FAAH Inhibition Restores Early Life Stress-Induced Alterations in PFC microRNAs Associated with Depressive-Like Behavior in Male and Female Rats
Abstract
:1. Introduction
2. Results
2.1. The Effects of ELS and Chronic Late-Adolescence Treatment with URB597 or Paroxetine on the Behavior of Adult Males and Females
2.2. The Effects of ELS and Chronic Late-Adolescence Treatment with URB or PAR on the Expression of miR-135a-5p in Adult Males and Females
2.3. The Effects of ELS and Chronic Late-Adolescence Treatment with URB or PAR on the Expression of miR-16-5p in Adult Males and Females
2.4. The Effects of ELS and Chronic Late-Adolescence Treatment with URB or PAR on mRNA Expression of Serotonergic and Endocannabinoid Genes in the mPFC in Adult Males and Females
2.5. Correlations between the Expression of miRNAs (miR-135a & miR-16) and Behavior in Adult Males and Females
2.6. Correlations between the Expression of Serotonergic and ECB mRNAs in the mPFC and Behavior in Adult Males and Females
2.7. Correlations between the Expression of miR-135a & miR-16 and Serotonergic and ECB mRNAs in the mPFC in Adult Males and Females
3. Discussion
3.1. Effects on Behavior
3.2. Effects on miRNAs and Their Targets
3.2.1. Effects on miRNAs and Their Targets in Females
3.2.2. Effects on miRNAs and Their Targets in Males
4. Materials and Methods
4.1. Subjects
4.2. Early Stress (ELS) Model
4.3. Drugs
4.4. Behavioral Tests
4.4.1. Activity and Anxiety-like Behavior in an Open Field (OFT)
4.4.2. Social Preference (SP) and Social Recognition (SR)
4.4.3. Forced Swim Test (FST)
4.5. Real-Time (RT) PCR
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carr, C.P.; Martins, C.M.S.; Stingel, A.M.; Lemgruber, V.B.; Juruena, M.F. The role of early life stress in adult psychiatric disorders: A systematic review according to childhood trauma subtypes. J. Nerv. Ment. Dis. 2013, 201, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Nikkheslat, N.; McLaughlin, A.P.; Hastings, C.; Zajkowska, Z.; Nettis, M.A.; Mariani, N.; Enache, D.; Lombardo, G.; Pointon, L.; Cowen, P.J. Childhood trauma, HPA axis activity and antidepressant response in patients with depression. Brain. Behav. Immun. 2020, 87, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, V.L.; Rohleder, C.; Koethe, D.; Leweke, F.M. Cannabinoids and the endocannabinoid system in anxiety, depression, and dysregulation of emotion in humans. Curr. Opin. Psychiatry 2020, 33, 20–42. [Google Scholar] [CrossRef] [PubMed]
- Poleszak, E.; Wośko, S.; Sławińska, K.; Szopa, A.; Wróbel, A.; Serefko, A. Cannabinoids in depressive disorders. Life Sci. 2018, 213, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, K.; Ma, X.; Wang, W.; Wang, H.; Huang, M.; Luo, L.; Su, C.; Yuan, T.; Shi, H. mGluR5-Mediated eCB Signaling in the Nucleus Accumbens Controls Vulnerability to Depressive-Like Behaviors and Pain After Chronic Social Defeat Stress. Mol. Neurobiol. 2021, 58, 4944–4958. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, J.; Marrocu, A.; Di Benedetto, M.G.; Pariante, C.M.; Borsini, A. A systematic, integrative review of the effects of the endocannabinoid system on inflammation and neurogenesis in animal models of affective disorders. Brain. Behav. Immun. 2021, 93, 353–367. [Google Scholar] [CrossRef]
