The Plant Fatty Acyl Reductases
Abstract
:1. Introduction
2. Phylogenetic Analysis
3. Characteristics of Plant FARs
3.1. Structural Domains
3.2. Substrate Specificity
3.3. Subcellular Localization and Expression Pattern
4. The Function of FAR in Extracellular Lipid Synthesis
4.1. Cuticular Wax Synthesis-Associated FARs
4.2. Sporopollenin Synthesis-Associated FARs
4.3. FARs Involved in Suberin and Suberin-Associated Waxes Biosynthesis
5. Regulation of FAR Genes
Transcription factors | Species | Regulatory target | Associated metabolic pathway in planta | Reference |
---|---|---|---|---|
AtMYB94 | Arabidopsis thaliana | AtFAR3/CER4 1 | Cuticular wax biosynthesis | [72] |
AtSPL9 | Arabidopsis thaliana | AtFAR3/CER4 2 | Cuticular wax biosynthesis | [80] |
AtMYB39 | Arabidopsis thaliana | AtFAR11, AtFAR41 and AtFAR5 1 | Suberin biosynthesis | [81,82] |
AtMYB107 | Arabidopsis thaliana | AtFAR11, AtFAR43 and AtFAR5 3 | Suberin biosynthesis | [74] |
AtMYB41 | Arabidopsis thaliana | AtFAR13, AtFAR43 and AtFAR5 3 | Suberin biosynthesis | [75] |
AtMYB80/MYB103/MS188 | Arabidopsis thaliana | AtMS2/FAR2 1 | Sporopollenin biosynthesis | [76,77] |
PtoMYB142 | Populus tomentosa | PtoCER4 1 | Cuticular wax biosynthesis | [73] |
AchnMYB41, AchnMYB107, and AchnMYC2 | Actinidia chinensis Planch | AchnFAR 1 | Suberin biosynthesis | [30] |
BdMYB41 | Brachypodium distachyon | BdFAR4 1 | Suberin biosynthesis | [22] |
TaTDRL and TaMYB103 | Triticum aestivum | TaTAA1a 1 | Pollen exine development | [78] |
OsMYB80 | Oryza sativa | OsDPW 1 | Sporopollenin biosynthesis | [79] |
ZmMYB84 | Zea mays | ZmMs25 1 | Sporopollenin biosynthesis | [19] |
6. Conclusions and Perspectives
- The pollen wall is a complex multi-layer structure wrapped on the outer surface of pollen (Figure 3B). Aliphatic alcohols not only exist in the exine in the form of sporopollenin but also in the cavities of the pollen exine in the form of tryphine [83]. Tryphine is composed of complex lipids, wax esters, flavonoids, hydroxycinnamoyl spermidine metabolites, and proteins [84,85]. Little is known about the formation of tryphine. Therefore, it is of great interest to investigate whether any specific alcohol-forming FARs are involved in tryphine production.
- In Arabidopsis, AtFAR1, AtFAR4, and AtFAR5 display different specificity towards substrates with different chain lengths, which are mainly responsible for the synthesis of C22:0-OH, C20:0-OH, and C18:0-OH, respectively. Interestingly, recent studies showed that the levels of LC suberin monomers including C18:0-OH positively correlate with environmental factors such as precipitation, evapotranspiration, temperature, and UV index, whereas those of VLC suberin monomers, including C20:0-OH and C22:0-OH, display the opposite trend [86]. This indicated that AtFAR1, AtFAR4, and AtFAR5 are differentially regulated by various environmental cues. Understanding the regulatory mechanism of AtFAR1, AtFAR4, and AtFAR5 in response to different environmental conditions will provide new insights into plants’ abilities to adapt to different environmental factors.
