Comprehensive Genome Analysis of Neisseria meningitidis from South America Reveals a Distinctive Pathogenicity-Related Prophage Repertoire
Abstract
:1. Introduction
2. Results
2.1. Phylogeny of N. meningitidis Isolates from South America
2.2. High Viral Variability in N. meningitidis
2.3. Correlation of Prophage Repertoire with Clonal-Complexes and Pathogenicity of N. meningitidis
2.4. Prophage Groups Related to Pathogenicity (Commensal or Invasive) and Clonal Complexes Are Similar in Structure and Function
2.5. The Majority of Prophages Predicted Are Related to Prophages Previously Described in the Literature
2.6. Genomics of IMSAR-11
2.7. Global Distribution and Epidemiology of IMSAR-11
2.8. MDA Presence in South America
3. Discussion
3.1. Known and Novel Predicted Prophages of N. meningitidis from South America
3.2. Epidemiology of IMSAR-11
3.3. Impact, Limitations, and Future Perspectives
4. Materials and Methods
4.1. Genomes Recovery
4.2. Bioinformatics Analysis
4.3. Data Analysis and Visualization
4.4. Network Analysis
4.5. Bioinformatics Analysis of IMSAR-11
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caugant, D.A.; Brynildsrud, O.B. Neisseria meningitidis: Using Genomics to Understand Diversity, Evolution and Pathogenesis. Nat. Rev. Microbiol. 2020, 18, 84–96. [Google Scholar] [CrossRef]
- Villena, R.; Valenzuela, M.T.; Bastías, M.; Santolaya, M.E. Meningococcal Invasive Disease by Serogroup W and Use of ACWY Conjugate Vaccines as Control Strategy in Chile. Vaccine 2019, 37, 6915–6921. [Google Scholar] [CrossRef] [PubMed]
- Araya, P.; Díaz, J.; Seoane, M.; Fernández, J.; Terrazas, S.; Canals, A.; Vaquero, A.; Barra, G.; Hormazábal, J.C.; Pidal, P.; et al. Vigilancia de Laboratorio de Enfermedad Meningocóccica Invasora en Chile, 2006–2012. Rev. Chil. Infectología 2014, 31, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araya, P.; Fernández, J.; del Canto, F.; Seoane, M.; Ibarz-Pavón, A.B.; Barra, G.; Pidal, P.; Díaz, J.; Hormazábal, J.C.; Valenzuela, M.T. Neisseria meningitidis ST-11 Clonal Complex, Chile 2012. Emerg. Infect. Dis. 2015, 21, 339–341. [Google Scholar] [CrossRef] [Green Version]
- Instituto de Salud Publica de Chile. Neisseria meningitidis 2011–2019; Instituto de Salud Publica de Chile: Ñuñoa, Chile, 2020; Volume 10. [Google Scholar]
- Vespa Presa, J.; Abalos, M.G.; Sini de Almeida, R.; Cane, A. Epidemiological Burden of Meningococcal Disease in Latin America: A Systematic Literature Review. Int. J. Infect. Dis. 2019, 85, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoen, C.; Blom, J.; Claus, H.; Schramm-Glück, A.; Brandt, P.; Müller, T.; Goesmann, A.; Joseph, B.; Konietzny, S.; Kurzai, O.; et al. Whole-Genome Comparison of Disease and Carriage Strains Provides Insights into Virulence Evolution in Neisseria meningitidis. Proc. Natl. Acad. Sci. USA 2008, 105, 3473–3478. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, N.G.; Stephens, D.S. Neisseria meningitidis: Biology, Microbiology, and Epidemiology. In Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 799, pp. 1–20. [Google Scholar]
- Hotopp, J.C.D.; Grifantini, R.; Kumar, N.; Tzeng, Y.L.; Fouts, D.; Frigimelica, E.; Draghi, M.; Giuliani, M.M.; Rappuoli, R.; Stephens, D.S.; et al. Comparative Genomics of Neisseria meningitidis: Core Genome, Islands of Horizontal Transfer and Pathogen-Specific Genes. Microbiology 2006, 152, 3733–3749. [Google Scholar] [CrossRef] [Green Version]
