A Metabolic Signature of Hereditary Transthyretin Amyloidosis: A Pilot Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. Determination of Serum Concentrations of Amino Acids and Derivatives
2.2. Determination of Serum Fatty Acids
2.3. Clinical and Instrumental Evaluation
2.4. Statistical Analysis and Sample Size
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naz, S.; García, A.; Barbas, C. Multiplatform Analytical Methodology for Metabolic Fingerprinting of Lung Tissue. Anal. Chem. 2013, 85, 10941–10948. [Google Scholar] [CrossRef]
- Konjevod, M.; Sáiz, J.; Barbas, C.; Bergareche, A.; Ardanaz, E.; Huerta, J.M.; Vinagre-Aragón, A.; Erro, M.E.; Chirlaque, M.D.; Abilleira, E.; et al. Set of Reliable Samples for the Study of Biomarkers for the Early Diagnosis of Parkinson’s Disease. Front. Neurol. 2022, 13, 844841. [Google Scholar] [CrossRef]
- Primiano, A.; Persichilli, S.; Ferraro, P.M.; Calvani, R.; Biancolillo, A.; Marini, F.; Picca, A.; Marzetti, E.; Urbani, A.; Gervasoni, J. A Specific Urinary Amino Acid Profile Characterizes People with Kidney Stones. Dis. Markers 2020, 2020, 8848225. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Rodriguez-Mañas, L.; Picca, A.; Marini, F.; Biancolillo, A.; Laosa, O.; Pedraza, L.; Gervasoni, J.; Primiano, A.; Conta, G.; et al. Identification of a Circulating Amino Acid Signature in Frail Older Persons with Type 2 Diabetes Mellitus: Results from the Metabofrail Study. Nutrients 2020, 12, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luigetti, M.; Bisogni, G.; Romano, A.; Di Paolantonio, A.; Barbato, F.; Primicerio, G.; Rossini, P.M.; Servidei, S.; Sabatelli, M. Sudoscan in the evaluation and follow-up of patients and carriers with TTR mutations: Experience from an Italian Centre. Amyloid 2018, 25, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Adams, D.; Ando, Y.; Beirão, J.M.; Coelho, T.; Gertz, M.A.; Gillmore, J.D.; Hawkins, P.N.; Lousada, I.; Suhr, O.B.; Merlini, G. Expert consensus recommendations to improve diagnosis of ATTR amyloidosis with polyneuropathy. J. Neurol. 2020, 268, 2109–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandis, M.; Obici, L.; Luigetti, M.; Briani, C.; Benedicenti, F.; Bisogni, G.; Canepa, M.; Cappelli, F.; Danesino, C.; Fabrizi, G.M.; et al. Recommendations for pre-symptomatic genetic testing for hereditary transthyretin amyloidosis in the era of effective therapy: A multicenter Italian consensus. Orphanet J. Rare Dis. 2020, 15, 348. