and Motif
2.4. Cis-Acting Elements in ZmERD15s Promoter
2.5. Subcellular Localization of ZmERD15s
2.6. Expression Profiles of ZmERD15s under Drought, Salt, and ABA Treatment
2.7. Heterologous Expression of ZmERD15s Enhances Salt Tolerance in Yeast
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Identification of ZmERD15 Genes in Maize
4.3. Analysis of ZmERD15 Protein Properties
4.4. Multialignment and Phylogenetic Analysis of the ZmERD15s
4.5. Analysis of Gene Structure and Cis-Elements
4.6. Subcellular Localization of ZmERD15s
4.7. RNA Extraction and qRT-PCR
4.8. Yeast Expressing Vector Construction and Transformation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Kiyosue, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Cloning of cDNA for genes that are early responsive to dehydration-stress (ERDs) in Arabidopsis thaliana L.: Identification of three ERDs as HSP cognate genes. Mol. Biol. 1994, 25, 91–98. [Google Scholar] [CrossRef]
- Song, J.H.; Weng, Q.Y.; Ma, H.L.; Yuan, J.C.; Wang, L.Y.; Liu, Y.H. Cloning and expression analysis of the Hsp70 gene ZmERD2 in Zea mays. Biotechnol. Biotechnol. Equip. 2016, 30, 219–226. [Google Scholar] [CrossRef]
- Song, X.; Weng, Q.; Zhao, Y.; Ma, H.; Song, J.; Su, L.; Yuan, J.; Liu, Y. Cloning and expression analysis of ZmERD3 gene from Zea mays. Iran. J. Biotechnol. 2018, 16, e1593. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Tian, N.; She, F.; Cao, A.; Wu, W.; Zheng, S.; Yang, N. Characteristics analysis of early responsive to dehydration genes in Arabidopsis thaliana (AtERD). Plant. Signal. Behav. 2022, 2, 2105021. [Google Scholar] [CrossRef]
- Jha, R.K.; Mishra, A. Introgression of SbERD4 gene encodes an early-responsive dehydration-stress protein that confers tolerance against different types of abiotic stresses in transgenic tobacco. Cells 2021, 11, 62. [Google Scholar] [CrossRef]
- Rai, A.; Suprasanna, P.; D’souza, S.F.; Kumar, V. Membrane topology and predicted RNA-binding function of the Early Responsive to Dehydration (ERD4) plant protein. PLoS ONE 2012, 7, e32658. [Google Scholar] [CrossRef]
- Kiyosue, T.; Abe, H.; Yamaguchi-Shinozaki, K.; Shinozaki, K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim. Biophys. Acta 1998, 1370, 187–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barajas-Lopez, J.D.; Tiwari, A.; Zarza, X.; Shaw, M.W.; Pascual, J.S.; Punkkinen, M.; Bakowska, J.C.; Munnik, T.; Fujii, H. Early response to dehydration 7 remodels cell membrane lipid composition during cold stress in Arabidopsis. Plant. Cell. Physiol. 2021, 62, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Doner, N.M.; Seay, D.; Mehling, M.; Sun, S.; Gidda, S.K.; Schmitt, K.; Braus, G.H.; Ischebeck, T.; Chapman, K.D.; Dyer, J.M.; et al. Arabidopsis thaliana Early Responsive to Dehydration 7 localizes to lipid droplets via its senescence domain. Front. Plant. Sci. 2021, 12, 658961. [Google Scholar] [CrossRef] [PubMed]
- Kiyosue, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Characterization of two cDNAs (ERD11 and ERD13) for dehydration-inducible genes that encode putative glutathione S-transferases in Arabidopsis thaliana L. FEBS Lett. 1993, 335, 189–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyosue, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Characterization of Two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant. Cell. Physiol. 1994, 35, 225–231. [Google Scholar] [CrossRef]
- Aalto, M.K.; Helenius, E.; Kariola, T.; Pennanen, V.; Heino, P.; Hõrak, H. ERD15-an attenuator of plant ABA responses and stomatal aperture. Plant. Sci. 2012, 182, 19–28. [Google Scholar] [CrossRef]
- Kiyosue, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant. Physiol. 1994, 106, 1707. [Google Scholar] [CrossRef] [Green Version]