- Kawai, M.; Uchiyama, I.; Kobayashi, I. Genome Comparison In Silico in Neisseria Suggests Integration of Filamentous Bacteriophages by Their Own Transposase. DNA Res. 2005, 12, 389–401. [Google Scholar] [CrossRef]
- Bille, E.; Zahar, J.-R.; Perrin, A.; Morelle, S.; Kriz, P.; Jolley, K.A.; Maiden, M.C.J.; Dervin, C.; Nassif, X.; Tinsley, C.R. A Chromosomally Integrated Bacteriophage in Invasive Meningococci. J. Exp. Med. 2005, 201, 1905–1913. [Google Scholar] [CrossRef] [Green Version]
- Marin, M.A.; Fonseca, E.; Encinas, F.; Freitas, F.; Camargo, D.A.; Coimbra, R.S.; de Filippis, I.; Vicente, A.C. The Invasive Neisseria meningitidis MenC CC103 from Brazil Is Characterized by an Accessory Gene Repertoire. Sci. Rep. 2017, 7, 1617. [Google Scholar] [CrossRef]
- Bille, E.; Meyer, J.; Jamet, A.; Euphrasie, D.; Barnier, J.-P.; Brissac, T.; Larsen, A.; Pelissier, P.; Nassif, X. A Virulence-Associated Filamentous Bacteriophage of Neisseria meningitidis Increases Host-Cell Colonisation. PloS Pathog. 2017, 13, e1006495. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.; Brissac, T.; Frapy, E.; Omer, H.; Euphrasie, D.; Bonavita, A.; Nassif, X.; Bille, E. Characterization of MDAΦ, a Temperate Filamentous Bacteriophage of Neisseria meningitidis. Microbiology 2016, 162, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Masignani, V.; Giuliani, M.M.; Tettelin, H.; Comanducci, M.; Rappuoli, R.; Scarlato, V. Mu-like Prophage in Serogroup B Neisseria meningitidis Coding for Surface-Exposed Antigens. Infect. Immun. 2001, 69, 2580–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siena, E.; Bodini, M.; Medini, D. Interplay Between Virulence and Variability Factors as a Potential Driver of Invasive Meningococcal Disease. Comput. Struct. Biotechnol. J. 2018, 16, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Mai-Prochnow, A.; Hui, J.G.K.; Kjelleberg, S.; Rakonjac, J.; McDougald, D.; Rice, S.A. Big things in small packages: The genetics of filamentous phage and effects on fitness of their host. FEMS Microbiol. Rev. 2015, 39, 465–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest Suite for Rapid Core-Genome Alignment and Visualization of Thousands of Intraspecific Microbial Genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RaxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Meier-Kolthoff, J.P.; Göker, M. VICTOR: Genome-Based Phylogeny and Classification of Prokaryotic Viruses. Bioinformatics 2017, 33, 3396–3404. [Google Scholar] [CrossRef] [Green Version]
- Sahl, J.W.; Caporaso, J.G.; Rasko, D.A.; Keim, P. The Large-Scale Blast Score Ratio (LS-BSR) Pipeline: A Method to Rapidly Compare Genetic Content between Bacterial Genomes. PeerJ 2014, 2, e332. [Google Scholar] [CrossRef] [Green Version]
- Kieft, K.; Zhou, Z.; Anantharaman, K. VIBRANT: Automated Recovery, Annotation and Curation of Microbial Viruses, and Evaluation of Viral Community Function from Genomic Sequences. Microbiome 2020, 8, 90. [Google Scholar] [CrossRef]
- Soding, J.; Biegert, A.; Lupas, A.N. The HHpred Interactive Server for Protein Homology Detection and Structure Prediction. Nucleic Acids Res. 2005, 33, W244–W248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin Jang, H.; Bolduc, B.; Zablocki, O.; Kuhn, J.H.; Roux, S.; Adriaenssens, E.M.; Brister, J.R.; Kropinski, A.M.; Krupovic, M.; Lavigne, R.; et al. Taxonomic Assignment of Uncultivated Prokaryotic Virus Genomes Is Enabled by Gene-Sharing Networks. Nat. Biotechnol. 2019, 37, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Orazi, G.; Collins, A.J.; Whitaker, R.J. Prediction of Prophages and Their Host Ranges in Pathogenic and Commensal Neisseria Species. mSystems 2022, 7, e00083-22. [Google Scholar] [CrossRef] [PubMed]
