B7-H3/CD276 Inhibitors: Is There Room for the Treatment of Metastatic Non-Small Cell Lung Cancer?
Abstract
:1. Introduction
2. Issues in Evaluation of B7-H3 Expression in Tissue Samples
3. The Target
4. The Inhibitors
4.1. Antibody–Drug Conjugates
4.2. mAbs Mediating Cellular Cytotoxicity
4.3. CD3-Engaging Bispecific Antibodies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanna, N.H.; Schneider, B.J.; Temin, S., Jr.; Baker, S.; Brahmer, J.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; et al. Therapy for Stage IV Non–Small-Cell Lung Cancer Without Driver Alterations: ASCO and OH (CCO) Joint Guideline Update. J. Clin. Oncol. 2020, 38, 1608–1632. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. 4), iv192–iv237. [Google Scholar] [CrossRef]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef] [Green Version]
- Hofmeyer, K.A.; Ray, A.; Zang, X. The Contrasting Role of B7-H3. Proc. Natl. Acad. Sci. USA 2008, 105, 10277–10278. [Google Scholar] [CrossRef] [Green Version]
- Yim, J.; Koh, J.; Kim, S.; Song, S.G.; Ahn, H.K.; Kim, Y.A.; Jeon, Y.K.; Chung, D.H. Effects of B7-H3 expression on tumour-infiltrating immune cells and clinicopathological characteristics in non–small-cell lung cancer. Eur. J. Cancer 2020, 133, 74–85. [Google Scholar] [CrossRef]
- Mao, Y.; Li, W.; Chen, K.; Xie, Y.; Liu, Q.; Yao, M.; Duan, W.; Zhou, X.; Liang, R.; Tao, M. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget 2015, 6, 3452–3461. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Huang, J.-F.; Hu, B.-Q.; Zhou, J.; Wang, X.; Feng, Z.-Z.; Chen, Y.-T.; Pan, F.-M.; Cheng, H.-D.; Chen, L.-W. B7-H3 is eligible for predicting clinical outcomes in lung adenocarcinoma patients treated with EGFR tyrosine kinase inhibitors. World J. Surg. Oncol. 2022, 20, 159. [Google Scholar] [CrossRef]
- Inamura, K.; Yokouchi, Y.; Kobayashi, M.; Sakakibara, R.; Ninomiya, H.; Subat, S.; Nagano, H.; Nomura, K.; Okumura, S.; Shibutani, T.; et al. Tumor B7-H3 (CD276) expression and smoking history in relation to lung adenocarcinoma prognosis. Lung Cancer 2017, 103, 44–51. [Google Scholar] [CrossRef]
- Yonesaka, K.; Haratani, K.; Takamura, S.; Sakai, H.; Kato, R.; Takegawa, N.; Takahama, T.; Tanaka, K.; Hayashi, H.; Takeda, M.; et al. B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity. Clin. Cancer Res. 2018, 24, 2653–2664. [Google Scholar] [CrossRef] [Green Version]
- Boland, J.M.; Kwon, E.D.; Harrington, S.M.; Wampfler, J.A.; Tang, H.; Yang, P.; Aubry, M.C. Tumor B7-H1 and B7-H3 Expression in Squamous Cell Carcinoma of the Lung. Clin. Lung Cancer 2013, 14, 157–163. [Google Scholar] [CrossRef]
- Altan, M.; Pelekanou, V.; Schalper, K.A.; Toki, M.; Gaule, P.; Syrigos, K.; Herbst, R.S.; Rimm, D.L. B7-H3 Expression in NSCLC and Its Association with B7-H4, PD-L1 and Tumor-Infiltrating Lymphocytes. Clin. Cancer Res. 2017, 23, 5202–5209. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Huang, M. Genome-wide identification and evolutionary analysis of B7-H3. Int. J. Data Min. Bioinform. 2012, 6, 292–303. [Google Scholar] [CrossRef]
