Beyond the Primary Infarction: Focus on Mechanisms Related to Secondary Neurodegeneration after Stroke
Acknowledgments
Conflicts of Interest
References
- Brodtmann, A.; Khlif, M.S.; Egorova, N.; Veldsman, M.; Bird, L.J.; Werden, E. Dynamic Regional Brain Atrophy Rates in the First Year after Ischemic Stroke. Stroke 2020, 51, e183–e192. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.E.; Gabr, R.E.; Hasan, K.M.; George, S.; Arevalo, O.D.; Zha, A.; Alderman, S.; Jeevarajan, J.; Mas, M.F.; Zhang, X.; et al. Ongoing Secondary Degeneration of the Limbic System in Patients with Ischemic Stroke: A Longitudinal MRI Study. Front. Neurol. 2019, 10, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, L.K.; Walker, F.R.; Nilsson, M. Is Stroke a Neurodegenerative Condition? A Critical Review of Secondary Neurodegeneration and Amyloid-beta Accumulation after Stroke. Aims Med. Sci. 2017, 4, 1–16. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Xing, S.; Liang, Z.; Zeng, J. Secondary neurodegeneration in remote regions after focal cerebral infarction: A new target for stroke management? Stroke 2012, 43, 1700–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aamodt, E.B.; Lydersen, S.; Alnaes, D.; Schellhorn, T.; Saltvedt, I.; Beyer, M.K.; Haberg, A. Longitudinal Brain Changes after Stroke and the Association with Cognitive Decline. Front. Neurol. 2022, 13, 856919. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Andujar, M.; Doornink, F.; Dacosta-Aguayo, R.; Soriano-Raya, J.J.; Miralbell, J.; Bargallo, N.; Lopez-Cancio, E.; Perez de la Ossa, N.; Gomis, M.; Millan, M.; et al. Remote thalamic microstructural abnormalities related to cognitive function in ischemic stroke patients. Neuropsychology 2014, 28, 984–996. [Google Scholar] [CrossRef] [PubMed]
- Kluge, M.G.; Abdolhoseini, M.; Zalewska, K.; Ong, L.K.; Johnson, S.J.; Nilsson, M.; Walker, F.R. Spatiotemporal analysis of impaired microglia process movement at sites of secondary neurodegeneration post-stroke. J. Cereb. Blood Flow Metab. 2019, 39, 2456–2470. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Bezanilla, S.; Hood, R.J.; Collins-Praino, L.E.; Turner, R.J.; Walker, F.R.; Nilsson, M.; Ong, L.K. More than motor impairment: A spatiotemporal analysis of cognitive impairment and associated neuropathological changes following cortical photothrombotic stroke. J. Cereb. Blood Flow Metab. 2021, 41, 2439–2455. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.A.; Maltby, S.; Plank, M.W.; Kluge, M.; Nilsson, M.; Foster, P.S.; Walker, F.R. Peripheral immune cells infiltrate into sites of secondary neurodegeneration after ischemic stroke. Brain Behav. Immun. 2018, 67, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Stuckey, S.M.; Ong, L.K.; Collins-Praino, L.E.; Turner, R.J. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int. J. Mol. Sci. 2021, 22, 13101. [Google Scholar] [CrossRef] [PubMed]
- Kluge, M.G.; Kracht, L.; Abdolhoseini, M.; Ong, L.K.; Johnson, S.J.; Nilsson, M.; Walker, F.R. Impaired microglia process dynamics post-stroke are specific to sites of secondary neurodegeneration. Glia 2017, 65, 1885–1899. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.C. Neuronal Loss after Stroke Due to Microglial Phagocytosis of Stressed Neurons. Int. J. Mol. Sci. 2021, 22, 13442. [Google Scholar] [CrossRef] [PubMed]
- Milde, S.; Brown, G.C. Knockout of the P2Y(6) Receptor Prevents Peri-Infarct Neuronal Loss after Transient, Focal Ischemia in Mouse Brain. Int. J. Mol. Sci. 2022, 23, 2304. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, P.; Chow, W.Z.; Hinwood, M.; Kluge, M.; English, C.; Ong, L.K.; Nilsson, M.; Walker, F.R. Opposing Associations of Stress and Resilience with Functional Outcomes in Stroke Survivors in the Chronic Phase of Stroke: A Cross-Sectional Study. Front. Neurol. 2020, 11, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalewska, K.; Hood, R.J.; Pietrogrande, G.; Sanchez-Bezanilla, S.; Ong, L.K.; Johnson, S.J.; Young, K.M.; Nilsson, M.; Walker, F.R. Corticosterone Administration Alters White Matter Tract Structure and Reduces Gliosis in the Sub-Acute Phase of Experimental Stroke. Int. J. Mol. Sci. 2021, 22, 6693. [Google Scholar] [CrossRef] [PubMed]
- Houlton, J.; Zubkova, O.V.; Clarkson, A.N. Recovery of Post-Stroke Spatial Memory and Thalamocortical Connectivity Following Novel Glycomimetic and rhBDNF Treatment. Int. J. Mol. Sci. 2022, 23, 4817. [Google Scholar] [CrossRef] [PubMed]
- Frase, S.; Loffler, F.; Hosp, J.A. Enhancing Post-Stroke Rehabilitation and Preventing Exo-Focal Dopaminergic Degeneration in Rats-A Role for Substance P. Int. J. Mol. Sci. 2022, 23, 3848. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, L.K. Beyond the Primary Infarction: Focus on Mechanisms Related to Secondary Neurodegeneration after Stroke. Int. J. Mol. Sci. 2022, 23, 16024. https://doi.org/10.3390/ijms232416024
Ong LK. Beyond the Primary Infarction: Focus on Mechanisms Related to Secondary Neurodegeneration after Stroke. International Journal of Molecular Sciences. 2022; 23(24):16024. https://doi.org/10.3390/ijms232416024
Chicago/Turabian StyleOng, Lin Kooi. 2022. "Beyond the Primary Infarction: Focus on Mechanisms Related to Secondary Neurodegeneration after Stroke" International Journal of Molecular Sciences 23, no. 24: 16024. https://doi.org/10.3390/ijms232416024
APA StyleOng, L. K. (2022). Beyond the Primary Infarction: Focus on Mechanisms Related to Secondary Neurodegeneration after Stroke. International Journal of Molecular Sciences, 23(24), 16024. https://doi.org/10.3390/ijms232416024