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Picca, A.; Landi, G.; Marini, F.; Biancolillo, A.; Coelho-Junior, H.J.; Gervasoni, J.; Persichilli, S.; Primiano, A.; Arcidiacono, A.; et al. A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson’s disease in older people: An EXosomes in PArkiNson Disease (EXPAND) ancillary study. Geroscience 2020, 42, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Luigetti, M.; Di Paolantonio, A.; Guglielmino, V.; Romano, A.; Rossi, S.; Sabino, A.; Servidei, S.; Sabatelli, M.; Primiano, G. Neurofilament light chain as a disease severity biomarker in ATTRv: Data from a single-centre experience. Neurol. Sci. 2022, 43, 2845–2848. [Google Scholar] [CrossRef] [PubMed]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Riano, C.; Saiz, J.; Barbas, C.; Bergareche, A.; Huerta, J.M.; Ardanaz, E.; Konjevod, M.; Mondragon, E.; Erro, M.E.; Chirlaque, M.D.; et al. Prognostic biomarkers of Parkinson’s disease in the Spanish EPIC cohort: A multiplatform metabolomics approach. NPJ Park. Dis. 2021, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Havelund, J.F.; Heegaard, N.H.H.; Færgeman, N.J.K.; Gramsbergen, J.B. Biomarker Research in Parkinson’s Disease Using Metabolite Profiling. Metabolites 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Le, W. Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease. Mol. Neurodegener. 2019, 14, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeWitt, P.A.; Li, J.; Lu, M.; Guo, L.; Auinger, P. Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology 2017, 88, 862–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willkommen, D.; Lucio, M.; Moritz, F.; Forcisi, S.; Kanawati, B.; Smirnov, K.S.; Schroeter, M.; Sigaroudi, A.; Schmitt-Kopplin, P.; Michalke, B. Metabolomic investigations in cerebrospinal fluid of Parkinson’s disease. PLoS ONE 2018, 13, e0208752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, L.-L.; Song, Y.-Q.; Tian, X.-Y.; Cao, H.; Ju, K.-J. Level of uric acid and uric acid/creatinine ratios in correlation with stage of Parkinson disease. Medicine 2018, 97, e10967. [Google Scholar] [CrossRef] [PubMed]
- Kõks, S.; Soomets, U.; Paya-Cano, J.L.; Fernandes, C.; Luuk, H.; Plaas, M.; Terasmaa, A.; Tillmann, V.; Noormets, K.; Vasar, E.; et al. Wfs1 gene deletion causes growth retardation in mice and interferes with the growth hormone pathway. Physiol. Genom. 2009, 37, 249–259. [Google Scholar] [CrossRef] [PubMed]
Subject and Gender | TTR Variant | Age at Onset | Age at Evaluation | FAP Stage | PND Score | Systemic Involvement | IVS (mm) | NIS | Norfolk QoL-DN | CADT | Sudoscan LL (μS) | Sudoscan UL (μS) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
M#1 | F64L | 72 | 75 | 1 | 2 | GI | 15 | 47,00 | 46 | 20 | 58 | 80 |
M#2 | V32R | 57 | 65 | 2 | 3b | H, Dys, K, GI | 18 | 148,00 | 84 | 7 | 30 | 40 |
M#3 | F64L | 69 | 80 | 2 | 3a | H, Dys, GI | 16 | 76,75 | 58 | 13 | 47 | 36 |
