Molten-State Dielectrophoretic Alignment of EVA/BaTiO3 Thermoplastic Composites: Enhancement of Piezo-Smart Sensor for Medical Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermogravimetric Analysis (TGA)
2.2. Differential Scanning Calorimetry (DSC)
2.3. Scanning Electron Microscopy (SEM)
2.4. X-ray Diffraction (XRD)
2.5. Dynamic Dielectric Spectroscopy
2.6. Piezoelectric Analysis
2.7. Comparison with Existing Piezoelectric Materials
3. Materials and Methods
3.1. Material Selection
3.2. Composite Elaboration
3.3. Poling Procedure
4. Characterization Methods
4.1. Thermogravimetric Analysis (TGA)
4.2. Differential Scanning Calorimetry (DSC)
4.3. Scanning Electron Microscopy (SEM)
4.4. X-ray Diffraction (XRD)
4.5. Dynamic Dielectric Spectroscopy
4.6. Piezoelectric Characterization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heckele, M.; Schomburg, W.K. Review on Micro Molding of Thermoplastic Polymers. J. Micromech. Microeng. 2004, 14, R1–R14. [Google Scholar] [CrossRef]
- Giboz, J.; Copponnex, T.; Mélé, P. Microinjection Molding of Thermoplastic Polymers: A Review. J. Micromech. Microeng. 2007, 17, R96–R109. [Google Scholar] [CrossRef]
- Spina, R. Technological Characterization of PE/EVA Blends for Foam Injection Molding. Mater. Des. 2015, 84, 64–71. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Waste Rubber Recycling: A Review on the Evolution and Properties of Thermoplastic Elastomers. Materials 2020, 13, 782. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Ducharne, B.; Della Schiava, N.; Capsal, J.-F.; Cottinet, P.-J.; Coativy, G.; Lermusiaux, P.; Le, M.Q. Induction Heating-Based Low-Frequency Alternating Magnetic Field: High Potential of Ferromagnetic Composites for Medical Applications. Mater. Des. 2019, 174, 107804. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Valino, A.D.; Dizon, J.R.C.; Espera, A.H.; Chen, Q.; Messman, J.; Advincula, R.C. Advances in 3D Printing of Thermoplastic Polymer Composites and Nanocomposites. Prog. Polym. Sci. 2019, 98, 101162. [Google Scholar] [CrossRef]
- Sousa, A.M.; Pinho, A.C.; Piedade, A.P. Mechanical Properties of 3D Printed Mouthguards: Influence of Layer Height and Device Thickness. Mater. Des. 2021, 203, 109624. [Google Scholar] [CrossRef]
- Van Den Ende, D.A.; Van Kempen, S.E.; Wu, X.; Groen, W.A.; Randall, C.A.; Van Der Zwaag, S. Dielectrophoretically Structured Piezoelectric Composites with High Aspect Ratio Piezoelectric Particles Inclusions. J. Appl. Phys. 2012, 111, 124107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Le, M.Q.; Zahhaf, O.; Capsal, J.F.; Cottinet, P.J.; Petit, L. Enhancing Dielectric and Piezoelectric Properties of Micro-ZnO/PDMS Composite-Based Dielectrophoresis. Mater. Des. 2020, 192, 108783. [Google Scholar] [CrossRef]
- Safari, A.; Akdogan, E.K. Rapid Prototyping of Novel Piezoelectric Composites. Ferroelectrics 2006, 331, 153–179. [Google Scholar] [CrossRef]
