New Understandings from the Biophysical Study of the Structure, Dynamics, and Function of Nucleic Acids 2.0
Funding
Conflicts of Interest
References
- Chang, Z.; Zheng, Y.Y.; Mathivanan, J.; Valsangkar, V.A.; Du, J.; Abou-Elkhair, R.A.I.; Hassan, A.E.A.; Sheng, J. Fluorescence-Based Binding Characterization of Small Molecule Ligands Targeting CUG RNA Repeats. Int. J. Mol. Sci. 2022, 23, 3321. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Liu, Y. Incorporation of a FRET Pair into a Riboswitch RNA to Measure Mg2+ Concentration and RNA Conformational Change in Cell. Int. J. Mol. Sci. 2022, 23, 1493. [Google Scholar] [CrossRef] [PubMed]
- Thornton, C.A. Myotonic Dystrophy. Neurol. Clin. 2014, 32, 705–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.J.; Kim, J.; Lee, Y.; Lee, W.; Park, C.-J. NMR Structure and Biophysical Characterization of Thermophilic Single-Stranded DNA Binding Protein from Sulfolobus solfataricus. Int. J. Mol. Sci. 2022, 23, 3099. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.-S.; Son, J.; Seo, Y.-J.; Choi, S.-R.; Ahn, H.-B.; Go, Y.; Lim, J.; Oh, K.-I.; Ryu, K.-S.; Lee, J.-H. Salt Dependence of DNA Binding Activity of Human Transcription Factor Dlx3. Int. J. Mol. Sci. 2022, 23, 9497. [Google Scholar] [CrossRef] [PubMed]
- Morten, M.J.; Gamsjaeger, R.; Cubeddu, L.; Kariawasam, R.; Peregrina, J.; Penedo, J.C.; White, M.F. High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein. Extremophiles 2017, 21, 369–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, I.D.; Wadsworth, R.I.M.; Cubeddu, L.; Blankenfeldt, W.; Naismith, J.H.; White, M.F. Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J. 2003, 22, 2561–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamsjaeger, R.; Kariawasam, R.; Gimenez, A.X.; Touma, C.; Mcllwain, E.; Bernardo, R.E.; Shepherd, N.E.; Ataide, S.F.; Dong, Q.; Richard, D.J.; et al. The structural basis of DNA binding by the single-stranded DNA-binding protein from Sulfolobus solfataricus. Biochem. J. 2015, 465, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Murzin, A.G. OB(oligonucleotide/oligosaccharide binding)-fold: Common structural and functional solution for non-homologous sequences. EMBO J. 1993, 12, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Theobald, D.L.; Mitton-Fry, R.M.; Wuttke, D.S. Nucleic acid recognition by OB-fold proteins. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, A.I.; Stauffer, M.E.; Bochkareva, E.; Bochkarev, A.; Chazin, W.J. Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains. J. Biol. Chem. 2003, 278, 41077–41082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghunathan, S.; Kozlov, A.G.; Lohman, T.M.; Waksman, G. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol. 2000, 7, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Johnson, K.A. The human mitochondrial single-stranded DNA-binding protein displays distinct kinetics and thermodynamics of DNA binding and exchange. J. Biol. Chem. 2017, 292, 13068–13084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beanan, M.J.; Sargent, T.D. Regulation and function of Dlx3 in vertebrate development. Dev. Dyn. 2000, 218, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Merlo, G.R.; Zerega, B.; Paleari, L.; Trombino, S.; Mantero, S.; Levi, G. Multiple functions of Dlx genes. Int. J. Dev. Biol. 2000, 44, 619–626. [Google Scholar] [PubMed]
- Zhao, N.; Han, D.; Liu, H.; Li, Y.; Wong, S.W.; Cao, Z.; Xu, J.; Zhang, X.; Cai, T.; Wang, Y.; et al. Senescence: Novel insight into DLX3 mutations leading to enhanced bone formation in Tricho-Dento-Osseous syndrome. Sci. Rep. 2016, 6, 38680. [Google Scholar] [CrossRef] [PubMed]
- Anitas, E.M. Fractal Analysis of DNA Sequences Using Frequency Chaos Game Representation and Small-Angle Scattering. Int. J. Mol. Sci. 2022, 23, 1847. [Google Scholar] [CrossRef]
- Dzhimak, S.; Svidlov, A.; Elkina, A.; Gerasimenko, E.; Baryshev, M.; Drobotenko, M. Genesis of Open States Zones in a DNA Molecule Depends on the Localization and Value of the Torque. Int. J. Mol. Sci. 2022, 23, 4428. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H. New Understandings from the Biophysical Study of the Structure, Dynamics, and Function of Nucleic Acids 2.0. Int. J. Mol. Sci. 2022, 23, 15822. https://doi.org/10.3390/ijms232415822
Lee J-H. New Understandings from the Biophysical Study of the Structure, Dynamics, and Function of Nucleic Acids 2.0. International Journal of Molecular Sciences. 2022; 23(24):15822. https://doi.org/10.3390/ijms232415822
Chicago/Turabian StyleLee, Joon-Hwa. 2022. "New Understandings from the Biophysical Study of the Structure, Dynamics, and Function of Nucleic Acids 2.0" International Journal of Molecular Sciences 23, no. 24: 15822. https://doi.org/10.3390/ijms232415822
APA StyleLee, J. -H. (2022). New Understandings from the Biophysical Study of the Structure, Dynamics, and Function of Nucleic Acids 2.0. International Journal of Molecular Sciences, 23(24), 15822. https://doi.org/10.3390/ijms232415822