- Rea, K.; McGowan, F.; Corcoran, L.; Roche, M.; Finn, D.P. The prefrontal cortical endocannabinoid system modulates fear–pain interactions in a subregion-specific manner. Br. J. Pharmacol. 2019, 176, 1492–1505. [Google Scholar] [CrossRef]
- Shepard, R.D.; Nugent, F.S. Targeting Endocannabinoid Signaling in the Lateral Habenula as an Intervention to Prevent Mental Illnesses Following Early Life Stress: A Perspective. Front. Synaptic Neurosci. 2021, 13, 689518. [Google Scholar] [CrossRef]
- Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature 2008, 455, 894–902. [Google Scholar] [CrossRef] [Green Version]
- Chocyk, A.; Majcher-Maoelanka, I.; Dudys, D.; Przyborowska, A.; Wêdzony, K. Impact of early-life stress on the medial prefrontal cortex functions-a search for the pathomechanisms of anxiety and mood disorders. Pharmacol. Rep. 2013, 65, 1462–1470. [Google Scholar] [CrossRef]
- Derks, N.A.; Krugers, H.J.; Hoogenraad, C.C.; Joëls, M.; Sarabdjitsingh, R.A. Effects of early life stress on synaptic plasticity in the developing hippocampus of male and female rats. PLoS ONE 2016, 11, e0164551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alteba, S.; Korem, N.; Akirav, I. Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood. Learn. Mem. 2016, 23, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alteba, S.; Portugalov, A.; Hillard, C.J.; Akirav, I. Inhibition of fatty acid amide hydrolase (FAAH) during adolescence and exposure to early life stress may exacerbate depression-like behaviors in male and female rats. Neuroscience 2021, 455, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Alteba, S.; Zer-Aviv, T.M.; Tenenhaus, A.; David, G.B.; Adelman, J.; Hillard, C.J.; Doron, R.; Akirav, I. Antidepressant-like effects of URB597 and JZL184 in male and female rats exposed to early life stress. Eur. Neuropsychopharmacol. 2020, 39, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Portugalov, A.; Akirav, I. Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models. Int. J. Mol. Sci. 2021, 22, 730. [Google Scholar] [CrossRef]
- Heim, C.; Binder, E.B. Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp. Neurol. 2012, 233, 102–111. [Google Scholar] [CrossRef]
- Allen, L.; Dwivedi, Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol. Psychiatry 2020, 25, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.P.; Kos, A.; Turecki, G. Major depression and its treatment: MicroRNAs as peripheral biomarkers of diagnosis and treatment response. Curr. Opin. Psychiatry 2018, 31, 7–16. [Google Scholar] [CrossRef]
- Serafini, G.; Trabucco, A.; Corsini, G.; Escelsior, A.; Amerio, A.; Aguglia, A.; Nasrallah, H.; Amore, M. The potential of microRNAs as putative biomarkers in major depressive disorder and suicidal behavior. Biomark. Neuropsychiatry 2021, 5, 100035. [Google Scholar] [CrossRef]
