Improving the Corrosion Protection of Poly(phenylene methylene) Coatings by Side Chain Engineering: The Case of Methoxy-Substituted Copolymers
Abstract
:1. Introduction
2. Results and Discussions
2.1. Polymer Side Chain Engineering and Characterization of the Obtained Copolymers
2.2. Corrosion Protection of AA2024 by PPM Copolymers Coatings
2.3. Behavior of the Coating under a Stress Condition via Anodic Ageing
2.4. Behavior of the Coating after an Artificial Damage
- (i)
- the system has an impedance modulus at the lower frequencies, |Z0.01Hz|, slightly above 104 Ω cm2, that is around 5–6 order of magnitude lower than that observed in a pristine one (Figure 3);
- (ii)
- an inductive loop in the Nyquist modulus spectra at the lower frequency range is observed (Figure S6). The latter is a characteristic fingerprint often observed for metals in which the pitting potential and the corrosion potential are similar (i.e., transpassivity, see curve of the naked AA2024 in Figure 1).
- (i)
- The trend of the fitting parameters and the modification of the impedance spectra together with the increase of the impedance modulus up to 108 Ω cm2 during time (Figure 4) are all proof of the occurrence of a coating self-healing event in the damaged area rather than the production and accumulation of corrosion products within the small spot [46,47].
- (ii)
3. Materials and Methods
3.1. Reagents and Solvents
3.2. Side-Chain Engineering, Polymer Characterization, and Coating Preparation
3.3. Evaluation of Corrosion Protection and Intrinsic Self-Healing via Electrochemical Techniques
- (1)
- Potentiodynamic anodic polarization technique. After an equilibration period of 10 min at the open circuit potential, the coated electrode was polarized by scanning the potential, from the OCP, in the anodic direction with a scan rate of 10 mV min−1.
- (2)
- Anodic aging test. It is a cyclic procedure that includes three steps: (i) anodic polarization at 0 V vs. SCE for 10 min (to force corrosion reactions of the substrate in correspondence of defects or porosities of the coating), (ii) relaxation period at resting potential for 20 min, and (iii) electrochemical impedance spectroscopy (EIS) measurements at OCP to evaluate the new established condition.
- (3)
- Coating damaging. The time evolution of artificially damaged coated samples was monitored over 60 days by alternating OCP and EIS measurements. The coating was damaged creating a hole with a stainless-steel needle (diameter = 0.52 mm). The success of the damage was confirmed by verifying the electric continuity between the needle and the AA2024 substrate.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Visser, P.; Liu, Y.; Zhou, X.; Hashimoto, T.; Thompson, G.E.; Lyon, S.B.; van der Ven, L.G.J.; Mol, A.J.M.C.; Terryn, H.A. The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatings. Faraday Discuss. 2015, 180, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Jegdić, B.; Bobić, B.; Linić, S. Corrosion behaviour of AA2024 aluminium alloy in different tempers in NaCl solution and with the CeCl3 corrosion inhibitor. Mater. Corros. 2020, 71, 352–364. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Hashimoto, T.; Liu, B. Localized corrosion in AA2024-T351 aluminium alloy: Transition from intergranular corrosion to crystallographic pitting. Mater. Charact. 2017, 130, 230–236. [Google Scholar] [CrossRef]
- Birbilis, N.; Buchheit, R.G. Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys. J. Electrochem. Soc. 2005, 152, B140. [Google Scholar] [CrossRef] [Green Version]
- Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros. Sci. 2008, 50, 1841–1847. [Google Scholar] [CrossRef]
- Hughes, A.E.; Taylor, R.J.; Nelson, K.J.H.; Hinton, B.R.W.; Wilson, L. Characterisation of surface preparation of 2024 aluminium alloy for conversion coating. Mater. Sci. Technol. 1996, 12, 928–936. [Google Scholar] [CrossRef]
- Kendig, M.; Jeanjaquet, S.; Addison, R.; Waldrop, J. Role of hexavalent chromium in the inhibition of corrosion of aluminum alloys. Surf. Coat. Technol. 2001, 140, 58–66. [Google Scholar] [CrossRef]
- Twite, R.L.; Bierwagen, G.P. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog. Org. Coat. 1998, 33, 91–100. [Google Scholar] [CrossRef]
- Critchlow, G.W.; Yendall, K.A.; Bahrani, D.; Quinn, A.; Andrews, F. Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. Int. J. Adhes. Adhes. 2006, 26, 419–453. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, M.F.; Magni, M.; Trasatti, S.P.M.; Schweizer, T.B.; Niederberger, M.; Caseri, W. Poly(phenylene methylene)-based coatings for corrosion protection: Replacement of additives by use of copolymers. Appl. Sci. 2019, 9, 3551. [Google Scholar] [CrossRef]
- D’Elia, M.F.; Magni, M.; Romanò, T.; Trasatti, S.P.M.; Niederberger, M.; Caseri, W.R. Smart Anticorrosion Coatings Based on Poly(phenylene methylene): An Assessment of the Intrinsic Self-Healing Behavior of the Copolymer. Polymers 2022, 14, 3457. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, M.F.; Braendle, A.; Schweizer, T.B.; Ortenzi, M.A.; Trasatti, S.P.M.; Niederberger, M.; Caseri, W. Poly(Phenylene methylene): A multifunctional material for thermally stable, hydrophobic, fluorescent, corrosion-protective coatings. Coatings 2018, 8, 274. [Google Scholar] [CrossRef] [Green Version]
- Hino, M.; Arata, K. Iron Oxide as an Effective Catalyst for the Polycondensation of Benzyl Chloride, the Formation of Para-Substituted Polybenzyl. Chem. Lett. 1979, 8, 1141–1144. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Jarvis, K.A.; Ferreira, P.J.; Bielawski, C.W. Graphite oxide as a dehydrative polymerization catalyst: A one-step synthesis of carbon-reinforced poly(phenylene methylene) composites. Macromolecules 2011, 44, 7659–7667. [Google Scholar] [CrossRef]
- Som, A.; Ramakrishnan, S. Linear soluble polybenzyls. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 2345–2353. [Google Scholar] [CrossRef] [Green Version]
- Shriner, R.L.; Berger, A. Condensation products from benzyl alcohol. Polybenzyls. J. Org. Chem. 1941, 6, 305–318. [Google Scholar] [CrossRef]
- Steiger, D.; Tervoort, T.; Weder, C.; Smith, P. Poly(p-phenylene alkylene)s—A forgotten class of polymers. Macromol. Rapid Commun. 2000, 21, 405–422. [Google Scholar] [CrossRef]
- Braendle, A.; Perevedentsev, A.; Cheetham, N.J.; Stavrinou, P.N.; Schachner, J.A.; Mösch-Zanetti, N.C.; Niederberger, M.; Caseri, W.R. Homoconjugation in poly(phenylene methylene)s: A case study of non-π-conjugated polymers with unexpected fluorescent properties. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 707–720. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Zhang, L.; Wang, X.; Li, L. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film. Int. J. Biol. Macromol. 2020, 143, 334–340. [Google Scholar] [CrossRef]
- Gao, C.; Pollet, E.; Avérous, L. Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocoll. 2017, 63, 414–420. [Google Scholar] [CrossRef]
- Rahman, M.; Brazel, C.S. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 2004, 29, 1223–1248. [Google Scholar] [CrossRef]
- Small, P.A. The diffusion of plasticisers from polyvinyl chloride. J. Soc. Chem. Ind. 1947, 66, 17–19. [Google Scholar] [CrossRef]