- Thus far, regulatory mechanisms of FARs have been comprehensively studied at the transcriptional level, but little is known about how FARs are regulated at the post-transcriptional level, the translational level, and the post-translational level.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowland, O.; Domergue, F. Plant fatty acyl reductases: Enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci. 2012, 193–194, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Miwa, T.K. Jojoba oil wax esters and derived fatty acids and alcohols: Gas chromatographic analyses. J. Am. Oil Chem. Soc. 1971, 48, 259–264. [Google Scholar] [CrossRef]
- Moreau, R.A.; Huang, A.H.C. 93 Enzymes of wax ester catabolism in jojoba. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1981; Volume 71, pp. 804–813. [Google Scholar]
- Kolattukudy, P.E. Enzymatic synthesis of fatty alcohols in Brassica oleracea. Arch. Biochem. Biophys. 1971, 142, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Vioque, J.; Kolattukudy, P.E. Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L.). Arch. Biochem. Biophys. 1997, 340, 64–72. [Google Scholar] [CrossRef]
- Metz, J.G.; Pollard, M.R.; Anderson, L.; Hayes, T.R.; Lassner, M.W. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol. 2000, 122, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Rowland, O.; Zheng, H.; Hepworth, S.R.; Lam, P.; Jetter, R.; Kunst, L. CER4 Encodes an Alcohol-Forming Fatty Acyl-CoenzymeA Reductase Involved in Cuticular Wax Production in Arabidopsis. Plant Physiol. 2006, 142, 866–877. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yu, X.H.; Zhang, K.; Shi, J.; De Oliveira, S.; Schreiber, L.; Shanklin, J.; Zhang, D. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol. 2011, 157, 842–853. [Google Scholar] [CrossRef] [Green Version]
- Doan, T.T.; Carlsson, A.S.; Hamberg, M.; Bulow, L.; Stymne, S.; Olsson, P. Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli. J. Plant Physiol. 2009, 166, 787–796. [Google Scholar] [CrossRef]
- Domergue, F.; Vishwanath, S.J.; Joubes, J.; Ono, J.; Lee, J.A.; Bourdon, M.; Alhattab, R.; Lowe, C.; Pascal, S.; Lessire, R.; et al. Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol. 2010, 153, 1539–1554. [Google Scholar] [CrossRef] [Green Version]
- Doan, T.T.; Domergue, F.; Fournier, A.E.; Vishwanath, S.J.; Rowland, O.; Moreau, P.; Wood, C.C.; Carlsson, A.S.; Hamberg, M.; Hofvander, P. Biochemical characterization of a chloroplast localized fatty acid reductase from Arabidopsis thaliana. Biochim. Biophys. Acta 2012, 1821, 1244–1255. [Google Scholar] [CrossRef]
- Wallace, S.; Chater, C.C.; Kamisugi, Y.; Cuming, A.C.; Wellman, C.H.; Beerling, D.J.; Fleming, A.J. Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway. New Phytol. 2015, 205, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Tan, H.; Yu, X.H.; Liu, Y.; Liang, W.; Ranathunge, K.; Franke, R.B.; Schreiber, L.; Wang, Y.; Kai, G.; et al. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 2011, 23, 2225–2246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, M.; Sun, Y.; Hegebarth, D.; Li, T.; Jetter, R.; Wang, Z. Molecular Characterization of TaFAR1 Involved in Primary Alcohol Biosynthesis of Cuticular Wax in Hexaploid Wheat. Plant Cell Physiol. 2015, 56, 1944–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, M.; Sun, Y.; Wang, Y.; Li, T.; Chai, G.; Jiang, W.; Shan, L.; Li, C.; Xiao, E.; et al. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.). J. Exp. Bot. 2015, 66, 1165–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Wang, Y.; Wu, H.; Xu, J.; Li, T.; Hegebarth, D.; Jetter, R.; Chen, L.; Wang, Z. Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum. Sci. Rep. 2016, 6, 25008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, G.; Li, C.; Xu, F.; Li, Y.; Shi, X.; Wang, Y.; Wang, Z. Three endoplasmic reticulum-associated fatty acyl-coenzyme a reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.). BMC Plant Biol. 2018, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Xia, Q.; Xie, W.; Dumonceaux, T.; Zou, J.; Datla, R.; Selvaraj, G. Male gametophyte development in bread wheat (Triticum aestivum L.): Molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny. Plant J. 2002, 30, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wu, S.; Niu, C.; Liu, D.; Yan, T.; Tian, Y.; Liu, S.; Xie, K.; Li, Z.; Wang, Y.; et al. ZmMs25 encoding a plastid-localized fatty acyl reductase is critical for anther and pollen development in maize. J. Exp. Bot. 2021, 72, 4298–4318. [Google Scholar] [CrossRef]
- Wang, M.; Wu, H.; Xu, J.; Li, C.; Wang, Y.; Wang, Z. Five Fatty Acyl-Coenzyme A Reductases Are Involved in the Biosynthesis of Primary Alcohols in Aegilops tauschii Leaves. Front. Plant Sci. 2017, 8, 1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Sun, Y.; You, Q.; Luo, W.; Wang, C.; Zhao, S.; Chai, G.; Li, T.; Shi, X.; Li, C.; et al. Three Fatty Acyl-Coenzyme A Reductases, BdFAR1, BdFAR2 and BdFAR3, are Involved in Cuticular Wax Primary Alcohol Biosynthesis in Brachypodium distachyon. Plant Cell Physiol. 2018, 59, 527–543. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; He, Z.; Hu, N.; Luo, W.; Liu, X.; Shi, X.; Liu, T.; Jiang, Q.; An, P.; et al. BdFAR4, a root-specific fatty acyl-coenzyme A reductase, is involved in fatty alcohol synthesis of root suberin polyester in Brachypodium distachyon. Plant J. 2021, 106, 1468–1483. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, L.; Wang, B.; Wang, H.; Khan, I.; Zhang, S.; Wen, J.; Ma, C.; Dai, C.; Tu, J.; et al. BnA1.CER4 and BnC1.CER4 are redundantly involved in branched primary alcohols in the cuticle wax of Brassica napus. Theor. Appl. Genet. 2021, 134, 3051–3067. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cheng, X.; Jia, M.; Zhang, X.; Xue, F.; Li, Y.; Sun, J.; Liu, F. Silencing GhFAR3.1 reduces wax accumulation in cotton leaves and leads to increased susceptibility to drought stress. Plant Direct 2021, 5, e00313. [Google Scholar] [CrossRef]
- Doan, T.T.; Carlsson, A.S.; Stymne, S.; Hofvander, P. Biochemical characteristics of AtFAR2, a fatty acid reductase from Arabidopsis thaliana that reduces fatty acyl-CoA and -ACP substrates into fatty alcohols. Acta Biochim. Pol. 2016, 63, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Chacon, M.G.; Fournier, A.E.; Tran, F.; Dittrich-Domergue, F.; Pulsifer, I.P.; Domergue, F.; Rowland, O. Identification of amino acids conferring chain length substrate specificities on fatty alcohol-forming reductases FAR5 and FAR8 from Arabidopsis thaliana. J. Biol. Chem. 2013, 288, 30345–30355. [Google Scholar] [CrossRef] [Green Version]
- Miklaszewska, M.; Banas, A. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase. Plant Sci. 2016, 249, 84–92. [Google Scholar] [CrossRef]
- Tian, Y.; Xiao, S.; Liu, J.; Somaratne, Y.; Zhang, H.; Wang, M.; Zhang, H.; Zhao, L.; Chen, H. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci. Rep. 2017, 7, 16736. [Google Scholar] [CrossRef]
