Zinc and Zinc Transporters in Dermatology
Abstract
:1. Zinc Properties
2. The Skin’s Anatomy and Physiology
2.1. The Epidermis
2.2. The Dermis
2.3. The Hypodermis
3. Zinc Distribution in the Human Skin
4. Role of Zinc in the Skin
5. Role of Zinc Transporters in the Skin
6. Function of Zinc, and Zinc Transporters in Dermal Skin Cells
6.1. Function of Zinc in the Dermal Layer
6.2. Function of Zinc Transporters in the Dermal Layer
6.3. ZIP7 Transporter
6.4. ZIP13 Transporter
6.5. Analogies of ZIP7 and ZIP13
7. Zinc Deficiency-Related Skin Disorders
7.1. Acrodermatitis Enteropathica (AE)
7.2. Pathogenesis of AE
7.3. Spondylocheirodysplastic Ehlers–Danlos Syndrome (SCD-EDS)
7.4. Pathogenesis of SCD-EDS
8. Zinc in the Therapy of Skin Disorders
8.1. Acne Vulgaris
8.2. Zinc in the Treatment of Other Skin Disorders
9. Cosmeceutical Application of Zinc
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, C.S.; Moutinho, C.; Ferreira da Vinha, A.; Matos, C. Trace minerals in human health: Iron, zinc, copper, manganese and fluorine. Int. J. Sci. Res. Methodol. 2019, 13, 57–80. [Google Scholar]
- Vollmer, D.L.; West, V.A.; Lephart, E.D. Enhancing skin health: By oral administration of natural compounds and minerals with implications to the dermal microbiome. Int. J. Mol. Sci. 2018, 19, 3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144. [Google Scholar] [PubMed]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.-H.; Sermersheim, M.; Li, H.; Lee, P.H.U.; Steinberg, S.M.; Ma, J. Zinc in Wound Healing Modulation. Nutrients 2018, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Lansdown, A.B.G.; Mirastschijski, U.; Stubbs, N.; Scanlon, E.; Ågren, M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007, 15, 2–16. [Google Scholar] [CrossRef]
- MacDonald, R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M.; Olbert, M.; Wyszogrodzka, G.; Młyniec, K.; Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017, 25, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Gluckman, S.P.; Hanson, M.; Seng, C.Y.; Bardsley, A.; Gluckman, P.; Hanson, M.; Seng, C.Y.; Bardsley, A. 196Zinc in pregnancy and breastfeeding. In Nutrition and Lifestyle for Pregnancy and Breastfeeding; Oxford University Press: Oxford, UK, 2014; p. 196. [Google Scholar]
- Ota, E.; Mori, R.; Middleton, P.; Tobe-Gai, R.; Mahomed, K.; Miyazaki, C.; Bhutta, Z.A. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2015, 2015, Cd000230. [Google Scholar] [CrossRef]
- Glutsch, V.; Hamm, H.; Goebeler, M. Zinc and skin: An update. JDDG J. Dtsch. Dermatol. Ges. 2019, 17, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, N.G. Skin: A Natural History; University of California Press: Berkeley, CA, USA, 2008. [Google Scholar]
- Holick, M.F. Sunlight, UV-radiation, vitamin D and skin cancer: How much sunlight do we need? In Sunlight, Vitamin D and Skin Cancer; Springer: New York, NY, USA, 2008; pp. 1–15. [Google Scholar]
- Gilaberte, Y.; Prieto-Torres, L.; Pastushenko, I.; Juarranz, Á. Chapter 1—Anatomy and Function of the Skin. In Nanoscience in Dermatology; Hamblin, M.R., Avci, P., Prow, T.W., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 1–14. [Google Scholar]
- Biniek, K.; Levi, K.; Dauskardt, R.H. Solar UV radiation reduces the barrier function of human skin. Proc. Natl. Acad. Sci. USA 2012, 109, 17111–17116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousef, H.; Alhajj, M.; Sharma, S. Anatomy, Skin (Integument), Epidermis; StatPearls Publishing: Treasure Island, FL, USA, 2017. [Google Scholar]
- Murphrey, M.B.; Miao, J.H.; Zito, P.M. Histology, Stratum Corneum; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Del Rosso, J.Q.; Levin, J. The clinical relevance of maintaining the functional integrity of the stratum corneum in both healthy and disease-affected skin. J. Clin. Aesthetic Dermatol. 2011, 4, 22–42. [Google Scholar]
- Agarwal, S.; Krishnamurthy, K. Histology, Skin; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- McKittrick, J.; Chen, P.-Y.; Bodde, S.; Yang, W.; Novitskaya, E.; Meyers, M. The structure, functions, and mechanical properties of keratin. JOM 2012, 64, 449–468. [Google Scholar] [CrossRef]
- Hou, J. Chapter 7—Paracellular Channel in Organ System. In The Paracellular Channel; Hou, J., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 93–141. [Google Scholar]