M#4 | F64L | 70 | 75 | 2 | 3a | H, Dys, GI | 13 | 112,75 | 98 | 11 | 22 | 23 |
M#5 | V30M | 62 | 66 | 2 | 3a | // | 10 | 65,00 | 47 | 17 | 26 | 56 |
M#6 | V30M | 58 | 66 | 2 | 3a | H, GI | 13 | 98,00 | 52 | 18 | 31 | 45 |
M#7 | V30M | 64 | 69 | 1 | 2 | H | 15 | 69,50 | 73 | 17 | 31 | 71 |
M#8 | V30M | 64 | 75 | 1 | 1 | H, GI | 19 | 38,50 | 32 | 11 | 80 | 30 |
M#9 | F64L | 51 | 53 | 1 | 1 | GI | 9 | 28,50 | 18 | 19 | 76 | 73 |
F#10 | F64L | 58 | 60 | 1 | 1 | // | 10 | 23,00 | 13 | 15 | 75 | 79 |
M#11 | F64L | 63 | 70 | 2 | 3a | H, Dys, K, GI | 22 | 77,75 | 100 | 15 | 45 | 67 |
F#12 | F64L | 75 | 75 | 1 | 1 | // | 12 | 2,00 | 56 | 13 | 59 | 71 |
M#13 | V30M | 54 | 54 | 1 | 1 | H | 15 | 12,00 | 2 | 20 | 76 | 89 |
F#14 | F64L | 61 | 69 | 1 | 2 | Dys, GI | 10 | 86,00 | 78 | 9 | 71 | 73 |
M#15 | A109S | 65 | 78 | 2 | 3b | Dys, GI | 19 | 138,50 | 61 | 10 | 18 | 10 |
M#16 | V30M | 56 | 70 | 1 | 2 | Dys, GI | 17 | 92,00 | 46 | 11 | 19 | 24 |
Free Fatty Acids (mg/L) | ATTRv Patients (n = 12) | Healthy Controls (n = 12) | p-Value |
---|---|---|---|
Myristic acid | 2.6 ± 1.05 | 2.9 ± 1.6 | 0.496 |
2.75 (1.8–3.5) | 2.6 (1.7–3.8) | ||
Palmitic acid | 189.2 ± 40.6 | 258.7 ± 56.8 | 0.002 |
184.3 (161.9–219.8) | 255.1 (219.8–320.1) | ||
Stearic acid | 83.6 ± 24.6 | 78.2 ± 18.1 | 0.548 |
80.5 (66.4–92.7) | 80.8 (59.8–87.8) | ||
Dihomo-γ-linoleic acid | 58.5 ± 17.9 | 54.6 ± 15.3 | 0.580 |
57.5 (49.3–67.3) | 56.8 (45.1–62.9) | ||
Aracidonic acid | 120.3 ± 28.9 | 103.1 ± 26.1 | 0.142 |
117.2 (103.1–139.8) | 101.5 (81.2–117.2) | ||
Oleic acid | 135.1 ± 33.5 | 117.1 ± 27.8 | 0.291 |
124.7 (110.5–152.1) | 123.6 (88.4–134.6) | ||
Linoleic acid | 150.3 ± 50.1 | 122.6 ± 26.1 | 0.128 |
144.4 (110.6–175.5) | 137.2 (97.4–143.9) | ||
α-Linoleic acid | 0.9 ± 0.9 | 103.1 ± 26.1 | 0.16 |
0.6 (0.5–1) | 101.5 (81.2–117.2) | ||
Eicosapentaenoic acid (EPA) | 26.4 ± 20.2 | 25.2 ± 14.7 | 0.887 |
20.5 (17.6–29.7) | 22.7 (14.2–41.2) | ||
Docosahexaenoic acid (DHA) | 20.5 ± 10.1 | 19.7 ± 9.1 | 0.755 |
18.1 (14.7–21.1) | 16.5 (13.1–30.3) |
Amino Acids (micromol/L) | ATTRv Patients (n = 12) | Healthy Controls (n = 12) | p-Value |
---|---|---|---|
α-aminobutyric acid | 17.7 ± 7.9 | 22.1 ± 8.1 | 0.215 |
16.1 (11.8–23.1) | 19.4 (16.6–27.2) | ||
Asparagine | 45.6 ± 9.6 | 51.5 ± 10.5 | 0.184 |
46 (38.4–53.3) | 51.9 (40.3–60.7) | ||
Aspartic acid | 28.5 ± 10.8 | 22.8 ± 7.4 | 0.179 |
31.8 (18.–35.6) | 19.3 (16.6–31.1) | ||
Isoleucine | 7.9 ± 18.8 | 66.2 ± 12.8 | 0.285 |
75.5 (59.6–88.3) | 65.0 (56.0–78.6) | ||
Leucine | 143.5 ± 32.9 | 132.2 ± 24.5 | 0.379 |
150.1 (115.0–172.4) | 127.6 (114.8–151.9) | ||
Lysine | 201.5 ± 46.5 | 212.4 ± 31.7 | 0.537 |
188.7 (162.1–251.4) | 200.1 (188.4–238.8) | ||
Methionine | 23.6 ± 7.9 | 24.5 ± 4.4 | 0.726 |