- Wei, X.; Mao, L.; Wei, X.; Xia, M.; Xu, C. MYB41, MYB107, and MYC2 promote ABA-mediated primary fatty alcohol accumulation via activation of AchnFAR in wound suberization in kiwifruit. Hortic. Res. 2020, 7, 86. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, J.C.; Lin, Z.G.; Lee, W.R.; Baker, M.E.; Chang, S.H. Site-specific mutagenesis of Drosophila alcohol dehydrogenase: Evidence for involvement of tyrosine-152 and lysine-156 in catalysis. Biochemistry 1993, 32, 3342–3346. [Google Scholar] [CrossRef]
- Fujimoto, K.; Hara, M.; Yamada, H.; Sakurai, M.; Inaba, A.; Tomomura, A.; Katoh, S. Role of the conserved Ser-Tyr-Lys triad of the SDR family in sepiapterin reductase. Chem. Biol. Interact. 2001, 130–132, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Lassance, J.M.; Groot, A.T.; Lienard, M.A.; Antony, B.; Borgwardt, C.; Andersson, F.; Hedenstrom, E.; Heckel, D.G.; Lofstedt, C. Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 2010, 466, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Jenks, M.A.; Tuttle, H.A.; Eigenbrode, S.D.; Feldmann, K.A. Leaf Epicuticular Waxes of the Eceriferum Mutants in Arabidopsis. Plant Physiol. 1995, 108, 369–377. [Google Scholar] [CrossRef]
- Hannoufa, A.; McNevin, J.; Lemieux, B. Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana. Phytochemistry 1993, 33, 851–855. [Google Scholar] [CrossRef]
- McNevin, J.P.; Woodward, W.; Hannoufa, A.; Feldmann, K.A.; Lemieux, B. Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana. Genome 1993, 36, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, H.; Kosma, D.K.; Tomasi, P.; Dyer, J.M.; Li, R.; Liu, X.; Wang, Z.; Parsons, E.P.; Jenks, M.A.; et al. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers. Plant Physiol. 2017, 173, 1109–1124. [Google Scholar] [CrossRef] [Green Version]
- Busta, L.; Schmitz, E.; Kosma, D.K.; Schnable, J.C.; Cahoon, E.B. A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry. Proc. Natl. Acad. Sci. USA 2021, 118, e2022982118. [Google Scholar] [CrossRef]
- Isaacson, T.; Kosma, D.K.; Matas, A.J.; Buda, G.J.; He, Y.; Yu, B.; Pravitasari, A.; Batteas, J.D.; Stark, R.E.; Jenks, M.A.; et al. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J. 2009, 60, 363–377. [Google Scholar] [CrossRef]
- Patwari, P.; Salewski, V.; Gutbrod, K.; Kreszies, T.; Dresen-Scholz, B.; Peisker, H.; Steiner, U.; Meyer, A.J.; Schreiber, L.; Dormann, P. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J. 2019, 98, 727–744. [Google Scholar] [CrossRef]
- Lewandowska, M.; Keyl, A.; Feussner, I. Wax biosynthesis in response to danger: Its regulation upon abiotic and biotic stress. New Phytol. 2020, 227, 698–713. [Google Scholar] [CrossRef]
- Arya, G.C.; Sarkar, S.; Manasherova, E.; Aharoni, A.; Cohen, H. The Plant Cuticle: An Ancient Guardian Barrier Set Against Long-Standing Rivals. Front. Plant Sci. 2021, 12, 663165. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Ensikat, H.-J. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 2008, 39, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Barthlott, W.; Koch, S.; Hommes, A.; Wandelt, K.; Mamdouh, W.; De-Feyter, S.; Broekmann, P. Structural analysis of wheat wax (Triticum aestivum, c.v. ‘Naturastar’ L.): From the molecular level to three dimensional crystals. Planta 2006, 223, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhou, X.; Li, G.; Li, L.; Kong, L.; Wang, C.; Zhang, H.; Xu, J.R. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog. 2011, 7, e1001261. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Khan, M.M.; Moinuddin, A.S. Triacontanol: A potent plant growth regulator in agriculture. J. Plant Interact. 2012, 7, 129–142. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Li, M.; Hou, L. Cloning and expression analysis of Cucumis sativus L. CER4 involved in cuticular wax biosynthesis in cucumber. Biotechnol. Biotechnol. Equip. 2018, 32, 1113–1118. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Davies, N.W.; Shabala, L.; Zhou, M.; Brodribb, T.J.; Shabala, S. Residual transpiration as a component of salinity stress tolerance mechanism: A case study for barley. BMC Plant Biol 2017, 17, 107. [Google Scholar] [CrossRef] [Green Version]