- Gumyusenge, A.; Zhao, X.; Zhao, Y.; Mei, J. Attaining Melt Processing of Complementary Semiconducting Polymer Blends at 130 °C via Side-Chain Engineering. ACS Appl. Mater. Interfaces 2018, 10, 4904–4909. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Galuska, L.; Qian, Z.; Zhang, S.; Huang, L.; Prine, N.; Li, T.; He, Y.; Hong, K.; Gu, X. The effect of side-chain branch position on the thermal properties of poly(3-alkylthiophenes). Polym. Chem. 2020, 11, 517–526. [Google Scholar] [CrossRef]
- Zhan, P.; Zhang, W.; Jacobs, I.E.; Nisson, D.M.; Xie, R.; Weissen, A.R.; Colby, R.H.; Moulé, A.J.; Milner, S.T.; Maranas, J.K.; et al. Side chain length affects backbone dynamics in poly(3-alkylthiophene)s. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Apelblat, A.; Korin, E. The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of aluminium chloride, aluminium nitrate and aluminium sulphate. J. Chem. Thermodyn. 2002, 34, 1919–1927. [Google Scholar] [CrossRef]
- Grigale-Sorocina, Z.; Vindedze, E.; Birks, I. Correlation of mechanical properties of polymer composite coatings with viscosity of unpolymerized system. Key Eng. Mater. 2020, 850 KEM, 94–99. [Google Scholar] [CrossRef]
- Schroeder, B.C.; Chiu, Y.C.; Gu, X.; Zhou, Y.; Xu, J.; Lopez, J.; Lu, C.; Toney, M.F.; Bao, Z. Non-Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. Adv. Electron. Mater. 2016, 2, 1600104. [Google Scholar] [CrossRef]
- Gasperini, A.; Bivaud, S.; Sivula, K. Controlling conjugated polymer morphology and charge carrier transport with a flexible-linker approach. Chem. Sci. 2014, 5, 4922–4927. [Google Scholar] [CrossRef]
- Zhao, X.; Xue, G.; Qu, G.; Singhania, V.; Zhao, Y.; Butrouna, K.; Gumyusenge, A.; Diao, Y.; Graham, K.R.; Li, H.; et al. Complementary Semiconducting Polymer Blends: Influence of Side Chains of Matrix Polymers. Macromolecules 2017, 50, 6202–6209. [Google Scholar] [CrossRef]
- Mei, J.; Bao, Z. Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 2014, 26, 604–615. [Google Scholar] [CrossRef]
- Lei, T.; Wang, J.Y.; Pei, J. Roles of flexible chains in organic semiconducting materials. Chem. Mater. 2014, 26, 594–603. [Google Scholar] [CrossRef]
- Berretta, S.; Wang, Y.; Davies, R.; Ghita, O.R. Polymer viscosity, particle coalescence and mechanical performance in high-temperature laser sintering. J. Mater. Sci. 2016, 51, 4778–4794. [Google Scholar] [CrossRef] [Green Version]
- Tomar, B.S.; Shahin, A.; Tirumkudulu, M.S. Cracking in drying films of polymer solutions. Soft Matter 2020, 16, 3476–3484. [Google Scholar] [CrossRef] [PubMed]
- Vandenbergh, J.; Conings, B.; Bertho, S.; Kesters, J.; Spoltore, D.; Esiner, S.; Zhao, J.; van Assche, G.; Wienk, M.M.; Maes, W.; et al. Thermal Stability of Poly[2-methoxy-5-(2′-phenylethoxy)-1,4-phenylenevinylene] (MPE-PPV): Fullerene Bulk Heterojunction Solar Cells. Macromolecules 2011, 44, 8470–8478. [Google Scholar] [CrossRef]
- Müller, C. On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem. Mater. 2015, 27, 2740–2754. [Google Scholar] [CrossRef]
- Ma, Z.; Geng, H.; Wang, D.; Shuai, Z. Influence of alkyl side-chain length on the carrier mobility in organic semiconductors: Herringbone: Vs. pi-pi stacking. J. Mater. Chem. C 2016, 4, 4546–4555. [Google Scholar] [CrossRef]
- Rudyak, V.Y.; Gavrilov, A.A.; Guseva, D.V.; Tung, S.H.; Komarov, P.V. Accounting for π-π Stacking interactions in the mesoscopic models of conjugated polymers. Mol. Syst. Des. Eng. 2020, 5, 1137–1146. [Google Scholar] [CrossRef]