- Le, M.Q.; Capsal, J.F.; Lallart, M.; Hebrard, Y.; Van Der Ham, A.; Reffe, N.; Geynet, L.; Cottinet, P.J. Review on Energy Harvesting for Structural Health Monitoring in Aeronautical Applications. Prog. Aerosp. Sci. 2015, 79, 147–157. [Google Scholar] [CrossRef]
- Nguyen, V.-C.; Le, M.-Q.; Fimbel, A.; Bernadet, S.; Hebrard, Y.; Mogniotte, J.-F.; Capsal, J.-F.; Cottinet, P.-J. Printing Smart Coating of Piezoelectric Composite for Application in Condition Monitoring of Bearings. Mater. Des. 2022, 215, 110529. [Google Scholar] [CrossRef]
- D’Ambrogio, G.; Zahhaf, O.; Hebrard, Y.; Le, M.Q.; Cottinet, P.-J.; Capsal, J.-F. Micro-Structuration of Piezoelectric Composites Using Dielectrophoresis: Toward Application in Condition Monitoring of Bearings. Adv. Eng. Mater. 2021, 23, 2000773. [Google Scholar] [CrossRef]
- Grinberg, D.; Siddique, S.; Le, M.Q.; Liang, R.; Capsal, J.F.; Cottinet, P.J. 4D Printing Based Piezoelectric Composite for Medical Applications. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 109–115. [Google Scholar] [CrossRef]
- Nguyen, V.-C.; Le, M.-Q.; Mogniotte, J.-F.; Capsal, J.-F.; Cottinet, P.-J. Extrusion-Based 3D Printing of Stretchable Electronic Coating for Condition Monitoring of Suction Cups. Micromachines 2022, 13, 1606. [Google Scholar] [CrossRef]
- D’Ambrogio, G.; Zahhaf, O.; Le, M.-Q.; Bordet, M.; Lermusiaux, P.; Della Schiava, N.; Liang, R.; Cottinet, P.-J.; Capsal, J.-F. Piezoelectric Biosensor for Smart Cardiovascular Grafts Based on NaNbO3 Fibers/PDMS Structured Composite. Mater. Des. 2022, 223, 111195. [Google Scholar] [CrossRef]
- Lu, X.; Qu, H.; Skorobogatiy, M. Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. ACS Nano 2017, 11, 2103–2114. [Google Scholar] [CrossRef]
- Tuloup, C.; Harizi, W.; Aboura, Z.; Meyer, Y. Integration of Piezoelectric Transducers (PZT and PVDF) within Polymer-Matrix Composites for Structural Health Monitoring Applications: New Success and Challenges. Int. J. Smart Nano Mater. 2020, 11, 343–369. [Google Scholar] [CrossRef]
- Kim, H.; Renteria-Marquez, A.; Islam, M.D.; Chavez, L.A.; Garcia Rosales, C.A.; Ahsan, M.A.; Tseng, T.L.B.; Love, N.D.; Lin, Y. Fabrication of Bulk Piezoelectric and Dielectric BaTiO3 Ceramics Using Paste Extrusion 3D Printing Technique. J. Am. Ceram. Soc. 2019, 102, 3685–3694. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent Development in Lead-Free Perovskite Piezoelectric Bulk Materials. Prog. Mater. Sci. 2018, 98, 552–624. [Google Scholar] [CrossRef]
- Gurdal, A.E.; Tuncdemir, S.; Uchino, K.; Randall, C.A. Low Temperature Co-Fired Multilayer Piezoelectric Transformers for High Power Applications. Mater. Des. 2017, 132, 512–517. [Google Scholar] [CrossRef]
- Liu, Q.; Le, M.Q.; Richard, C.; Liang, R.; Cottinet, P.J.; Capsal, J.F. Enhanced Pseudo-Piezoelectric Dynamic Force Sensors Based on Inkjet-Printed Electrostrictive Terpolymer. Org. Electron. 2019, 67, 259–271. [Google Scholar] [CrossRef]