- Kariola, T.; Brader, G.; Helenius, E.; Li, J.; Heino, P.; Palva, E.T. EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant. Physiol. 2006, 142, 1559–1573. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.; Sun, Y.; Shan, Z.; He, J.; Wang, N.; Gai, J.; Li, Y. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. Plant. Biotechnol. J. 2021, 19, 1155–1169. [Google Scholar] [CrossRef]
- Alves, M.S.; Reis, P.A.; Dadalto, S.P.; Faria, J.A.; Fontes, E.P.; Fietto, L.G. A novel transcription factor, ERD15 (Early Responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal. J. Biol. Chem. 2011, 286, 20020–20030. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, L.; Zhao, K.; Niu, R.; Zhai, H.; Zhang, J. VaERD15, a transcription factor gene associated with cold-tolerance in chinese wild Vitis amurensis. Front. Plant. Sci. 2017, 8, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, H.H.; Chen, S.D.; Zhang, K.; Cao, Q.; Zhou, H.; Ma, Q. Isolation and expression studies of the ERD15 gene involved in drought-stressed responses. Genet. Mol. Res. 2014, 13, 10852–10862. [Google Scholar] [CrossRef] [PubMed]
- Ziaf, K.; Munis, M.F.H.; Samin, G.; Zhang, X.; Li, J.; Zhang, J.; Ye, Z. Characterization of ERD15 gene from cultivated tomato (Solanum lycopersicum). Pak. J. Agric. Sci. 2016, 53, 27–33. [Google Scholar] [CrossRef]
- Ziaf, K.; Loukehaich, R.; Gong, P.; Liu, H.; Han, Q.; Wang, T.; Li, H.; Ye, Z. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Plant. Cell. Physiol. 2011, 52, 1055–1067. [Google Scholar] [CrossRef] [Green Version]
- Klopfenstein, T.J.; Erickson, G.E.; Berger, L.L. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crops Res. 2013, 153, 5–11. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Shi, Y.; Song, Y.; Wang, T.; Li, Y. A maize early responsive to dehydration gene, ZmERD4, provides enhanced drought and salt tolerance in Arabidopsis. Plant. Mol. Biol. Rep. 2009, 27, 542–548. [Google Scholar] [CrossRef]
- Wang, X.; Grumet, R. Identification and characterization of proteins that interact with the carboxy terminus of poly(A)-binding protein and inhibit translation in vitro. Plant. Mol. Biol. 2004, 54, 85–98. [Google Scholar] [CrossRef]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon-intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.S.; Fontes, E.P.; Fietto, L.G. Early responsive to dehydration 15, a new transcription factor that integrates stress signaling pathways. Plant. Signal. Behav. 2011, 6, 1993–1996. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.Q.; Feng, W.Q.; Sun, F.A.; Zhang, Y.Y.; Qu, J.T.; Liu, B.L.; Lu, F.Z.; Yang, L.; Fu, F.L.; Li, W.C. Cloning and characterization of BES1/BZR1 transcription factor genes in maize. Plant. Growth. Regul. 2018, 86, 235–249. [Google Scholar] [CrossRef]
- Sun, F.A.; Ding, L.; Feng, W.Q.; Cao, Y.; Lu, F.Z.; Yang, Q.Q.; Li, W.C.; Lu, Y.L.; Shabek, N.; Fu, F.L.; et al. Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. J. Exp. Bot. 2021, 72, 1714–1726. [Google Scholar] [CrossRef]
- Zou, C.; Sun, K.; Mackaluso, J.D.; Seddon, A.E.; Jin, R.; Thomashow, M.F.; Shiu, S.H. Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2011, 108, 14992–14997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.Y.; Zhang, W.H.; Sun, D.D.; Zhang, T.T.; Hu, D.; Zhai, M.Z. Two novel WRKY genes from Jglans regia, JrWRKY6 and JrWRKY53, are involved in abscisic acid-dependent stress responses. Biologia Plant. 2017, 61, 611–621. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Li, H.; Wang, Y.; Zhang, Y.; Wood, A.J. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. Plant. Biol. 2014, 14, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, P.S.; Agarwal, P.; Gupta, K.; Agarwal, P.K. Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. AoB Plants. 2015, 7, plv054. [Google Scholar] [CrossRef] [Green Version]
- Shukla, R.K.; Tripathi, V.; Jain, D.; Yadav, R.K.; Chattopadhyay, D. CAP2 enhances germination of transgenic tobacco seeds at high temperature and promotes heat stress tolerance in yeast. FEBS J. 2009, 276, 5252–5262. [Google Scholar] [CrossRef]