- Yan, T.; Schröter, K.; Herbst, F.; Binder, W.H.; Thurn-Albrecht, T. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network. Sci. Rep. 2016, 6, 32356. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Li, M.; Liu, J. π-π Stacking Interaction: A Nondestructive and Facile Means in Material Engineering for Bioapplications. Cryst. Growth Des. 2018, 18, 2765–2783. [Google Scholar] [CrossRef]
- Braendle, A.; Vidovič, C.; Mösch-Zanetti, N.C.; Niederberger, M.; Caseri, W. Synthesis of high molar mass poly(phenylene methylene) catalyzed by Tungsten(II) compounds. Polymers 2018, 10, 881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braendle, A.; Schwendimann, P.; Niederberger, M.; Caseri, W.R. Synthesis and fractionation of poly(phenylene methylene). J. Polym. Sci. Part A Polym. Chem. 2018, 56, 309–318. [Google Scholar] [CrossRef]
- Trueba, M.; Trasatti, S.P. Study of Al alloy corrosion in neutral NaCl by the pitting scan technique. Mater. Chem. Phys. 2010, 121, 523–533. [Google Scholar] [CrossRef]
- Lorenz, W.J.; Mansfeld, F. Determination of corrosion rates by electrochemical DC and AC methods. Corros. Sci. 1981, 21, 647–672. [Google Scholar] [CrossRef]
- Lin, B.; Hu, R.; Ye, C.; Li, Y.; Lin, C. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes. Electrochim. Acta 2010, 55, 6542–6545. [Google Scholar] [CrossRef]
- Frankel, G.S. Pitting Corrosion of Metals: A Review of the Critical Factors. J. Electrochem. Soc. 1998, 145, 2186–2198. [Google Scholar] [CrossRef]
- Szklarska-Smialowska, Z. Pitting corrosion of aluminum. Corros. Sci. 1999, 41, 1743–1767. [Google Scholar] [CrossRef]
- Skale, S.; Doleček, V.; Slemnik, M. Substitution of the constant phase element by Warburg impedance for protective coatings. Corros. Sci. 2007, 49, 1045–1055. [Google Scholar] [CrossRef]
- Gimeno, M.J.; Chamorro, S.; March, R.; Oró, E.; Pérez, P.; Gracenea, J.; Suay, J. Anticorrosive properties enhancement by means of phosphate pigments in an epoxy 2k coating. Assessment by NSS and ACET. Prog. Org. Coat. 2014, 77, 2024–2030. [Google Scholar] [CrossRef]
- Puig, M.; Gimeno, M.J.; Gracenea, J.J.; Suay, J.J. Anticorrosive properties enhancement in powder coating duplex systems by means of ZMP anticorrosive pigment. Assessment by electrochemical techniques. Prog. Org. Coat. 2014, 77, 1993–1999. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Elia, M.F.; Magni, M.; Trasatti, S.P.M.; Niederberger, M.; Caseri, W.R. Improving the Corrosion Protection of Poly(phenylene methylene) Coatings by Side Chain Engineering: The Case of Methoxy-Substituted Copolymers. Int. J. Mol. Sci. 2022, 23, 16103. https://doi.org/10.3390/ijms232416103
D’Elia MF, Magni M, Trasatti SPM, Niederberger M, Caseri WR. Improving the Corrosion Protection of Poly(phenylene methylene) Coatings by Side Chain Engineering: The Case of Methoxy-Substituted Copolymers. International Journal of Molecular Sciences. 2022; 23(24):16103. https://doi.org/10.3390/ijms232416103
Chicago/Turabian StyleD’Elia, Marco F., Mirko Magni, Stefano P. M. Trasatti, Markus Niederberger, and Walter R. Caseri. 2022. "Improving the Corrosion Protection of Poly(phenylene methylene) Coatings by Side Chain Engineering: The Case of Methoxy-Substituted Copolymers" International Journal of Molecular Sciences 23, no. 24: 16103. https://doi.org/10.3390/ijms232416103
APA StyleD’Elia, M. F., Magni, M., Trasatti, S. P. M., Niederberger, M., & Caseri, W. R. (2022). Improving the Corrosion Protection of Poly(phenylene methylene) Coatings by Side Chain Engineering: The Case of Methoxy-Substituted Copolymers. International Journal of Molecular Sciences, 23(24), 16103. https://doi.org/10.3390/ijms232416103