Gain or Loss? Evidence for Legume Predisposition to Symbiotic Interactions with Rhizobia via Loss of Pathogen-Resistance-Related Gene Families
Abstract
:1. Introduction
2. Results
2.1. Transcriptome Sequencing and Annotation
2.2. Differentially Represented Orthogroups in Nodulating and Non-Nodulating Species
2.3. Phylogenetic Characterization of Orthogroups Under-Represented in Nodulating Species
2.4. Phylogenetic Characterization of Orthogroups Over-Represented in Nodulating Species
2.5. Case Study Validation of In-Silico Estimations of Gene Content
3. Discussion
4. Material and Methods
4.1. Research Material
4.2. RNA and DNA Isolation
4.3. RNA Sequencing, Transcriptome Assembly and Annotation
4.4. Identification of Gene Families across Nodulating and Non-Nodulating Species
4.5. Statistical Testing of Differential Representation of Gene Families
4.6. Estimating Sequence Variant Numbers of Selected Orthogroups
4.7. Expression Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | aspartic protease |
AGP | arabinogalactan proteins |
BLT | branchless trichome |
CRP1 | constitutive expresser of PR genes 1 |
DRT102 | DNA damage-repair/toleration protein |
ddPCR | droplet digital PCR |
GID2 | gibberellin-insensitive dwarf protein 2 |
GO | Gene Ontology |
HEL | helicase |
JAZ | jasmonate ZIM domain proteins |
JA | jasmonate |
KIN-8B | kinesin-like protein KIN-8B |
LeAspP | aspartic protease gene detected in tomato leaves |
MeJA | methyl jasmonate |
NFC | Nitrogen-Fixing Clade |
NFP | nod factor perception |
NIN | nodule inception |
NRT | no Reverse Transcription |
NTC | no Template Control |
PHYL1.1 | Phytolongin Phyl1.1 |
PR | pathogenesis-related proteins |
qPCR | quantitative PCR |
TIFY | TIFY transcription factor, jasmonate ZIM domain-containing protein |
UBX | ubiquitin regulatory X domain |
USP92 | universal stress protein 92 |
WGD | whole genome duplication |
ZIM | zinc-finger inflorescence meristem |
References
- Lewis, G.; Schrire, B.; Mackind, B.; Lock, M. Legumes of the World, 1st ed.; Royal Botanic Gardens, Kew: Richmond, UK, 2005; pp. 21–54. [Google Scholar]
- The Legume Phylogeny Working Group. Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades. Taxon 2013, 62, 217–248. [Google Scholar] [CrossRef]
- Azani, N.; Babineau, M.; Bailey, C.D.; Banks, H.; Barbosa, A.; Pinto, R.B.; Boatwright, J.; Borges, L.; Brown, G.; Bruneau, A.; et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny—The Legume Phylogeny Working Group (LPWG). Taxon 2017, 66, 44–77. [Google Scholar] [CrossRef] [Green Version]
- De Faria, S.M.; Lewis, G.P.; Sprent, J.I.; Sutherland, J.M. Occurrence of nodulation in the Leguminosae. New Phytol. 1989, 111, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Sprent, J.I.; Ardley, J.; James, E.K. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol. 2017, 215, 40–56. [Google Scholar] [CrossRef] [Green Version]
- Oldroyd, G.E.D.; Long, S.R. Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in Nod actor signaling. Plant Physiol. 2003, 131, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Brechenmacher, L.; Kim, M.Y.; Benitez, M.; Li, M.; Joshi, T.; Calla, B.; Lee, M.P.; Libault, M.; Vodkin, L.O.; Xu, D.; et al. Transcription profiling of soybean nodulation by Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 2008, 21, 631–645. [Google Scholar] [CrossRef] [Green Version]