- Ganet, F.; Le, M.Q.; Capsal, J.F.; Lermusiaux, P.; Petit, L.; Millon, A.; Cottinet, P.J. Development of a Smart Guide Wire Using an Electrostrictive Polymer: Option for Steerable Orientation and Force Feedback. Sci. Rep. 2015, 5, 8593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes-Pereira, J.; Martins, P.; Cardoso, V.F.; Costa, C.M.; Lanceros-Méndez, S. A Green Solvent Strategy for the Development of Piezoelectric Poly(Vinylidene Fluoride-Trifluoroethylene) Films for Sensors and Actuators Applications. Mater. Des. 2016, 104, 183–189. [Google Scholar] [CrossRef]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and Piezoelectric-Pyroelectric Composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Bowen, C.P.; Shrout, T.R.; Newnham, R.E.; Randall, C.A. Tunable Electric Field Processing of Composite Materials. J. Intell. Mater. Syst. Struct. 1995, 6, 159–168. [Google Scholar] [CrossRef]
- Bowen, C.P.; Newnham, R.E.; Randall, C.A. Dielectric Properties of Dielectrophoretically Assembled Particulate-Polymer Composites. J. Mater. Res. 1998, 13, 205–210. [Google Scholar] [CrossRef]
- Park, C.; Robertson, R.E. Mechanical Properties of Resin Composites with Filler Particles Aligned by an Electric Field. Dent. Mater. 1998, 14, 385–393. [Google Scholar] [CrossRef]
- Varga, Z.; Filipcsei, G.; Zrínyi, M. Magnetic Field Sensitive Functional Elastomers with Tuneable Elastic Modulus. Polymer 2006, 47, 227–233. [Google Scholar] [CrossRef]
- Zhang, X.; Le, M.Q.; Nguyen, V.C.; Mogniotte, J.F.; Capsal, J.F.; Grinberg, D.; Cottinet, P.J.; Petit, L. Characterization of Micro-ZnO/PDMS Composite Structured via Dielectrophoresis—Toward Medical Application. Mater. Des. 2021, 208, 109912. [Google Scholar] [CrossRef]
- Knite, M.; Linarts, A.; Ozols, K.; Tupureina, V.; Stalte, I.; Lapcinskis, L. A Study of Electric Field-Induced Conductive Aligned Network Formation in High Structure Carbon Black/Silicone Oil Fluids. Colloids Surf. A Physicochem. Eng. Asp. 2017, 526, 8–13. [Google Scholar] [CrossRef]
- Zahhaf, O.; D’Ambrogio, G.; Le, M.Q.; Coativy, G.; Grasland, F.; Cottinet, P.J.; Capsal, J.F. Dielectrophoretic Alignment of Al2O3/PDMS Composites: Enhancement of Thermal and Dielectric Properties through Structural Sedimentation Analysis. Mater. Des. 2021, 211, 110134. [Google Scholar] [CrossRef]
- Georgopanos, P.; Eichner, E.; Filiz, V.; Handge, U.A.; Schneider, G.A.; Heinrich, S.; Abetz, V. Improvement of Mechanical Properties by a Polydopamine Interface in Highly Filled Hierarchical Composites of Titanium Dioxide Particles and Poly(Vinyl Butyral). Compos. Sci. Technol. 2017, 146, 73–82. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, J.; Wen, D.; Gong, P.; Chen, X. A Poly (Vinyl Butyral)/Graphene Oxide Composite with NIR Light-Induced Shape Memory Effect and Solid-State Plasticity. Compos. Sci. Technol. 2019, 170, 101–108. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Safronov, A.P.; Bhagat, S.M.; Lofland, S.E.; Beketov, I.V.; Prieto, L.M. Tailoring Functional Properties of Ni Nanoparticles-Acrylic Copolymer Composites with Different Concentrations of Magnetic Filler. J. Appl. Phys. 2015, 117, 123917. [Google Scholar] [CrossRef]