- Javelle, M.; Vernoud, V.; Depege-Fargeix, N.; Arnould, C.; Oursel, D.; Domergue, F.; Sarda, X.; Rogowsky, P.M. Overexpression of the Epidermis-Specific Homeodomain-Leucine Zipper IV Transcription Factor OUTER CELL LAYER1 in Maize Identifies Target Genes Involved in Lipid Metabolism and Cuticle Biosynthesis. Plant Physiol. 2010, 154, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Von Wettstein-Knowles, P. Gene mutation in barley inhibiting the production and use of C26 chains in epicuticular wax formation. FEBS Lett. 1974, 42, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, W.; Potiszil, C.; Watson, J.S.; Sephton, M.A. Sporopollenin, a Natural Copolymer, is Robust under High Hydrostatic Pressure. Macromol. Chem. Phys. 2016, 217, 2494–2500. [Google Scholar] [CrossRef]
- Brooks, J.; Shaw, G. Chemical Structure of the Exine of Pollen Walls and a New Function for Carotenoids in Nature. Nature 1968, 219, 532–533. [Google Scholar] [CrossRef] [PubMed]
- Bubert, H.; Lambert, J.; Steuernagel, S.; Ahlers, F.; Wiermann, R. Continuous decomposition of sporopollenin from pollen of Typha angustifolia L. by acidic methanolysis. Z. Naturforsch. C J. Biosci. 2002, 57, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Aarts, M.G.; Hodge, R.; Kalantidis, K.; Florack, D.; Wilson, Z.A.; Mulligan, B.J.; Stiekema, W.J.; Scott, R.; Pereira, A. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. 1997, 12, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.J. Pollen exine—The sporopollenin enigma and the physics of pattern. In Molecular and Cellular Aspects of Plant Reproduction; Stead, A.D., Scott, R.J., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 49–82. [Google Scholar]
- Ranathunge, K.; Schreiber, L.; Franke, R. Suberin research in the genomics era-new interest for an old polymer. Plant Sci. 2011, 180, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.G.; Barberon, M.; Geldner, N. Suberization—The second life of an endodermal cell. Curr. Opin. Plant Biol. 2015, 28, 9–15. [Google Scholar] [CrossRef]
- Franke, R.; Schreiber, L. Suberin-a biopolyester forming apoplastic plant interfaces. Curr. Opin. Plant Biol. 2007, 10, 252–259. [Google Scholar] [CrossRef]
- Schreiber, L. Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci. 2010, 15, 546–553. [Google Scholar] [CrossRef]
- Vishwanath, S.J.; Kosma, D.K.; Pulsifer, I.P.; Scandola, S.; Pascal, S.; Joubes, J.; Dittrich-Domergue, F.; Lessire, R.; Rowland, O.; Domergue, F. Suberin-associated fatty alcohols in Arabidopsis: Distributions in roots and contributions to seed coat barrier properties. Plant Physiol. 2013, 163, 1118–1132. [Google Scholar] [CrossRef] [Green Version]
- Pollard, M.; Beisson, F.; Li, Y.; Ohlrogge, J.B. Building lipid barriers: Biosynthesis of cutin and suberin. Trends Plant Sci. 2008, 13, 236–246. [Google Scholar] [CrossRef]
- Schreiber, L.; Franke, R.; Hartmann, K. Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 2005, 220, 520–530. [Google Scholar] [CrossRef]