- Gage, D.J. Infection and invasion of roots by symbiotic, nitrogen-sixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 2004, 68, 280–300. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.M. Developmental biology of legume nodulation. New Phytol. 1992, 122, 211–237. [Google Scholar] [CrossRef]
- Eckardt, N.A. The role of flavonoids in root nodule development and auxin transport in Medicago truncatula. Plant Cell 2006, 18, 1539–1540. [Google Scholar] [CrossRef] [Green Version]
- Oldroyd, G.E.D.; Downie, J.A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 2008, 59, 519–546. [Google Scholar] [CrossRef]
- Soltis, D.E.; Soltis, P.S.; Morgan, D.R.; Swensen, S.M.; Mullin, B.C.; Dowd, J.M.; Martin, P.G. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. USA 1995, 92, 2647–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, G.D.A.; Cornwell, W.K.; Sprent, J.I.; Kattge, J.; Kiers, E.T. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 2014, 5, 4087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinick, M.J.; Galbraith, J. The rhizobium requirements of the non-legume parasponia in relationship to the cross-inoculation group concept of legumes. New Phytol. 1980, 86, 17–26. [Google Scholar] [CrossRef]
- Op den Camp, R.; Streng, A.; De Mita, S.; Cao, Q.; Polone, E.; Liu, W.; Ammiraju, J.S.S.; Kudrna, D.; Wing, R.; Untergasser, A.; et al. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 2011, 331, 909–912. [Google Scholar] [CrossRef]
- Shen, D.; Bisseling, T. The evolutionary aspects of legume nitrogen–fixing nodule symbiosis. Results Probl. Cell Differ. 2020, 69, 387–408. [Google Scholar] [PubMed]
- Cannon, S.B.; Ilut, D.; Farmer, A.D.; Maki, S.L.; May, G.D.; Singer, S.R.; Doyle, J.J. Polyploidy Did Not Predate the Evolution of Nodulation in All Legumes. PLoS ONE 2010, 5, e11630. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, R.; Jiang, K.W.; Qi, J.; Hu, Y.; Guo, J.; Zhu, R.; Zhang, T.; Egan, A.N.; Yi, T.S.; et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Mol. Plant 2021, 14, 748–773. [Google Scholar] [CrossRef] [PubMed]
- Griesmann, M.; Chang, Y.; Liu, X.; Song, Y.; Haberer, G.; Crook, M.B.; Billault-Penneteau, B.; Lauressergues, D.; Keller, J.; Imanishi, L.; et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 2018, 361, 6398. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.F.C.; Gonçalves, O.; Mazan, S.; Tay, B.H.; Venkatesh, B.; Wilson, J.M. Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history. Proc. Biol. Sci. 2014, 281, 20132669. [Google Scholar] [CrossRef] [Green Version]
- Đaković, N.; Térézol, M.; Pitel, F.; Maillard, V.; Elis, S.; Leroux, S.; Lagarrigue, S.; Gondret, F.; Klopp, C.; Baeza, E.; et al. The loss of adipokine genes in the chicken genome and implications for insulin metabolism. Mol. Biol. Evol. 2014, 31, 2367–2646. [Google Scholar] [CrossRef]