- Bai, M.; Zhu, X.; Zhang, Y.; Zhang, S.; Zhang, L.; Xue, L.; Yi, J.; Yao, S.; Zhang, X. Abnormal Hippocampal BDNF and miR-16 Expression Is Associated with Depression-Like Behaviors Induced by Stress during Early Life. PLoS ONE 2012, 7, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Xu, J.; Jiang, H.; Pan, F. Early adolescent stress-induced changes in prefrontal cortex miRNA-135a and hippocampal miRNA-16 in male rats. Dev. Psychobiol. 2017, 59, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Cuarenta, A. Sex differences in anxiety and depression: Circuits and mechanisms. Nat. Rev. Neurosci. 2021, 22, 674–684. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eid, R.S.; Gobinath, A.R.; Galea, L.A.M. Sex differences in depression: Insights from clinical and preclinical studies. Prog. Neurobiol. 2019, 176, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Cattane, N.; Mora, C.; Lopizzo, N.; Borsini, A.; Maj, C.; Pedrini, L.; Rossi, R.; Riva, M.A.; Pariante, C.M.; Cattaneo, A. Identification of a miRNAs signature associated with exposure to stress early in life and enhanced vulnerability for schizophrenia: New insights for the key role of miR-125b-1-3p in neurodevelopmental processes. Schizophr. Res. 2019, 205, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Issler, O.; Haramati, S.; Paul, E.D.; Maeno, H.; Navon, I.; Zwang, R.; Gil, S.; Mayberg, H.S.; Dunlop, B.W.; Menke, A.; et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron 2014, 83, 344–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.F.; Dong, J.Z.; Wang, Y.W.; He, J.; Ju, X.; Zhang, L.; Zhang, Y.H.; Shi, J.F.; Lv, Y.Y. CSF miR-16 is decreased in major depression patients and its neutralization in rats induces depression-like behaviors via a serotonin transmitter system. J. Affect. Disord. 2015, 178, 25–31. [Google Scholar] [CrossRef]
- Baudry, A.; Mouillet-Richard, S.; Schneider, B.; Launay, J.-M.; Kellermann, O. miR-16 targets the serotonin transporter: A new facet for adaptive responses to antidepressants. Science 2010, 329, 1537–1541. [Google Scholar] [CrossRef] [Green Version]
- Shao, Q.Y.; You, F.; Zhang, Y.H.; Hu, L.L.; Liu, W.J.; Liu, Y.; Li, J.; Wang, S.D.; Song, M.F. CSF miR-16 expression and its association with miR-16 and serotonin transporter in the raphe of a rat model of depression. J. Affect. Disord. 2018, 238, 609–614. [Google Scholar] [CrossRef]
- Avishai-Eliner, S.; Gilles, E.E.; Eghbal-Ahmadi, M.; Bar-El, Y.; Baram, T.Z. Altered regulation of gene and protein expression of hypothalamic-pituitary-adrenal axis components in an immature rat model of chronic stress. J. Neuroendocrinol. 2001, 13, 799–807. [Google Scholar] [CrossRef]
- Raineki, C.; Moriceau, S.; Sullivan, R.M. Developing a Neurobehavioral Animal Model of Infant Attachment to an Abusive Caregiver. Biol. Psychiatry 2010, 67, 1137–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidelman, S.; Zer-Aviv, T.M.; Lange, R.; Hillard, C.J.; Akirav, I. Chronic treatment with URB597 ameliorates post-stress symptoms in a rat model of PTSD. Eur. Neuropsychopharmacol. 