- Sun, F.A.; Yu, H.Q.; Qu, J.T.; Cao, Y.; Ding, L.; Feng, W.Q.; Muhammad, H.B.K.; Li, W.C.; Fu, F.L. Maize ZmBES1/BZR1-5 decreases ABA sensitivity and confers tolerance to osmotic stress in transgenic Arabidopsis. Int. J. Mol. Sci. 2020, 21, 996. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.Y.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic. Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouz’e, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic. Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Q.; Wang, C.; Liang, J.; Liu, L.; Wang, Q. ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response. J. Exp. Bot. 2018, 69, 497–510. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Soni, R.; Carmichael, J.P.; Murray, J.A. Parameters affecting lithium acetate-mediated transformation of saccharomyces cerevisiae and development of a rapid and simplified procedure. Curr. Genet. 1993, 24, 455–459. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Gene Name | Chromosome Distribution | CDS (bp) | Protein Properties | Second Structure (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number of aa | MW (KDa) | PI | GRAVY | II | α-Helix | β-Turn | Random Coil | ||||
Zm00001d007097 | ZmERD15a | 2 | 480 | 159 | 17.64 | 5.94 | −0.351 | 53.06 | 45.91 | 6.29 | 37.11 |
Zm00001d022416 | ZmERD15b | 7 | 342 | 113 | 16.25 | 7.73 | −0. 635 | 65.44 | 47.18 | 7.75 | 37.32 |
Zm00001d038003 | ZmERD15c | 6 | 477 | 158 | 17.74 | 5.04 | −0. 751 | 56.70 | 35.44 | 5.70 | 50.00 |
Zm00001d047470 | ZmERD15d | 9 | 417 | 138 | 15.28 | 5.47 | −0.446 | 51.86 | 45.65 | 2.90 | 49.28 |
Zm00001d048165 | ZmERD15e | 9 | 423 | 140 | 15.46 | 4.97 | −0.562 | 47.70 | 61.64 | 0 | 38.36 |
Cis-Acting Elements | Function | The Number of cis-Elements | ||||
---|---|---|---|---|---|---|
ZmERD15a | ZmERD15b | ZmERD15c | ZmERD15d | ZmERD15e | ||
TATA-box | core promoter element around −30 of transcription start | 54 | 53 | 22 | 29 | 16 |
CAAT-box | common cis-acting element in promoter and enhancer regions | 14 | 7 | 12 | 15 | 7 |
TC-rich repeats | defense and stress responsiveness | 1 | 1 | 0 | 0 | 0 |
MBS | MYB binding site involved in drought-inducibility | 0 | 3 | 1 | 1 | 0 |
LTR | low-temperature responsiveness | 0 | 0 | 2 | 0 | 0 |
GC-motif | anoxic specific inducibility | 2 | 0 | 0 | 0 | 1 |
ARE | anaerobic induction | 2 | 3 | 0 | 0 | 5 |
ABRE | ABA-responsive | 5 | 2 | 4 | 5 | 2 |
CGTCA-motif | MeJA-responsiveness | 3 | 1 | 6 | 1 | 2 |
TGACG-motif | 3 | 1 | 6 | 1 | 2 | |
TCA-motif | salicylic acid responsive | 0 | 1 | 0 | 0 | 0 |
TGA-element | Auxin-responsive element | 2 | 2 | 1 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, H.; Fu, Q.; Lv, H.; Gao, A.; Chen, X.; Yang, Q.; Wang, Y.; Li, W.; Fu, F.; Yu, H. Genome-Wide Characterization and Function Analysis of ZmERD15 Genes’ Response to Saline Stress in Zea mays L. Int. J. Mol. Sci. 2022, 23, 15721. https://doi.org/10.3390/ijms232415721
Duan H, Fu Q, Lv H, Gao A, Chen X, Yang Q, Wang Y, Li W, Fu F, Yu H. Genome-Wide Characterization and Function Analysis of ZmERD15 Genes’ Response to Saline Stress in Zea mays L. International Journal of Molecular Sciences. 2022; 23(24):15721. https://doi.org/10.3390/ijms232415721
Chicago/Turabian StyleDuan, Huaming, Qiankun Fu, Hong Lv, Aijun Gao, Xinyu Chen, Qingqing Yang, Yingge Wang, Wanchen Li, Fengling Fu, and Haoqiang Yu. 2022. "Genome-Wide Characterization and Function Analysis of ZmERD15 Genes’ Response to Saline Stress in Zea mays L." International Journal of Molecular Sciences 23, no. 24: 15721. https://doi.org/10.3390/ijms232415721
APA StyleDuan, H., Fu, Q., Lv, H., Gao, A., Chen, X., Yang, Q., Wang, Y., Li, W., Fu, F., & Yu, H. (2022). Genome-Wide Characterization and Function Analysis of ZmERD15 Genes’ Response to Saline Stress in Zea mays L. International Journal of Molecular Sciences, 23(24), 15721. https://doi.org/10.3390/ijms232415721