- De Smet, R.; Adams, K.L.; Vandepoele, K.; Van Montagu, M.C.E.; Maere, S.; Van de Peer, Y. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc. Natl. Acad. Sci. USA 2013, 110, 2898–2903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aravind, L.; Watanabe, H.; Lipman, D.J.; Koonin, E.V. Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc. Natl. Acad. Sci. USA 2000, 97, 11319–11324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demuth, J.P.; Hahn, M.W. The life and death of gene families. Bioessays 2009, 31, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Wang, W.; Mortimer, P.E.; Li, R.Q.; Li, D.Z.; Hyde, K.D.; Xu, J.C.; Soltis, D.E.; Chen, Z.D. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change. Sci. Rep. 2015, 5, 14023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedersoo, L.; Laanisto, L.; Rahimlou, S.; Toussaint, A.; Hallikma, T.; Pärtel, M. Global database of plants with root-symbiotic nitrogen fixation: NodDB. J. Veg. Sci. 2018, 29, 556–568. [Google Scholar] [CrossRef]
- Afkhami, M.E.; Luke Mahler, D.; Burns, J.H.; Weber, M.G.; Wojciechowski, M.F.; Sprent, J.; Strauss, S.Y. Symbioses with nitrogen-fixing bacteria: Nodulation and phylogenetic data across legume genera. Ecology 2018, 99, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, A.N.; Vatanparast, M. Advances in legume research in the genomics era. Aust. Syst. Bot. 2019, 32, 459–483. [Google Scholar] [CrossRef]
- One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 2019, 574, 679–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, J.J. Phylogenetic perspectives on the origins of nodulation. Mol. Plant Microbe Interact. 2011, 24, 1289–1295. [Google Scholar] [CrossRef] [Green Version]
- Van Velzen, R.; Doyle, J.J.; Geurts, R. A resurrected scenario: Single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci. 2019, 24, 49–57. [Google Scholar] [CrossRef]
- Van Velzen, R.; Holmer, R.; Bu, F.; Rutten, L.; Van Zeijl, A.; Liu, W.; Santuari, L.; Cao, Q.; Sharma, T.; Shen, D.; et al. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc. Natl. Acad. Sci. USA 2018, 115, E4700–E4709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiga, Y.; Ishiga, T.; Uppalapati, S.R.; Mysore, K.S. Jasmonate ZIM-domain (JAZ) protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana. PLoS ONE 2013, 8, e75728. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, L.; Santos, R.B.; Figueiredo, A. Defense and offense strategies: The role of aspartic proteases in plant–pathogen interactions. Biology 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Nguema-Ona, E.; Vicré-Gibouin, M.; Cannesan, M.A.; Driouich, A. Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci. 2013, 18, 440–449. [Google Scholar] [CrossRef]
- Kroc, M.; Koczyk, G.; Kamel, K.A.; Czepiel, K.; Fedorowicz-Strońska, O.; Krajewski, P.; Kosińska, J.; Podkowiński, J.; Wilczura, P.; Święcicki, W. Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci. Rep. 2019, 9, 2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, D.G. Longest protein, longest transcript or most expression, for accurate gene reconstruction of transcriptomes? bioRxiv 2019, 829184. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [Green Version]
- Hart, A.J.; Ginzburg, S.; Xu, M.S.; Fisher, C.R.; Rahmatpour, N.; Mitton, J.B.; Paul, R.; Wegrzyn, J.L. EnTAP: Bringing faster and smarter functional annotation to non-model eukaryotic transcriptomes. Mol. Ecol. Resour. 2020, 20, 591–604. [Google Scholar] [CrossRef]
- Köster, J.; Rahmann, S. Snakemake—A scalable bioinformatics workflow engine. Bioinformatics 2012, 28, 2520–2522. [Google Scholar] [CrossRef] [Green Version]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