- Nguyen, T.H.L.; Laffont, L.; Capsal, J.-F.; Cottinet, P.-J.; Lonjon, A.; Dantras, E.; Lacabanne, C. Magnetoelectric Properties of Nickel Nanowires-P(VDF–TrFE) Composites. Mater. Chem. Phys. 2015, 153, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Le, M.Q.; Cottinet, P.-J.; Griffiths, P.; Baeza, G.P.; Capsal, J.-F.; Lermusiaux, P.; Della Schiava, N.; Ducharne, B. Development of Anisotropic Ferromagnetic Composites for Low-Frequency Induction Heating Technology in Medical Applications. Mater. Today Chem. 2021, 19, 100395. [Google Scholar] [CrossRef]
- Van Den Ende, D.A.; Bory, B.F.; Groen, W.A.; Van Der Zwaag, S. Improving the D33 and G33 Properties of 0-3 Piezoelectric Composites by Dielectrophoresis. J. Appl. Phys. 2010, 107, 24107. [Google Scholar] [CrossRef]
- Park, C.; Robertson, R.E. Aligned Microstructure of Some Particulate Polymer Composites Obtained with an Electric Field. J. Mater. Sci. 1998, 33, 3541–3553. [Google Scholar] [CrossRef]
- Khaliq, J.; Deutz, D.B.; Frescas, J.A.C.; Vollenberg, P.; Hoeks, T.; van der Zwaag, S.; Groen, P. Effect of the Piezoelectric Ceramic Filler Dielectric Constant on the Piezoelectric Properties of PZT-Epoxy Composites. Ceram. Int. 2017, 43, 2774–2779. [Google Scholar] [CrossRef]
- Khanbareh, H. Expanding the Functionality of Piezo-Particulate Composites. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Khaliq, J.; Hoeks, T.; Groen, P. Fabrication of Piezoelectric Composites Using High-Temperature Dielectrophoresis. J. Manuf. Mater. Process. 2019, 3, 77. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Rajput, M.; Singla, N.; Kumar, V.; Lahiri, D. Electric Field and Current Assisted Alignment of CNT inside Polymer Matrix and Its Effects on Electrical and Mechanical Properties. Polymer 2016, 89, 119–127. [Google Scholar] [CrossRef]
- Wang, M.W.; Hsu, T.C.; Weng, C.H. Alignment of MWCNTs in Polymer Composites by Dielectrophoresis. EPJ Appl. Phys. 2008, 42, 241–246. [Google Scholar] [CrossRef]
- Cholleti, E.R. A Review on 3D Printing of Piezoelectric Materials. In Proceedings of the 2nd International Conference on Advancements in Aeromechanical Materials for Manufacturing, Telangana, India, 13–14 July 2018; Volume 455. [Google Scholar]
- Ikei, A.; Wissman, J.; Yesner, G.; Rohde, C. 3D Printed PVDF. arXiv arXiv:2102.13084v1. [CrossRef]
- Annabestani, M.; Esmaeili-Dokht, P.; Fardmanesh, M. A Novel, Low Cost, and Accessible Method for Rapid Fabrication of the Modifiable Microfluidic Devices. Sci. Rep. 2020, 10, 16513. [Google Scholar] [CrossRef]
- Osman, A.F.; Alakrach, A.M.; Kalo, H.; Azmi, W.N.W.; Hashim, F. In Vitro Biostability and Biocompatibility of Ethyl Vinyl Acetate (EVA) Nanocomposites for Biomedical Applications. RSC Adv. 2015, 5, 31485–31495. [Google Scholar] [CrossRef]
- Maurin, M.B.; Dittert, L.W.; Hussain, A.A. Thermogravimetric Analysis of Ethylene-Vinyl Acetate Copolymers with Fourier Transform Infrared Analysis of the Pyrolysis Products. Thermochim. Acta 1991, 186, 97–102. [Google Scholar] [CrossRef]