- Razeq, F.M.; Kosma, D.K.; Rowland, O.; Molina, I. Extracellular lipids of Camelina sativa: Characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 2014, 106, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Beisson, F.; Ohlrogge, J.; Pollard, M. Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol. 2007, 144, 1267–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosma, D.K.; Molina, I.; Ohlrogge, J.B.; Pollard, M. Identification of an Arabidopsis fatty alcohol:caffeoyl-Coenzyme A acyltransferase required for the synthesis of alkyl hydroxycinnamates in root waxes. Plant Physiol. 2012, 160, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domergue, F.; Kosma, D.K. Occurrence and Biosynthesis of Alkyl Hydroxycinnamates in Plant Lipid Barriers. Plants 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delude, C.; Fouillen, L.; Bhar, P.; Cardinal, M.J.; Pascal, S.; Santos, P.; Kosma, D.K.; Joubes, J.; Rowland, O.; Domergue, F. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates. Plant Physiol. 2016, 171, 1934–1950. [Google Scholar] [CrossRef]
- Bernards, M.A.; Lewis, N.G. Alkyl ferulates in wound healing potato tubers. Phytochemistry 1992, 31, 3409–3412. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Ng, V.A.S.; Agoo, E.M.G.; Shen, C.-C. Chemical constituents of Cycas vespertilio. Rev. Bras. Farmacogn. 2015, 25, 526–528. [Google Scholar] [CrossRef] [Green Version]
- Kolattukudy, P.E.; Espelie, K.E. Chemistry, Biochemistry, and Function of Suberin and Associated Waxes. In Natural Products of Woody Plants: Chemicals Extraneous to the Lignocellulosic Cell Wall; Rowe, J.W., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 304–367. [Google Scholar]
- Buda, G.J.; Barnes, W.J.; Fich, E.A.; Park, S.; Yeats, T.H.; Zhao, L.; Domozych, D.S.; Rose, J.K. An ATP binding cassette transporter is required for cuticular wax deposition and desiccation tolerance in the moss Physcomitrella patens. Plant Cell 2013, 25, 4000–4013. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Suh, M.C. Cuticular Wax Biosynthesis is Up-Regulated by the MYB94 Transcription Factor in Arabidopsis. Plant Cell Physiol. 2015, 56, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Kong, L.; Yang, X.; Jiao, B.; Hu, J.; Zhang, Z.; Xu, C.; Luo, K. PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis. Tree Physiol. 2022, 42, 2133–2147. [Google Scholar] [CrossRef]
- Gou, M.; Hou, G.; Yang, H.; Zhang, X.; Cai, Y.; Kai, G.; Liu, C.J. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis. Plant Physiol. 2017, 173, 1045–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosma, D.K.; Murmu, J.; Razeq, F.M.; Santos, P.; Bourgault, R.; Molina, I.; Rowland, O. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J. 2014, 80, 216–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Guo, Z.L.; Zhou, W.T.; Zhang, C.; Zhang, Z.Y.; Lou, Y.; Xiong, S.X.; Yao, X.Z.; Fan, J.J.; Zhu, J.; et al. The Regulation of Sporopollenin Biosynthesis Genes for Rapid Pollen Wall Formation. Plant Physiol. 2018, 178, 283–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.B.; Zhu, J.; Gao, J.F.; Wang, C.; Li, H.; Li, H.; Zhang, H.Q.; Zhang, S.; Wang, D.M.; Wang, Q.X.; et al. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J. 2007, 52, 528–538. [Google Scholar] [CrossRef]
- Wu, B.; Xia, Y.; Zhang, G.; Wang, J.; Ma, S.; Song, Y.; Yang, Z.; Dennis, E.S.; Niu, N. The Transcription Factors TaTDRL and TaMYB103 Synergistically Activate the Expression of TAA1a in Wheat, Which Positively Regulates the Development of Microspore in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 7996. [Google Scholar] [CrossRef]
- Pan, X.; Yan, W.; Chang, Z.; Xu, Y.; Luo, M.; Xu, C.; Chen, Z.; Wu, J.; Tang, X. OsMYB80 Regulates Anther Development and Pollen Fertility by Targeting Multiple Biological Pathways. Plant Cell Physiol. 2020, 61, 988–1004. [Google Scholar] [CrossRef] [Green Version]