- Claus, H.; Stoevesandt, J.; Frosch, M.; Vogel, U. Genetic Isolation of Meningococci of the Electrophoretic Type 37 Complex. J. Bacteriol. 2001, 183, 2570–2575. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Al Suwayyid, B.A.; Rankine-Wilson, L.; Speers, D.J.; Wise, M.J.; Coombs, G.W.; Kahler, C.M. Meningococcal Disease-Associated Prophage-Like Elements Are Present in Neisseria gonorrhoeae and Some Commensal Neisseria Species. Genome Biol. Evol. 2020, 12, 3938–3950. [Google Scholar] [CrossRef]
- Bettencourt, C.; Nunes, A.; Gomes, J.P.; Simões, M.J. Genomic Surveillance of Neisseria meningitidis Serogroup W in Portugal from 2003 to 2019. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 289–298. [Google Scholar] [CrossRef]
- Omer, H.; Rose, G.; Jolley, K.A.; Frapy, E.; Zahar, J.-R.; Maiden, M.C.J.; Bentley, S.D.; Tinsley, C.R.; Nassif, X.; Bille, E. Genotypic and Phenotypic Modifications of Neisseria meningitidis after an Accidental Human Passage. PloS ONE 2011, 6, e17145. [Google Scholar] [CrossRef] [Green Version]
- Kieft, K.; Anantharaman, K. Deciphering Active Prophages from Metagenomes. mSystems 2022, 7, e00084-22. [Google Scholar] [CrossRef]
- Brynildsrud, O.B.; Eldholm, V.; Rakhimova, A.; Kristiansen, P.A.; Caugant, D.A. Gauging the Epidemic Potential of a Widely Circulating Non-Invasive Meningococcal Strain in Africa. Microb. Genom. 2019, 5, e000290. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A Better, Faster Version of the PHAST Phage Search Tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, L.A.S.; Butcher, S.A.; Saunders, N.J. Comparative Whole-Genome Analyses Reveal over 100 Putative Phase-Variable Genes in the Pathogenic Neisseria spp. Microbiology 2001, 147, 2321–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, A.R.; Stojiljkovic, I. Mismatch Repair and the Regulation of Phase Variation in Neisseria meningitidis. Mol. Microbiol. 2001, 40, 645–655. [Google Scholar] [CrossRef]
- Joseph, B.; Schwarz, R.F.; Linke, B.; Blom, J.; Becker, A.; Claus, H.; Goesmann, A.; Frosch, M.; Müller, T.; Vogel, U.; et al. Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome. PloS ONE 2011, 6, e18441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, F.; Kamruzzaman, M.; Mekalanos, J.J.; Faruque, S.M. Satellite Phage TLCφ Enables Toxigenic Conversion by CTX Phage through Dif Site Alteration. Nature 2010, 467, 982–985. [Google Scholar] [CrossRef] [Green Version]
- Budroni, S.; Siena, E.; Hotopp, J.C.D.; Seib, K.L.; Serruto, D.; Nofroni, C.; Comanducci, M.; Riley, D.R.; Daugherty, S.C.; Angiuoli, S.V.; et al. Neisseria meningitidis Is Structured in Clades Associated with Restriction Modification Systems That Modulate Homologous Recombination. Proc. Natl. Acad. Sci. USA 2011, 108, 4494–4499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.G.; Moe, N.E.; Richards, P.Q.; Moe, G.R. Resistance of Neisseria meningitidis to Human Serum Depends on T and B Cell Stimulating Protein B. Infect. Immun. 2015, 83, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.G.; Ing, J.Y.; Cheng, M.K.-W.; Flitter, B.A.; Moe, G.R. Identification of a Phage-Encoded Ig-Binding Protein from Invasive Neisseria meningitidis. J. Immunol. 2013, 191, 3287–3296. [Google Scholar] [CrossRef] [Green Version]