- Battig, A.; Sanchez-Olivares, G.; Rockel, D.; Maldonado-Santoyo, M.; Schartel, B. Waste Not, Want Not: The Use of Leather Waste in Flame Retarded EVA. Mater. Des. 2021, 210, 110100. [Google Scholar] [CrossRef]
- Adothu, B.; Mallick, S.; Kartikay, P. Determination of Crystallinity, Composition, and Thermal Stability of Ethylene Vinyl Acetate Encapsulant Used for PV Module Lamination. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 491–494. [Google Scholar] [CrossRef]
- Stark, W.; Jaunich, M. Investigation of Ethylene/Vinyl Acetate Copolymer (EVA) by Thermal Analysis DSC and DMA. Polym. Test. 2011, 30, 236–242. [Google Scholar] [CrossRef]
- Reyes-Labarta, J.A.; Olaya, M.M.; Marcilla, A. DSC and TGA Study of the Transitions Involved in the Thermal Treatment of Binary Mixtures of PE and EVA Copolymer with a Crosslinking Agent. Polymer 2006, 47, 8194–8202. [Google Scholar] [CrossRef]
- Agroui, K.; Collins, G. Determination of Thermal Properties of Crosslinked EVA Encapsulant Material in Outdoor Exposure by TSC and DSC Methods. Renew. Energy 2014, 63, 741–746. [Google Scholar] [CrossRef]
- D’Ambrogio, G.; Zahhaf, O.; Bordet, M.; Le, M.Q.; Della Schiava, N.; Liang, R.; Cottinet, P.-J.; Capsal, J.-F. Structuring BaTiO3/PDMS Nanocomposite via Dielectrophoresis for Fractional Flow Reserve Measurement. Adv. Eng. Mater. 2021, 23, 2100341. [Google Scholar] [CrossRef]
- Pasuk, I.; Neațu, F.; Neațu, Ș.; Florea, M.; Istrate, C.M.; Pintilie, I.; Pintilie, L. Structural Details of BaTiO3 Nano-Powders Deduced from the Anisotropic XRD Peak Broadening. Nanomaterials 2021, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Kappadan, S.; Gebreab, T.W.; Thomas, S.; Kalarikkal, N. Tetragonal BaTiO3 Nanoparticles: An Efficient Photocatalyst for the Degradation of Organic Pollutants. Mater. Sci. Semicond. Process. 2016, 51, 42–47. [Google Scholar] [CrossRef]
- Cui, Y.; Briscoe, J.; Dunn, S. Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3—Influence on the Carrier Separation and Stern Layer Formation. Chem. Mater. 2013, 25, 4215–4223. [Google Scholar] [CrossRef]
- Yamada, T.; Ueda, T.; Kitayama, T. Piezoelectricity of a High-Content Lead Zirconate Titanate/Polymer Composite. J. Appl. Phys. 1982, 53, 4328–4332. [Google Scholar] [CrossRef]
- Carbone, C.; Benwadih, M.; D’Ambrogio, G.; LE, M.-Q.; Capsal, J.-F.; Cottinet, P.-J. Influence of Matrix and Surfactant on Piezoelectric and Dielectric Properties of Screen-Printed BaTiO3/PVDF Composites. Polymers 2021, 13, 2166. [Google Scholar] [CrossRef]
- James, N.K.; van den Ende, D.; Lafont, U.; van der Zwaag, S.; Groen, W.A. Piezoelectric and Mechanical Properties of Structured PZT–Epoxy Composites. J. Mater. Res. 2013, 28, 635–641. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrogio, G.; Zahhaf, O.; Le, M.-Q.; Capsal, J.-F.; Cottinet, P.-J. Dielectrophoresis Structurization of PZT/PDMS Micro-Composite for Elastronic Function: Towards Dielectric and Piezoelectric Enhancement. Materials 2021, 14, 4071. [Google Scholar] [CrossRef]