- Li, R.J.; Li, L.M.; Liu, X.L.; Kim, J.C.; Jenks, M.A.; Lü, S. Diurnal Regulation of Plant Epidermal Wax Synthesis through Antagonistic Roles of the Transcription Factors SPL9 and DEWAX. Plant Cell 2019, 31, 2711–2733. [Google Scholar] [CrossRef]
- Cohen, H.; Fedyuk, V.; Wang, C.; Wu, S.; Aharoni, A. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. Plant J. 2020, 102, 431–447. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, H.; Li, P.; Li, H.; Xu, C.; Cohen, H.; Aharoni, A.; Wu, S. Developmental programs interact with abscisic acid to coordinate root suberization in Arabidopsis. Plant J. 2020, 104, 241–251. [Google Scholar] [CrossRef]
- Shi, J.; Cui, M.; Yang, L.; Kim, Y.J.; Zhang, D. Genetic and Biochemical Mechanisms of Pollen Wall Development. Trends Plant Sci. 2015, 20, 741–753. [Google Scholar] [CrossRef]
- Quilichini, T.D.; Douglas, C.J.; Samuels, A.L. New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann. Bot. 2014, 114, 1189–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessen, D.; Olbrich, A.; Knüfer, J.; Krüger, A.; Hoppert, M.; Polle, A.; Fulda, M. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J. 2011, 68, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Wu, P.; Gao, H.; Kosma, D.K.; Jenks, M.A.; Lü, S. Natural variation in root suberization is associated with local environment in Arabidopsis thaliana. New Phytol. 2022, 236, 385–398. [Google Scholar] [CrossRef] [PubMed]
Species | Protein | Accession No. | Substrate specificity in planta | Subcellular localization | Expression pattern | Functional association in planta | Reference |
---|---|---|---|---|---|---|---|
Arabidopsis thaliana | AtFAR1 | NP_197642 | 22:0-CoA | Unidentified | Expressed in various organs, highly expressed in young roots, rosette leaves, and flowers | Suberin and taproot waxes | [10] |
AtMS2/FAR2 | NP_187805 | 16:0-CoA, 16:0-ACP 1 | Plastid | Flower-specific expression | Sporopollenin | [8,25] | |
AtFAR3/CER4 | NP_567936 | 24:0-, 26:0-, 28:0-, 30:0-CoA | ER 5 | Expressed in various organs, highly expressed in aerial organs | Cuticular waxes | [7] | |
AtFAR4 | NP_190040 | 20:0-CoA | Unidentified | Mainly expressed in young and mature roots | Suberin and taproot waxes | [10] | |
AtFAR5 | NP_190041 | 18:0-CoA | Unidentified | Mainly expressed in young and mature roots | Suberin and suberin-associated waxes | [10,27] | |
AtFAR6 | NP_191229 | 16:0-CoA, 16:0-ACP 1 | Plastid | Mainly expressed in stems epidermis | Might provide functional redundancy to AtFAR2 | [11] | |
AtFAR7 | NP_197634 | Unidentified | Unidentified | Stigmas-specific expression | Likely a pseudogene | [9] | |
AtFAR8 | NP_190042 | 16:0-CoA 2 | Unidentified | Stigmas-specific expression | Unidentified | [27] | |
Simmondsia chinensis | ScFAR | AAD38039 | 18:0-, 20:1-, 22:1-CoA 1 | Unidentified | Unidentified | Seed storage energy | [6,28] |
Physcomitrella patens | PpMS2-1 | NC_037259 | Unidentified | Unidentified | Highly expressed in the sporophyte | spore wall | [12] |
Oryza sativa | OsDPW | ABF94174 | 16:0-ACP | Plastid | Mainly Expressed in the Tapetum and Microspores | Sporopollenin | [13] |
Zea mays | ZmMs25/MS6021 | NC_050104 | 12:0-, 16:0-, 18:0-CoA 1 | Plastid | Specifically expressed in anthers from stages 8b-9 to 9-10, with the peak at stage 9-10 | Sporopollenin | [19,29] |
Triticum aestivum | TaFAR1 | KF926683 | 22:0-CoA 2 | ER | Highly expressed in seedling leaf blades and anthers | Cuticular waxes | [14] |