- Chapoval, A.I.; Ni, J.; Lau, J.S.; Wilcox, R.A.; Flies, D.B.; Liu, D.; Dong, H.; Sica, G.L.; Zhu, G.; Tamada, K.; et al. B7-H3: A costimulatory molecule for T cell activation and IFN-γ production. Nat. Immunol. 2001, 2, 269–274. [Google Scholar] [CrossRef]
- Yuan, H.; Wei, X.; Zhang, G.; Li, C.; Zhang, X.; Hou, J. B7-H3 Over Expression in Prostate Cancer Promotes Tumor Cell Progression. J. Urol. 2011, 186, 1093–1099. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, X. Prognostic Significance of CD276 in Non-small Cell Lung Cancer. Open Med. 2019, 14, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Flem-Karlsen, K.; Fodstad, Ø.; Tan, M.; Nunes-Xavier, C.E. B7-H3 in Cancer–Beyond Immune Regulation. Trends Cancer 2018, 4, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.-T.; Zhang, T.; Lu, X.; Wang, R.-Z. B7-H3 promotes metastasis, proliferation, and epithelial-mesenchymal transition in lung adenocarcinoma. OncoTargets Ther. 2018, 11, 4693–4700. [Google Scholar] [CrossRef] [Green Version]
- Suh, W.-K.; Gajewska, B.U.; Okada, H.; Gronski, M.; Bertram, E.M.; Dawicki, W.; Duncan, G.S.; Bukczynski, J.; Plyte, S.; Elia, A.J.; et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1–mediated immune responses. Nat. Immunol. 2003, 4, 899–906. [Google Scholar] [CrossRef]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Alberg, A.J.; Ford, J.G.; Samet, J.M. Epidemiology of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007, 132, 29s–55s). [Google Scholar] [CrossRef]
- Yang, S.; Cao, B.; Zhou, G.; Zhu, L.; Wang, L.; Zhang, L.; Kwok, H.F.; Zhang, Z.; Zhao, Q. Targeting B7-H3 Immune Checkpoint With Chimeric Antigen Receptor-Engineered Natural Killer Cells Exhibits Potent Cytotoxicity Against Non-Small Cell Lung Cancer. Front. Pharmacol. 2020, 11, 1089. [Google Scholar] [CrossRef]
- Nakagomi, T.; Goto, T.; Hirotsu, Y.; Shikata, D.; Yokoyama, Y.; Higuchi, R.; Otake, S.; Amemiya, K.; Oyama, T.; Mochizuki, H.; et al. Genomic Characteristics of Invasive Mucinous Adenocarcinomas of the Lung and Potential Therapeutic Targets of B7-H3. Cancers 2018, 10, 478. [Google Scholar] [CrossRef] [Green Version]
- Pepe, F.; De Luca, C.; Smeraglio, R.; Pisapia, P.; Sgariglia, R.; Nacchio, M.; Russo, M.; Serra, N.; Rocco, D.; Battiloro, C.; et al. Performance analysis of SiRe next-generation sequencing panel in diagnostic setting: Focus on NSCLC routine samples. J. Clin. Pathol. 2019, 72, 38–45. [Google Scholar] [CrossRef]
- Weber, M.; Wehrhan, F.; Baran, C.; Agaimy, A.; Büttner-Herold, M.; Preidl, R.; Neukam, F.W.; Ries, J. PD-L1 expression in tumor tissue and peripheral blood of patients with oral squamous cell carcinoma. Oncotarget 2017, 8, 112584–112597. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xu, Y.; Lu, X.; Huang, H.; Zhou, Y.; Lu, B.; Zhang, X. Diagnosis value of serum B7-H3 expression in non-small cell lung cancer. Lung Cancer 2009, 66, 245–249. [Google Scholar] [CrossRef]
- Available online: https://www.clinicaltrials.gov/ (accessed on 30 September 2022).