- Inoue, Y.; Hasegawa, S.; Ban, S.; Yamada, T.; Date, Y.; Mizutani, H.; Nakata, S.; Tanaka, M.; Hirashima, N. ZIP2 protein, a zinc transporter, is associated with keratinocyte differentiation. J. Biol. Chem. 2014, 289, 21451–21462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briggaman, R.A.; Wheeler, C.E. The Epidermal-Dermal Junction. J. Investig. Dermatol. 1975, 65, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Venus, M.; Waterman, J.; McNab, I. Basic physiology of the skin. Surgery 2010, 28, 469–472. [Google Scholar]
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef] [Green Version]
- Oikarinen, A. Aging of the skin connective tissue: How to measure the biochemical and mechanical properties of aging dermis. Photodermatol. Photoimmunol. Photomed. 1994, 10, 47–52. [Google Scholar]
- Alipour, H.; Raz, A.; Zakeri, S.; Dinparast Djadid, N. Therapeutic applications of collagenase (metalloproteases): A review. Asian Pac. J. Trop. Biomed. 2016, 6, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.M.; Krishnamurthy, K. Histology, Dermis; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Meigel, W.N.; Gay, S.; Weber, L. Dermal architecture and collagen type distribution. Arch. Dermatol. Res. 1977, 259, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Uitto, J. Type VII collagen: The anchoring fibril protein at fault in dystrophic epidermolysis bullosa. Dermatol. Clin. 2010, 28, 93–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braverman, I.M. The Cutaneous Microcirculation. J. Investig. Dermatol. Symp. Proc. 2000, 5, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torkamani, N.; Rufaut, N.W.; Jones, L.; Sinclair, R.D. Beyond goosebumps: Does the arrector pili muscle have a role in hair loss? Int. J. Trichology 2014, 6, 88–94. [Google Scholar] [CrossRef]
- Ringkamp, M.; Schepers, R.J.; Shimada, S.G.; Johanek, L.M.; Hartke, T.V.; Borzan, J.; Shim, B.; LaMotte, R.H.; Meyer, R.A. A role for nociceptive, myelinated nerve fibers in itch sensation. J. Neurosci. 2011, 31, 14841–14849. [Google Scholar] [CrossRef] [Green Version]
- Piccinin, M.A.; Miao, J.H.; Schwartz, J. Histology, Meissner Corpuscle; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kolarsick, P.A.; Kolarsick, M.A.; Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurses’ Assoc. 2011, 3, 203–213. [Google Scholar] [CrossRef] [Green Version]
- James, W.D.; Elston, D.; Berger, T. Andrew’s Diseases of the Skin E-Book: Clinical Dermatology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Altintas, M.M.; Azad, A.; Nayer, B.; Contreras, G.; Zaias, J.; Faul, C.; Reiser, J.; Nayer, A. Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. J. Lipid Res. 2011, 52, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Galli, S.J.; Tsai, M.; Piliponsky, A.M. The development of allergic inflammation. Nature 2008, 454, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Ojeda, W.; Pandey, A.; Alhajj, M.; Oakley, A.M. Anatomy, Skin (Integument); StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Wong, R.; Geyer, S.; Weninger, W.; Guimberteau, J.-C.; Wong, J.K. The dynamic anatomy and patterning of skin. Exp. Dermatol. 2016, 25, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Gonzalez, G.; Shook, B.; Horsley, V. Adipocytes in skin health and disease. Cold Spring Harb. Perspect. Med. 2014, 4, a015271. [Google Scholar] [CrossRef]
- Frank, A.P.; de Souza Santos, R.; Palmer, B.F.; Clegg, D.J. Determinants of body fat distribution in humans may provide insight about obesity-related health risks. J. Lipid Res. 2019, 60, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Fried, S.K. Sex-dependent Depot Differences in Adipose Tissue Development and Function; Role of Sex Steroids. J. Obes. Metab. Syndr. 2017, 26, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A.E.; Cushman, S.W.; Periwal, V. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput. Biol. 2009, 5, e1000324. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Pawlus, A.D.; Thornton, M.J. Getting under the skin of hair aging: The impact of the hair follicle environment. Exp. Dermatol. 2020, 29, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Maares, M.; Haase, H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients 2020, 12, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, T.; Takeda, T.-A.; Takagishi, T.; Fukue, K.; Kambe, T.; Fukada, T. Physiological roles of zinc transporters: Molecular and genetic importance in zinc homeostasis. J. Physiol. Sci. 2017, 67, 283–301. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kawamura, T. Zinc and Skin Disorders. Nutrients 2018, 10, 199. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M. Physiology of zinc: General aspects. In Zinc in Human Biology; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1–14. [Google Scholar]