TaFAR2 | KJ675403 | 18:0-CoA 2 | ER | Low-level expression in aerial organs | Cuticular waxes | [16] | |
TaFAR3 | KT963076 | 28:0-CoA 2 | ER | Widely expressed in aerial organs, highly expressed in seedling leaves | Cuticular waxes | ||
TaFAR4 | KT963077 | 24:0-CoA 2 | ER | Widely expressed in aerial organs, highly expressed in seedling and flag leaves | Cuticular waxes | ||
TaFAR5 | KJ725345 | 22:0-CoA 2 | ER | Highly expressed in leaf blades, anthers, pistils, and seeds | Cuticular waxes | [15] | |
TaFAR6 | MF804951 | 24:0-, 26:0-CoA 2 | ER | Highly expressed in the seedling leaf blades | Cuticular waxes | [17] | |
TaFAR7 | MF817443 | 24:0-, 26:0-CoA 2 | ER | Highly expressed in the seedling leaf blades | Cuticular waxes | ||
TaFAR8 | MF817444 | 24:0-CoA 2 | ER | Highly expressed in the seedling leaf blades | Cuticular waxes | ||
TaTAA1a | CAD30692 | 18:1-, 20:1-, 22:1-, 24:0-, 26:0- CoA 4 | Unidentified | Specifically expressed in the sporophytic tapetum cells | Pollen wall | [18] | |
Brachypodium distachyon | BdFAR1 | ASK86469 | 22:0-CoA 2 | ER | Highly expressed in early developing leaves, leaf sheaths, nodes, and internodes | Cuticular waxes | [21] |
BdFAR2 | ASK86470 | 26:0-CoA 2 | ER | Mainly expressed in leaf sheaths, nodes, internodes, and early-developing leaves | Cuticular waxes | ||
BdFAR3 | ASK86471 | 26:0-CoA 2 | ER | Highly expressed in leaves at 40 d, leaf sheaths, and internodes | Cuticular waxes | ||
BdFAR4 | QTK16914 | 20:0-, 22:0-CoA 2 | ER | Root-specific expression | Suberin | [22] | |
Gossypium hirsutum | GhFAR3.1A | XP_016744016 | Unidentified | Unidentified | Highly expressed in leaves and rapidly elongating fibers | Cuticular waxes | [24] |
GhFAR3.1D | XP_016753267 | Unidentified | Unidentified | Highly expressed in leaves and rapidly elongating fibers | Cuticular waxes | ||
Actinidia chinensis Planch | AchnFAR | PSS03141 | 18:0-, 20:0-, 22:0-, 24:0-CoA 3 | Unidentified | Highly expressed in fruits | Suberin | [30] |
Brassica napus | BnA1.CER4 | AID60102 | 26:0-CoA 2, precursors with branched chains | ER | Highly expressed in leaves | Cuticular waxes | [23] |
BnC1.CER4 | AOS88709 | 26:0-CoA 2, precursors with branched chains | ER | Highly expressed in leaves | Cuticular waxes | ||
Aegilops tauschii | Ae.tFAR1 | AMH86041 | 16:0-CoA 2 | Unidentified | Low-level expression in various organs | Maybe suberin or sporopollenin | [20] |
Ae.tFAR2 | M8B4B3 | 18:0-CoA 2 | Unidentified | Low-level expression in various organs | Maybe suberin or sporopollenin | ||
Ae.tFAR3 | M8BJ01 | 26:0-CoA 2 | Unidentified | Highly expressed in seedling leaves and flag leaves | Cuticular waxes | ||
Ae.tFAR4 | M8CRK2 | 24:0-CoA 2 | Unidentified | Widely expressed in aerial organs | Cuticular waxes | ||
Ae.tFAR6 | M8C929 | 28:0-CoA 2 | Unidentified | Low-level expression in various organs | Cuticular waxes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, Y.; Ayaz, A.; Zhao, H.; Lü, S. The Plant Fatty Acyl Reductases. Int. J. Mol. Sci. 2022, 23, 16156. https://doi.org/10.3390/ijms232416156
Zhang X, Liu Y, Ayaz A, Zhao H, Lü S. The Plant Fatty Acyl Reductases. International Journal of Molecular Sciences. 2022; 23(24):16156. https://doi.org/10.3390/ijms232416156
Chicago/Turabian StyleZhang, Xuanhao, Yi Liu, Asma Ayaz, Huayan Zhao, and Shiyou Lü. 2022. "The Plant Fatty Acyl Reductases" International Journal of Molecular Sciences 23, no. 24: 16156. https://doi.org/10.3390/ijms232416156
APA StyleZhang, X., Liu, Y., Ayaz, A., Zhao, H., & Lü, S. (2022). The Plant Fatty Acyl Reductases. International Journal of Molecular Sciences, 23(24), 16156. https://doi.org/10.3390/ijms232416156