- Doi, T.; Patel, M.; Falchook, G.S.; Koyama, T.; Friedman, C.F.; Piha-Paul, S.; Gutierrez, M.E.; Abdul-Karim, R.; Awad, M.; Adkins, D.R.; et al. 453O DS-7300 (B7-H3 DXd antibody-drug conjugate [ADC]) shows durable antitumor activity in advanced solid tumors: Extended follow-up of a phase I/II study. Ann. Oncol. 2022, 33 (Suppl. 7), S744–S745. [Google Scholar] [CrossRef]
- Aggarwal, C.; Prawira, A.; Antonia, S.; Rahma, O.; Tolcher, A.; Cohen, R.B.; Lou, Y.; Hauke, R.; Vogelzang, N.; Zandberg, D.P.; et al. Dual checkpoint targeting of B7-H3 and PD-1 with enoblituzumab and pembrolizumab in advanced solid tumors: Interim results from a multicenter phase I/II trial. J. Immunother. Cancer 2022, 10, e004424. [Google Scholar] [CrossRef]
- Fanger, M.W.; Shen, L.; Graziano, R.F.; Guyre, P.M. Cytotoxicity mediated by human Fc receptors for IgG. Immunol. Today 1989, 10, 92–99. [Google Scholar] [CrossRef]
- Loo, D.; Alderson, R.F.; Chen, F.Z.; Huang, L.; Zhang, W.; Gorlatov, S.; Burke, S.; Ciccarone, V.; Li, H.; Yang, Y.; et al. Development of an Fc-Enhanced Anti–B7-H3 Monoclonal Antibody with Potent Antitumor Activity. Clin. Cancer Res. 2012, 18, 3834–3845. [Google Scholar] [CrossRef] [Green Version]
- Powderly, J.; Cote, G.; Flaherty, K.T.; Szmulewitz, R.Z.; Ribas, A.; Weber, J.S.; Loo, D.; Baughman, J.; Chen, F.; Moore, P.A.; et al. Interim results of an ongoing Phase I, dose escalation study of MGA271 (Fc-optimized humanized anti-B7-H3 monoclonal antibody) in patients with refractory B7-H3-expressing neoplasms or neoplasms whose vasculature expresses B7-H3. J. Immunother. Cancer 2015, 3, O8. [Google Scholar] [CrossRef]
- Available online: https://www.onclive.com/view/enoblituzumab-trial-ended-early-due-to-safety-concerns-in-head-and-neck-squamous-cell-carcinoma (accessed on 30 September 2022).
- Weidle, U.H.; Kontermann, R.E.; Brinkmann, U. Tumor-Antigen–Binding Bispecific Antibodies for Cancer Treatment. Semin. Oncol. 2014, 41, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Kontos, F.; Michelakos, T.; Kurokawa, T.; Sadagopan, A.; Schwab, J.H.; Ferrone, C.R.; Ferrone, S. B7-H3: An Attractive Target for Antibody-based Immunotherapy. Clin. Cancer Res. 2021, 27, 1227–1235. [Google Scholar] [CrossRef]
- Zhou, W.-T.; Jin, W.-L. B7-H3/CD276: An Emerging Cancer Immunotherapy. Front. Immunol. 2021, 12, 701006. [Google Scholar] [CrossRef]
- Krebs, M.G.; Malapelle, U.; André, F.; Paz-Ares, L.; Schuler, M.; Thomas, D.M.; Vainer, G.; Yoshino, T.; Rolfo, C. Practical Considerations for the Use of Circulating Tumor DNA in the Treatment of Patients with Cancer: A Narrative Review. JAMA Oncol. 2022, 8, 1830–1839. [Google Scholar] [CrossRef]
B | Study | Patients | Histotype | Oncology | Specimen | Method | Clone | Cellularity | SP | Scoring System |
---|---|---|---|---|---|---|---|---|---|---|
5 | P | 84 | AC+SCC | Re | WS | FC | MIH42 | N+NN | M | % positive cells |
R | 484 | AC+SCC | Re | WS | IHC | D9M2L | N | M | TPS | |
NN | M+C | NTPS | ||||||||
6 | R | 128 | AC+SCC | Re | WS | IHC | 4H7 | N | M+C | IRS |
7 | R | 56 | AC | UR; mEGFR | WS | IHC | SP206 | N | M+C | IRS |
8 | R | 270 | AC | Re | TMA | IHC | BD/5A11 | N | M | Staining intensity + percentage of positive cells |
9 | R | 82 | AC+SCC | UR/Me/RE | WS | IHC | BD/5A11 | N | M | Staining intensity + percentage of positive cells |