2018, 28, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, K.M.; Bercum, F.M.; McCallum, D.L.; Rudy, J.W.; Frey, L.C.; Johnson, K.W.; Watkins, L.R.; Barth, D.S. Acute neuroimmune modulation attenuates the development of anxiety-like freezing behavior in an animal model of traumatic brain injury. J. Neurotrauma 2012, 29, 1886–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivy, D.; Palese, F.; Vozella, V.; Fotio, Y.; Yalcin, A.; Ramirez, G.; Mears, D.; Wynn, G.; Piomelli, D. Cannabinoid CB2 receptors mediate the anxiolytic-like effects of monoacylglycerol lipase inhibition in a rat model of predator-induced fear. Neuropsychopharmacology 2020, 45, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Kirkedal, C.; Elfving, B.; Müller, H.K.; Moreira, F.A.; Bindila, L.; Lutz, B.; Wegener, G.; Liebenberg, N. Hemisphere-dependent endocannabinoid system activity in prefrontal cortex and hippocampus of the Flinders Sensitive Line rodent model of depression. Neurochem. Int. 2019, 125, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Marco, E.M.; Echeverry-Alzate, V.; López-Moreno, J.A.; Giné, E.; Peñasco, S.; Viveros, M.P. Consequences of early life stress on the expression of endocannabinoid-related genes in the rat brain. Behav. Pharmacol. 2014, 25, 547–556. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, M.; Chong, Q.-Y.; Zhang, M.; Zhang, X.; Hu, L.; Zhong, Y.; Qian, P.; Kong, X.; Tan, S. Loss of estrogen-regulated MIR135A1 at 3p21. 1 promotes tamoxifen resistance in breast cancer. Cancer Res. 2018, 78, 4915–4928. [Google Scholar] [CrossRef] [Green Version]
- Babicola, L.; Pietrosanto, M.; Ielpo, D.; D’Addario, S.L.; Cabib, S.; Ventura, R.; Ferlazzo, F.; Helmer-Citterich, M.; Andolina, D.; Iacono, L. Lo RISC RNA sequencing in the Dorsal Raphè reveals microRNAs regulatory activities associated with behavioral and functional adaptations to chronic stress. Brain Res. 2020, 1736, 146763. [Google Scholar] [CrossRef]
- Mizrachi Zer-Aviv, T.; Islami, L.; Hamilton, P.J.; Parise, E.M.; Nestler, E.J.; Sbarski, B.; Akirav, I. Enhancing Endocannabinoid Signaling via β-Catenin in the Nucleus Accumbens Attenuates PTSD- and Depression-like Behavior of Male Rats. Biomedicines 2022, 10, 1789. [Google Scholar] [CrossRef]
- Trazzi, S.; Steger, M.; Mitrugno, V.M.; Bartesaghi, R.; Ciani, E. CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3β/β-catenin signaling. J. Biol. Chem. 2010, 285, 10098–10109. [Google Scholar] [CrossRef]
- Vidal, R.; Pilar-Cuellar, F.; dos Anjos, S.; Linge, R.; Treceno, B.; Ines Vargas, V.; Rodriguez-Gaztelumendi, A.; Mostany, R.; Castro, E.; Diaz, A. New strategies in the development of antidepressants: Towards the modulation of neuroplasticity pathways. Curr. Pharm. Des. 2011, 17, 521–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, C.; Feng, J.; Sun, H.; Shao, N.y.; Mazei-Robison, M.S.; Damez-Werno, D.; Scobie, K.; Bagot, R.; LaBonté, B.; Ribeiro, E.; et al. β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature 2014, 516, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, M.B.; Herman, J.P. Sex differences in psychopathology: Of gonads, adrenals and mental illness. Physiol. Behav. 2009, 97, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlidi, P.; Kokrasab, N.; Christina, D. Antidepressants’ effects on testosterone and estrogens: What do we know? Eur. J. Pharmacol. 2021, 899, 173998. [Google Scholar] [PubMed]
- Bauminger, H.; Zaidan, H.; Akirav, I.; Gaisler-Salomon, I. Anandamide Hydrolysis Inhibition Reverses the Long-Term Behavioral and Gene Expression Alterations Induced by MK-801 in Male Rats: Differential CB1 and CB2 Receptor-Mediated Effects. Schizophr. Bull. 2022, 48, 795–803. [Google Scholar] [CrossRef]
- Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp. JoVE 2015, 97, e52587. [Google Scholar] [CrossRef] [Green Version]
- Segev, A.; Rubin, A.S.; Abush, H.; Richter-Levin, G.; Akirav, I. Cannabinoid receptor activation prevents the effects of chronic mild stress on emotional learning and LTP in a rat model of depression. Neuropsychopharmacology 2014, 39, 919–933. [Google Scholar]
- Zaidan, H.; Galiani, D.; Gaisler-Salomon, I. Pre-reproductive stress in adolescent female rats alters oocyte microRNA expression and offspring phenotypes: Pharmacological interventions and putative mechanisms. Transl. Psychiatry 2021, 11, 113. [Google Scholar]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
SP | SR | FST- Immobility | OF- Distance | OF- Freezing | OF- Center | |
---|---|---|---|---|---|---|
mPFC | Males: | Males: | Males: | Males: | Males: | Males: |
r = −0.34; | r = 0.46; | r = −0.19; | r = 0.62; | r = −0.57; | r = 0.16; | |
p = 0.082 | p = 0.831 | p = 0.330 | p = 0.001 | p = 0.002 | p = 0.423 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = 0.34; | r = 0.24; | r = 0.18; | r = 0.35; | r = −0.37; | r = 0.38; | |
p = 0.057 | p = 0.184 | p = 0.312 | p = 0.043 | p = 0.030 | p = 0.834 | |
CA1 | Males: | Males: | Males: | Males: | Males: | Males: |
r = 0.30; | r = 0.51; | r = −0.25; | r = 0.12; | r = −0.20; | r = 0.40; | |
p = 0.110 | p = 0.003 | p = 0.205 | p = 0.512 | p = 0.274 | p = 0.022 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = 0.74; | r = 0.10; | r = 0.43; | r = 0.21; | r = −0.25; | r = 0.20; | |
p = 0.693 | p = 0.600 | p = 0.826 | p = 0.269 | p = 0.200 | p = 0.291 | |
LHb | Males: | Males: | Males: | Males: | Males: | Males: |
r = 0.21; | r = 0.41; | r = −0.27; | r = 0.36; | r = −0.64; | r = 0.36; | |
p = 0.283 | p = 0.024 | p = 0.219 | p = 0.052 | p < 0.001 | p = 0.049 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = −0.31; | r = −0.17; | r = −0.29; | r = −0.28; | r = 0.32; | r = 0.36; | |
p = 0.145 | p = 0.376 | p = 0.131 | p = 0.117 | p = 0.074 | p = 0.045 | |
DR | Males: | Males: | Males: | Males: | Males: | Males: |
r = 0.17; | r = 0.41; | r = −0.36; | r = 0.48; | r = 0.09; | r = 0.51; | |
p = 0.364 | p = 0.025 | p = 0.065 | p = 0.006 | p = 0.635 | p = 0.004 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = −0.50; | r = −0.09; | r = 0.14; | r = −0.48; | r = 0.45; | r = 0.07; | |
p = 0.010 | p = 0.675 | p = 0.506 | p = 0.016 | p = 0.025 | p = 0.731 |
SP | SR | FST- Immobility | OF- Distance | OF- Freezing | OF- Center | |
---|---|---|---|---|---|---|
mPFC | Males: | Males: | Males: | Males: | Males: | Males: |
r = −0.45; | r = −0.01; | r = −0.002; | r = 0.67; | r = −0.57; | r = −0.05; | |
p = 0.017 | p = 0.936 | p = 0.990 | p < 0.001 | p = 0.001 | p = 0.764 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = 0.31; | r = −0.01; | r = −0.001; | r = −0.06; | r = −0.01; | r = 0.61; | |
p = 0.131 | p = 0.947 | p = 0.994 | p = 0.755 | p = 0.941 | p = 0.768 | |
CA1 | Males: | Males: | Males: | Males: | Males: | Males: |
r = −0.38; | r = 0.32; | r = −0.007; | r = 0.55; | r = −0.40; | r = 0.07; | |