- Hosier, I.L.; Vaughan, A.S.; Swingler, S.G. An Investigation of the Potential of Ethylene Vinyl Acetate/Polyethylene Blends for Use in Recyclable High Voltage Cable Insulation Systems. J. Mater. Sci. 2010, 45, 2747–2759. [Google Scholar] [CrossRef]
- Ditac, G.; Cottinet, P.J.; Quyen Le, M.; Grinberg, D.; Duchateau, J.; Gardey, K.; Dulac, A.; Delinière, A.; Haddad, C.; Boussuge-Roze, J.; et al. Carbon Footprint of Atrial Fibrillation Catheter Ablation. EP Eur. 2022, euac160. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, D.; Buzzi, R.; Pozzi, M.; Schweizer, R.; Capsal, J.-F.; Thinot, B.; Quyen Le, M.; Obadia, J.-F.; Cottinet, P.-J. Eco-Audit of Conventional Heart Surgery Procedures. Eur. J. Cardio-Thorac. Surg. 2021, 60, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
Mass Fraction | Volume Fraction | Glass Transition Temperature (°C) | Melting Temperature (°C) | Melting Enthalpy (J/g) |
---|---|---|---|---|
0.00 | 0.00 | −21.5 | 72.7 | 25.0 |
0.18 | 0.03 | −18.2 | 77.5 | 27.3 |
0.54 | 0.16 | −17.6 | 76.3 | 23.3 |
0.72 | 0.29 | −19.0 | 74.2 | 24.6 |
Volume Fraction | Relative Permittivity EVA/BaTiO3 Unstructured | Relative Permittivity EVA/BaTiO3 Structured at E = 6 kV·mm−1 |
---|---|---|
0.00 | 1.8 | 1.8 |
0.03 | 3.9 | 7.1 |
0.16 | 5.9 | 10.7 |
0.29 | 12.0 | 23.9 |
Volume Fraction | d33 (pC.N−1) EVA/BaTiO3 Unstructured | d33 (pC.N−1) EVA/BaTiO3 Structured at E = 6 kV·mm−1 |
---|---|---|
0.00 | 0.0 | 0.0 |
0.03 | 0.1 | 1.9 |
0.16 | 0.5 | 8.7 |
0.29 | 0.9 | 13.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahhaf, O.; D’Ambrogio, G.; Giunta, A.; Le, M.-Q.; Rival, G.; Cottinet, P.-J.; Capsal, J.-F. Molten-State Dielectrophoretic Alignment of EVA/BaTiO3 Thermoplastic Composites: Enhancement of Piezo-Smart Sensor for Medical Application. Int. J. Mol. Sci. 2022, 23, 15745. https://doi.org/10.3390/ijms232415745
Zahhaf O, D’Ambrogio G, Giunta A, Le M-Q, Rival G, Cottinet P-J, Capsal J-F. Molten-State Dielectrophoretic Alignment of EVA/BaTiO3 Thermoplastic Composites: Enhancement of Piezo-Smart Sensor for Medical Application. International Journal of Molecular Sciences. 2022; 23(24):15745. https://doi.org/10.3390/ijms232415745
Chicago/Turabian StyleZahhaf, Omar, Giulia D’Ambrogio, Angela Giunta, Minh-Quyen Le, Guilhem Rival, Pierre-Jean Cottinet, and Jean-Fabien Capsal. 2022. "Molten-State Dielectrophoretic Alignment of EVA/BaTiO3 Thermoplastic Composites: Enhancement of Piezo-Smart Sensor for Medical Application" International Journal of Molecular Sciences 23, no. 24: 15745. https://doi.org/10.3390/ijms232415745
APA StyleZahhaf, O., D’Ambrogio, G., Giunta, A., Le, M. -Q., Rival, G., Cottinet, P. -J., & Capsal, J. -F. (2022). Molten-State Dielectrophoretic Alignment of EVA/BaTiO3 Thermoplastic Composites: Enhancement of Piezo-Smart Sensor for Medical Application. International Journal of Molecular Sciences, 23(24), 15745. https://doi.org/10.3390/ijms232415745