Species Name | Transcripts (nb) | Isoforms (nb) | Duplicated Orthologs (%) | Total Length (bp) | Ortholog Completeness (BUSCO%) | Annotated Transcripts (%) | Average Seq Length (bp) | Longest Seq (bp) | Shortest Seq (bp) |
---|---|---|---|---|---|---|---|---|---|
A. pechuelii | 55,331 | 211,746 | 63.2 | 398,942,241 | 95.2 | 56.5 | 881 | 16,116 | 132 |
C. mimosoides | 43,838 | 99,644 | 32.1 | 152,146,755 | 96.3 | 59.1 | 856 | 16,431 | 129 |
C. siliqua | 63,658 | 169,042 | 48.2 | 277,707,898 | 94.3 | 49.9 | 722 | 15,342 | 132 |
C. sturtii | 63,247 | 256,447 | 75.7 | 359,052,434 | 97.4 | 44.8 | 708 | 16,479 | 129 |
D. cinerea | 58,814 | 202,614 | 72.9 | 274,297,199 | 95.5 | 43.9 | 698 | 15,309 | 117 |
D. velutinus | 50,142 | 130,304 | 51.2 | 189,491,013 | 95.5 | 49.5 | 774 | 16,482 | 132 |
F. albida | 46,192 | 93,308 | 38.5 | 140,099,747 | 94.7 | 51.5 | 780 | 15,303 | 132 |
G. dioicus | 54,658 | 148,138 | 43.9 | 255,768,827 | 95.8 | 52.7 | 787 | 16,011 | 132 |
P. stipulacea | 43,370 | 108,465 | 51 | 161,251,853 | 93.3 | 54.5 | 806 | 16,336 | 132 |
S. obtusifolia | 42,219 | 93,221 | 40 | 146,753,099 | 95.1 | 58.2 | 853 | 16,482 | 129 |
OrthoFinder Statistic | Value(s) |
---|---|
Total number of annotated genes | 253,2018 |
Number (and percentage) of genes assigned to orthogroups | 2,245,917 (88.7%) |
Total number of orthogroups | 64,150 |
Number (and percentage) of species-specific orthogroups | 29,012 (45.2%) |
Number (and percentage) of genes in species-specific orthogroups | 140,274 (5.5%) |
Number (and percentage) of orthogroups universal to all species | 1069 (1.6%) |
Number (and percentage) of single gene-copy orthogroups | 0 (0%) |
Mean number of genes per orthogroup | 35.0 |
Median number of genes per orthogroup | 3.0 |
Orthogroup | Nodulating Species | Non-Nodulating Species | Odds Ratio | p-Value | Dataset | ||
---|---|---|---|---|---|---|---|
Present | Absent | Present | Absent | Fabales | |||
OG0004107 | 11 | 24 | 38 | 1 | 0.012 | 0.000115422 | Fabales |
OG0011465 | 2 | 33 | 30 | 9 | 0.018 | 2.06 × 10−5 | Fabales |
OG0011581 | 30 | 5 | 6 | 33 | 33 | 0.000144653 | Viridiplantae |
OG0011714 | 4 | 35 | 31 | 4 | 0.014 | 5.17355 × 10−7 | Fabales |
OG0011803 | 1 | 34 | 26 | 13 | 0.014 | 0.000466401 | Fabales |
OG0011851 | 3 | 32 | 30 | 9 | 0.028 | 0.000175831 | Fabales |
OG0011900 | 1 | 34 | 28 | 11 | 0.011 | 3.15883 × 10−5 | Fabales |
OG0012127 | 1 | 34 | 26 | 13 | 0.014 | 0.000466401 | Fabales |
OG0012169 | 0 | 35 | 23 | 16 | 0 | 0.000599504 | Fabales |
Orthogroup | Representation in Nodulating Species | T-Stat | p-Value | Dataset |
---|---|---|---|---|
OG0000085 | Over-represented | 6.793068028 | 0.00034066 | Fabales |
OG0001813 | Over-represented | 6.708229518 | 0.000487269 | Fabales |
OG0002264 | Over-represented | 6.544150538 | 0.000971223 | Fabales |
OG0004107 | Under-represented | −8.474327743 | 2.5597 × 10−7 | Viridiplantae |
OG0009254 | Over-represented | 7.471962066 | 1.89568 × 10−5 | Fabales |
OG0010936 | Under-represented | −6.827187958 | 0.000294919 | Fabales |
OG0011359 | Under-represented | −6.731102129 | 0.000442482 | Fabales |
OG0011465 | Under-represented | −8.697111523 | 9.82762 × 10−8 | Viridiplantae |
OG0011516 | Over-represented | 7.333314606 | 3.42939 × 10−5 | Fabales |
OG0011581 | Over-represented | 8.602542801 | 1.47528 × 10−7 | Fabales |
OG0011634 | Under-represented | −7.366384859 | 2.97753 × 10−5 | Fabales |