p = 0.043 | p = 0.082 | p = 0.969 | p = 0.001 | p = 0.018 | p = 0.660 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = 0.31; | r = 0.08; | r = 0.20; | r = 0.34; | r = −0.47; | r = 0.04; | |
p = 0.104 | p = 0.667 | p = 0.335 | p = 0.082 | p = 0.015 | p = 0.826 | |
LHb | Males: | Males: | Males: | Males: | Males: | Males: |
r = 0.18; | r = 0.03; | r = −0.25; | r = −0.37; | r = 0.26; | r = −0.05; | |
p = 0.371 | p = 0.879 | p = 0.184 | p = 0.061 | p = 0.190 | p = 0.793 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = −0.14; | r = 0.03; | r = −0.17; | r = −0.42; | r = 0.46; | r = 0.27; | |
p = 0.488 | p = 0.852 | p = 0.391 | p = 0.022 | p = 0.011 | p = 0.152 | |
DR | Males: | Males: | Males: | Males: | Males: | Males: |
r = −0.19; | r = −0.46; | r = 0.015; | r = −0.40; | r = −0.13; | r = −0.28; | |
p = 0.283 | p = 0.007 | p = 0.938 | p = 0.019 | p = 0.439 | p = 0.109 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = −0.07; | r = −0.09; | r = −0.20; | r = −0.55; | r = 0.53; | r = 0.13; | |
p = 0.735 | p = 0.641 | p = 0.317 | p = 0.003 | p = 0.005 | p = 0.504 |
SP | SR | FST- Immobility | OF- Distance | OF- Freezing | OF- Center | |
---|---|---|---|---|---|---|
htr1a | Males: | Males: | Males: | Males: | Males: | Males: |
r = 0.364; | r = 0.50; | r = −0.65; | r = −0.62; | r = 0.11; | r = −0.07; | |
p = 0.088 | p = 0.011 | p = 0.001 | p = 0.002 | p = 0.962 | p = 0.728 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = −0.46; | r = −0.41; | r = 0.28; | r = −0.30; | r = 0.26; | r = −0.28; | |
p = 0.018 | p = 0.077 | p = 0.237 | p = 0.188 | p = 0.255 | p = 0.227 | |
scl6a4 | Males: | Males: | Males: | Males: | Males: | Males: |
r = −0.21; | r = −0.36; | r = −0.40; | r = −0.28; | r = −0.008; | r = 0.06; | |
p = 0.383 | p = 0.109 | p = 0.062 | p = 221 | p = 0.973 | p = 0.790 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = −0.46; | r = −0.04; | r = 0.45; | r = −0.41; | r = 0.46; | r = 0.28; | |
p = 0.041 | p = 0.858 | p = 0.052 | p = 0.069 | p = 0.040 | p = 0.220 | |
cnr1 | Males: | Males: | Males: | Males: | Males: | Males: |
r = −0.47; | r = −0.56; | r = −0.15; | r = 0.07; | r = −0.24; | r = −0.27; | |
p = 0.020 | p = 0.003 | p = 0.432 | p = 0.697 | p = 0.225 | p = 0.159 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = −0.005; | r = 0.14; | r = 0.36; | r = 0.30; | r = −0.31; | r = −0.22; | |
p = 0.979 | p = 0.464 | p = 0.064 | p = 0.110 | p = 0.104 | p = 0.260 | |
cnr2 | Males: | Males: | Males: | Males: | Males: | Males: |
r = −0.03; | r = −0.15; | r = −0.35; | r = −0.30; | r = −0.21; | r = −0.13; | |
p = 0.875 | p = 0.464 | p = 0.061 | p = 0.127 | p = 0.298 | p = 0.526 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = −0.31; | r = −0.27; | r = 0.13; | r = −0.53; | r = 0.44; | r = −0.12; | |
p = 0.110 | p = 0.202 | p = 0.585 | p = 0.008 | p = 0.036 | p = 0.563 | |
faah | Males: | Males: | Males: | Males: | Males: | Males: |
r = −0.49; | r = −0.52; | r = −0.12; | r = −0.11; | r = −0.07; | r = −0.34; | |
p = 0.019 | p = 0.008 | p = 545 | p = 0.587 | p = 0.714 | p = 0.082 | |
Females: | Females: | Females: | Females: | Females: | Females: | |
r = 0.46; | r = 0.29; | r = 0.09; | r = 0.21; | r = 0.30; | r = −0.39; | |
p = 0.025 | p = 0.158 | p = 0.678 | p = 0.273 | p = 0.159 | p = 0.062 |