22.3 (17.9–31.1) | 24.8 (21.1–27.7) | ||
Phenylalanine | 74.8 ± 18.8 | 71.1 ± 11.1 | 0.595 |
79.6 (61.3–90.2) | 69.7 (62.7–80.2) | ||
Proline | 281.33 ±110.8 | 197.5 ± 47.7 | 0.031 |
284.9 (190.5–358.4) | 182.7 (160.1–238.2) | ||
Serine | 140.9 ± 25.1 | 129.1 ± 28.5 | 0.314 |
138. (131.2–163.1) | 128.0 (100.2–153.3) | ||
Tryptophan | 55.1 ± 12.1 | 61.0 ± 8.3 | 0.207 |
54.3 (43.1–65.8) | 59.3 (55.2–64.8) | ||
Tyrosine | 64.9 ± 21.4 | 67.9 ± 20.6 | 0.744 |
59.8 (47.1–89.9) | 66.3 (52.5–84.1) | ||
Valine | 240.2 ± 48.2 | 237.4 ± 41.8 | 0.884 |
234.1 (199.2–288.7) | 231.4 (205.4–268.1) | ||
Allo-Isoleucine | 1.6 ± 0.6 | 1.6 ± 0.5 | 0.766 |
1.5 (1.1–1.9) | 1.5 (1.2–2.2) | ||
Alanine | 529.2 ± 386.3 | 426.7 ± 117.6 | 0.923 |
414.7 (337.1–535.0) | 427.6 (377.9–493.7) | ||
β-alanine | 10.8 ± 4.6 | 11.3 ± 9.7 | 0.314 |
9.6 (7.7–12.3) | 7.1 (5.3–15.2) | ||
Glycine | 303.8 ± 130.2 | 264.1 ± 50.8 | 0.923 |
249.1 (231.9–337.8) | 260.5 (230.0–293.8) | ||
Histidine | 84.1 ± 47.4 | 79.9 ± 14.7 | 0.771 |
64.5 (60.4–99.2) | 83.8 (62.–90.8) | ||
Threonine | 135.3 ± 45.0 | 134.3 ± 24.7 | 0.628 |
121.7 (109.0–153.9) | 126.8 (112.6–157.5) | ||
Glutamine | 684.1 ± 300.6 | 718.1 ± 292.1 | 0.582 |
585.3 (439.3–991.9) | 634.9 (530.9–782.9) | ||
Kyneurine | 3.44 ± 1.3 | 3.1 ± 0.4 | 0.771 |
2.9 (2.7–4.1) | 3.1 (2.7–3.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luigetti, M.; Guglielmino, V.; Romano, A.; Sciarrone, M.A.; Vitali, F.; Sabino, A.; Gervasoni, J.; Primiano, A.; Santucci, L.; Moroni, R.; et al. A Metabolic Signature of Hereditary Transthyretin Amyloidosis: A Pilot Study. Int. J. Mol. Sci. 2022, 23, 16133. https://doi.org/10.3390/ijms232416133
Luigetti M, Guglielmino V, Romano A, Sciarrone MA, Vitali F, Sabino A, Gervasoni J, Primiano A, Santucci L, Moroni R, et al. A Metabolic Signature of Hereditary Transthyretin Amyloidosis: A Pilot Study. International Journal of Molecular Sciences. 2022; 23(24):16133. https://doi.org/10.3390/ijms232416133
Chicago/Turabian StyleLuigetti, Marco, Valeria Guglielmino, Angela Romano, Maria Ausilia Sciarrone, Francesca Vitali, Andrea Sabino, Jacopo Gervasoni, Aniello Primiano, Lavinia Santucci, Rossana Moroni, and et al. 2022. "A Metabolic Signature of Hereditary Transthyretin Amyloidosis: A Pilot Study" International Journal of Molecular Sciences 23, no. 24: 16133. https://doi.org/10.3390/ijms232416133
APA StyleLuigetti, M., Guglielmino, V., Romano, A., Sciarrone, M. A., Vitali, F., Sabino, A., Gervasoni, J., Primiano, A., Santucci, L., Moroni, R., & Primiano, G. (2022). A Metabolic Signature of Hereditary Transthyretin Amyloidosis: A Pilot Study. International Journal of Molecular Sciences, 23(24), 16133. https://doi.org/10.3390/ijms232416133