- Rotman, E.; Seifert, H.S. The Genetics of Neisseria Species. Annu. Rev. Genet. 2014, 48, 405–431. [Google Scholar] [CrossRef]
- Pelton, S.I. The Global Evolution of Meningococcal Epidemiology Following the Introduction of Meningococcal Vaccines. J. Adolesc. Health 2016, 59, S3–S11. [Google Scholar] [CrossRef]
- McCall, B.J.; Neill, A.S.; Young, M.M. Risk Factors for Invasive Meningococcal Disease in Southern Queensland, 2000−2001. Intern. Med. J. 2004, 34, 464–468. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, J.C.; Kemp, B.; de Lemos, A.P.S.; Outeiro Gorla, M.C.; Lemes Marques, E.G.; Ferreira M do, C.; Sacchi, C.; Marques Pinto Carvalhanas, T.R.; Ribeiro, A.F.; Ferreira, C.M.; et al. Prevalence, Risk Factors and Molecular Characteristics of Meningococcal Carriage among Brazilian Adolescents. Pediatr. Infect. Dis. J. 2015, 34, 1197–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taha, M.-K.; Weil-Olivier, C.; Bouée, S.; Emery, C.; Nachbaur, G.; Pribil, C.; Loncle-Provot, V. Risk Factors for Invasive Meningococcal Disease: A Retrospective Analysis of the French National Public Health Insurance Database. Hum. Vaccin. Immunother. 2021, 17, 1858–1866. [Google Scholar] [CrossRef]
- Hatfull, G.F. Bacteriophage Genomics. Curr. Opin. Microbiol. 2008, 11, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Hatfull, G.F.; Hendrix, R.W. Bacteriophages and Their Genomes. Curr. Opin. Virol. 2011, 1, 298–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, R.; Brown, N.; Redgwell, T.; Rihtman, B.; Barnes, M.; Clokie, M.; Stekel, D.J.; Hobman, J.; Jones, M.A.; Millard, A. Infrastructure for a PHAge Reference Database: Identification of Large-Scale Biases in the Current Collection of Cultured Phage Genomes. PHAGE 2021, 2, 214–223. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A Genome Comparison Visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Okonechnikov, K.; Golosova, O.; Fursov, M. Unipro UGENE: A Unified Bioinformatics Toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madariaga-Troncoso, D.; Leyton-Carcaman, B.; Garcia, M.; Kawai, M.; Abanto Marin, M. Comprehensive Genome Analysis of Neisseria meningitidis from South America Reveals a Distinctive Pathogenicity-Related Prophage Repertoire. Int. J. Mol. Sci. 2022, 23, 15731. https://doi.org/10.3390/ijms232415731
Madariaga-Troncoso D, Leyton-Carcaman B, Garcia M, Kawai M, Abanto Marin M. Comprehensive Genome Analysis of Neisseria meningitidis from South America Reveals a Distinctive Pathogenicity-Related Prophage Repertoire. International Journal of Molecular Sciences. 2022; 23(24):15731. https://doi.org/10.3390/ijms232415731
Chicago/Turabian StyleMadariaga-Troncoso, David, Benjamin Leyton-Carcaman, Matias Garcia, Mikihiko Kawai, and Michel Abanto Marin. 2022. "Comprehensive Genome Analysis of Neisseria meningitidis from South America Reveals a Distinctive Pathogenicity-Related Prophage Repertoire" International Journal of Molecular Sciences 23, no. 24: 15731. https://doi.org/10.3390/ijms232415731
APA StyleMadariaga-Troncoso, D., Leyton-Carcaman, B., Garcia, M., Kawai, M., & Abanto Marin, M. (2022). Comprehensive Genome Analysis of Neisseria meningitidis from South America Reveals a Distinctive Pathogenicity-Related Prophage Repertoire. International Journal of Molecular Sciences, 23(24), 15731. https://doi.org/10.3390/ijms232415731