htr1a | scl6a4 | cnr1 | cnr2 | faah | miR-135a | miR-16 | |
---|---|---|---|---|---|---|---|
miR-135a | Males: | Males: | Males: | Males: | Males: | Males: | |
r = −0.55; | r = −0.004; | r = −0.07; | r = −0.51; | r = −0.22; | r = 0.71; | ||
p = 0.005 | p = 0.985 | p = 0.716 | p = 0.012 | p = 0.294 | p < 0.001 | ||
Females: | Females: | Females: | Females: | Females: | Females: | ||
r = −0.21; | r = 0.25; | r = 0.28; | r = −0.76; | r = 0.54; | r = 0.29; | ||
p = 0.330 | p = 0.239 | p = 0.108 | p < 0.001 | p = 0.004 | p = 0.078 | ||
miR-16 | Males: | Males: | Males: | Males: | Males: | Males: | |
r = −0.32; | r = −0.22; | r = 0.34; | r = −0.21; | r = 0.20; | r = 0.71; | ||
p = 0.142 | p = 0.342 | p = 0.073 | p = 0.300 | p = 0.308 | p < 0.001 | ||
Females: | Females: | Females: | Females: | Females: | Females: | ||
r = −0.39; | r = −0.49; | r = 0.005; | r = −0.23; | r = −0.21; | r = 0.29; | ||
p = 0.060 | p = 0.018 | p = 0.980 | p = 0.239 | p = 0.273 | p = 0.078 |
Name | Description | Gene Bank ID (NM) | Protein Name | Primer Sequence | Efficacy (%) |
---|---|---|---|---|---|
hprt | Housekeeping gene; used as a reference gene | NM_012583.2 | HPRT | F: 5′CGCCAGCTTCCTCCTCAG3′ R: 5′ATAACCTGGTTCATCATCACTAATCAC3′ | 99.83 |
htr1a | Serotonergic auto-receptor | NM_012585.1 | 5HT1A | F: 5′CCACGGCTACACCATCTACTC3′ R: 5′AAGCGTGCGGCTCTGAAG3′ | 96.67 |
slc6a4 | The serotonergic transporter | NM_013034.4 | SERT | F: 5′CAGCCCTCTGTTTCTCCTGTTC3′ R: 5′CCTATGCAGTAGCCCAAGACGA3′ | 79.46 |
cnr1 | Cannabinoid receptor 1 | NM_012784.5 | CB1 | F: 5′CACCCATGGCTGAGGGTTC3′ R: 5′CTGCAAGGCCATCTAGGATCGA3′ | 99.27 |
cnr2 | Cannabinoid receptor 2 | NM_020543.4 | CB2 | F: 5′GCCTGCAACTTCGTCATCTTC3′ R: 5′TGCCGATCTTCAACAGGAA3′ | 118.04 |
faah | The enzyme responsible for AEA degradation | NM_024132.3 | FAAH | F: 5′TGCCCTTCAGAGAGGAGGT3′ R: 5′CTGGGCATGGTATAGTTGTCAGT3′ | 107.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portugalov, A.; Zaidan, H.; Gaisler-Salomon, I.; Hillard, C.J.; Akirav, I. FAAH Inhibition Restores Early Life Stress-Induced Alterations in PFC microRNAs Associated with Depressive-Like Behavior in Male and Female Rats. Int. J. Mol. Sci. 2022, 23, 16101. https://doi.org/10.3390/ijms232416101
Portugalov A, Zaidan H, Gaisler-Salomon I, Hillard CJ, Akirav I. FAAH Inhibition Restores Early Life Stress-Induced Alterations in PFC microRNAs Associated with Depressive-Like Behavior in Male and Female Rats. International Journal of Molecular Sciences. 2022; 23(24):16101. https://doi.org/10.3390/ijms232416101
Chicago/Turabian StylePortugalov, Anna, Hiba Zaidan, Inna Gaisler-Salomon, Cecilia J. Hillard, and Irit Akirav. 2022. "FAAH Inhibition Restores Early Life Stress-Induced Alterations in PFC microRNAs Associated with Depressive-Like Behavior in Male and Female Rats" International Journal of Molecular Sciences 23, no. 24: 16101. https://doi.org/10.3390/ijms232416101
APA StylePortugalov, A., Zaidan, H., Gaisler-Salomon, I., Hillard, C. J., & Akirav, I. (2022). FAAH Inhibition Restores Early Life Stress-Induced Alterations in PFC microRNAs Associated with Depressive-Like Behavior in Male and Female Rats. International Journal of Molecular Sciences, 23(24), 16101. https://doi.org/10.3390/ijms232416101