10 | R | 214 | SCC | Re | WS | IHC | AF1027 | N | M | Staining intensity + percentage of positive cells |
11 | R | 634 | AC+SCC | Re | TMA | QIF | D9M2L | N+NN | M+C | QIF |
Protocol ID | Title | NSCLC Eligibility | Primary Endpoint | Status |
---|---|---|---|---|
NCT03729596 | A phase 1/2, first-in-human, open-label, dose-escalation study of MGC018 (anti-B7-H3 antibody drug conjugate) alone and in combination with MGA012 (anti-PD-1 antibody) in patients with advanced solid tumors | Yes | AEs, MTD | Recruiting |
NCT05293496 | A phase 1/1b dose escalation and cohort expansion study of MGC018 in combination with checkpoint inhibitor in participants with advanced solid tumors | No | AEs, SAEs | Recruiting |
NCT04145622 | Phase 1/2, two-part, multicenter first-in-human study of DS-7300a in subjects with advanced solid malignant tumors | Yes | DLT, AEs | Recruiting [27] |
NCT02381314 | A phase 1, open-label, dose escalation study of MGA271 in combination with ipilimumab in patients with melanoma, non-small cell lung cancer, and other cancers | Yes | AEs | Completed |
NCT03406949 | A phase 1, open label, dose escalation study of MGD009, a humanized B7-H3 x CD3 DART® protein, in combination with MGA012, an anti-PD-1 antibody, in patients with relapsed or refractory B7-H3-expressing tumors | Yes | TEAEs, MTD/MAD | Completed |
Study | Phase of Study | Treatment | No. Pts | ORR (%) | PFS (Months) | OS (Months) | Safety (All Population) |
---|---|---|---|---|---|---|---|
Doi T, et al. [27] | I/II | DS-7300 | 70 | 21.4 | NR | NR | TEAEs: 98.6% Grade ≥ 3 TEAEs: 31.4% Serious TEAEs: 21.4% TEAEs leading to death: 2.9% |
NSCLC: 4 | 25 | ||||||
Aggarwal C, et al. [28] | I/II | Enoblituzumab + Pembrolizumab | 133 | 14.7 (102 evaluable pts) | NR | NR | TRAEs: 87.2% Grade ≥3 TRAEs: 28.6% TRAEs leading to death: 0.75% |
NSCLC ICI-naïve: 14 | 35.7 | 4.83 | 12.32 | ||||
NSCLC prior ICIs: 21 | 9.5 | 3.45 | 7.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malapelle, U.; Parente, P.; Pepe, F.; Di Micco, M.C.; Russo, A.; Clemente, C.; Graziano, P.; Rossi, A. B7-H3/CD276 Inhibitors: Is There Room for the Treatment of Metastatic Non-Small Cell Lung Cancer? Int. J. Mol. Sci. 2022, 23, 16077. https://doi.org/10.3390/ijms232416077
Malapelle U, Parente P, Pepe F, Di Micco MC, Russo A, Clemente C, Graziano P, Rossi A. B7-H3/CD276 Inhibitors: Is There Room for the Treatment of Metastatic Non-Small Cell Lung Cancer? International Journal of Molecular Sciences. 2022; 23(24):16077. https://doi.org/10.3390/ijms232416077
Chicago/Turabian StyleMalapelle, Umberto, Paola Parente, Francesco Pepe, Martina Concetta Di Micco, Alessandro Russo, Celeste Clemente, Paolo Graziano, and Antonio Rossi. 2022. "B7-H3/CD276 Inhibitors: Is There Room for the Treatment of Metastatic Non-Small Cell Lung Cancer?" International Journal of Molecular Sciences 23, no. 24: 16077. https://doi.org/10.3390/ijms232416077
APA StyleMalapelle, U., Parente, P., Pepe, F., Di Micco, M. C., Russo, A., Clemente, C., Graziano, P., & Rossi, A. (2022). B7-H3/CD276 Inhibitors: Is There Room for the Treatment of Metastatic Non-Small Cell Lung Cancer? International Journal of Molecular Sciences, 23(24), 16077. https://doi.org/10.3390/ijms232416077