OG0011714 | Under-represented | −10.61360496 | 2.87832 × 10−11 | Viridiplantae |
OG0011803 | Under-represented | −7.434134842 | 2.22871 × 10−5 | Fabales |
OG0011851 | Under-represented | −8.049506863 | 1.59019 × 10−6 | Fabales |
OG0011900 | Under-represented | −8.312467416 | 5.13357 × 10−7 | Fabales |
OG0012127 | Under-represented | −7.493432602 | 1.72924 × 10−5 | Fabales |
OG0012169 | Under-represented | −6.921957525 | 0.000197467 | Fabales |
OG0012406 | Under-represented | -6.646016389 | 0.000633175 | Fabales |
OG0012477 | Under-represented | −6.646465092 | 0.000631981 | Fabales |
Orthogroup | Representation in Nodulating Species | Total Number (Viridiplantae Dataset) | Functional Annotation (Blastp) |
---|---|---|---|
OG0000085 | Over-represented | 1119 | UDP-glucosyltransferase protein |
OG0001813 | Over-represented | 238 | Fasciclin-like arabinogalactan protein 11 |
OG0002264 | Over-represented | 212 | Soyasapogenol B glucuronide galactosyltransferase |
OG0004107 | Under-represented | 143 | UDP-glucosyltransferase 86A2 |
OG0009254 | Over-represented | 84 | Embryonic abundant protein USP92 |
OG0010936 | Under-represented | 62 | Transcription factor IBH1 |
OG0011359 | Under-represented | 53 | Transducin/WD40 repeat-like superfamily protein |
OG0011465 | Under-represented | 51 | F-box protein CPR1-like |
OG0011516 | Over-represented | 50 | Dirigent protein 21 |
OG0011581 | Over-represented | 48 | 60S acidic ribosomal protein P0 |
OG0011634 | Under-represented | 47 | unknown |
OG0011714 | Under-represented | 45 | Plant UBX domain-containing protein 11 |
OG0011803 | Under-represented | 43 | Hapless protein |
OG0011851 | Under-represented | 42 | Kinesin-like protein KIN-8B |
OG0011900 | Under-represented | 41 | F-box protein GID2 |
OG0012127 | Under-represented | 36 | Branchless trichome protein |
OG0012169 | Under-represented | 35 | TIFY, Jasmonate ZIM domain-containing protein |
OG0012406 | Under-represented | 30 | Aspartyl protease family protein 2 |
OG0012477 | Under-represented | 30 | Arabinogalactan protein 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyż, K.B.; Taylor, C.M.; Kawaliło, M.; Koczyk, G. Gain or Loss? Evidence for Legume Predisposition to Symbiotic Interactions with Rhizobia via Loss of Pathogen-Resistance-Related Gene Families. Int. J. Mol. Sci. 2022, 23, 16003. https://doi.org/10.3390/ijms232416003
Czyż KB, Taylor CM, Kawaliło M, Koczyk G. Gain or Loss? Evidence for Legume Predisposition to Symbiotic Interactions with Rhizobia via Loss of Pathogen-Resistance-Related Gene Families. International Journal of Molecular Sciences. 2022; 23(24):16003. https://doi.org/10.3390/ijms232416003
Chicago/Turabian StyleCzyż, Katarzyna B., Candy M. Taylor, Michał Kawaliło, and Grzegorz Koczyk. 2022. "Gain or Loss? Evidence for Legume Predisposition to Symbiotic Interactions with Rhizobia via Loss of Pathogen-Resistance-Related Gene Families" International Journal of Molecular Sciences 23, no. 24: 16003. https://doi.org/10.3390/ijms232416003
APA StyleCzyż, K. B., Taylor, C. M., Kawaliło, M., & Koczyk, G. (2022). Gain or Loss? Evidence for Legume Predisposition to Symbiotic Interactions with Rhizobia via Loss of Pathogen-Resistance-Related Gene Families. International Journal of Molecular Sciences, 23(24), 16003. https://doi.org/10.3390/ijms232416003