- Michaelsson, G.; Ljunghall, K.; Danielson, B. Zinc in epidermis and dermis in healthy subjects. Acta Derm.-Venereol. 1980, 60, 295–299. [Google Scholar]
- Van Wouwe, J. Clinical and laboratory diagnosis of acrodermatitis enteropathica. Eur. J. Pediatr. 1989, 149, 2–8. [Google Scholar] [CrossRef]
- Wilson, D.; Varigos, G.; Ackland, M.L. Apoptosis may underlie the pathology of zinc-deficient skin. Immunol. Cell Biol. 2006, 84, 28–37. [Google Scholar] [CrossRef]
- Bao, B.; Prasad, A.S.; Beck, F.W.; Snell, D.; Suneja, A.; Sarkar, F.H.; Doshi, N.; Fitzgerald, J.T.; Swerdlow, P. Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl. Res. 2008, 152, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zhou, Q.; Li, Z.; Cui, Z.; Liu, X.; Liang, Y.; Zhu, S.; Zheng, Y.; Yeung, K.W.K.; Wu, S. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing. J. Mater. Sci. Technol. 2020, 57, 1–11. [Google Scholar] [CrossRef]
- Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C.; Sonawane, A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M.-A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 263–274. [Google Scholar] [CrossRef]
- Pizzey, R.L.; Marquis, R.E.; Bradshaw, D.J. Antimicrobial effects of o-cymen-5-ol and zinc, alone & in combination in simple solutions and toothpaste formulations. Int. Dent. J. 2011, 61, 33–40. [Google Scholar]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Abebe, B.; Zereffa, E.A.; Tadesse, A.; Murthy, H. A review on enhancing the antibacterial activity of ZnO: Mechanisms and microscopic investigation. Nanoscale Res. Lett. 2020, 15, 190. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, J.; Liu, D.; Liu, S.; Lei, D.; Zheng, L.; Wei, Q.; Gao, M. Zinc-based metal organic framework with antibacterial and anti-inflammatory properties for promoting wound healing. Regen. Biomater. 2022, 9, rbac019. [Google Scholar] [CrossRef]
- Liang, Y.; Liang, Y.; Zhang, H.; Guo, B. Antibacterial biomaterials for skin wound dressing. Asian J. Pharm. Sci. 2022, 17, 353–384. [Google Scholar] [CrossRef]
- Cortese-Krott, M.M.; Kulakov, L.; Opländer, C.; Kolb-Bachofen, V.; Kröncke, K.-D.; Suschek, C.V. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells. Redox Biol. 2014, 2, 945–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.; Sun, X.; Shen, Y.; Li, Z. Bioactive Poly (4-hydroxybutyrate)/Poly (ethylene glycol) Fibrous Dressings Incorporated with Zinc Oxide Nanoparticles for Efficient Antibacterial Therapy and Rapid Clotting. Macromol. Biosci. 2022, 22, 2100524. [Google Scholar] [CrossRef] [PubMed]
- Aslam, Z.; Roome, T.; Razzak, A.; Aslam, S.M.; Zaidi, M.B.; Kanwal, T.; Sikandar, B.; Bertino, M.F.; Rehman, K.; Shah, M.R. Investigation of wound healing potential of photo-active curcumin-ZnO-nanoconjugates in excisional wound model. Photodiagn. Photodyn. Ther. 2022, 39, 102956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, W.; Ma, H.; Qin, C.; Chen, J.; Wu, C. Spindle-Like Zinc Silicate Nanoparticles Accelerating Innervated and Vascularized Skin Burn Wound Healing. Adv. Healthc. Mater. 2022, 11, 2102359. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Sada, K.-K.; Ketheeswaran, S.; Dubey, A.K.; Bhat, M.S. Role of zinc in mucosal health and disease: A review of physiological, biochemical, and molecular processes. Cureus 2020, 12, e8197. [Google Scholar] [CrossRef]
- Eide, D.J. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2006, 1763, 711–722. [Google Scholar] [CrossRef]
- Jeong, J.; Eide, D.J. The SLC39 family of zinc transporters. Mol. Asp. Med. 2013, 34, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Styrpejko, D.J.; Cuajungco, M.P. Transmembrane 163 (TMEM163) Protein: A New Member of the Zinc Efflux Transporter Family. Biomedicines 2021, 9, 220. [Google Scholar] [CrossRef]
- Hoch, E.; Levy, M.; Hershfinkel, M.; Sekler, I. Elucidating the H+ Coupled Zn2+ Transport Mechanism of ZIP4; Implications in Acrodermatitis Enteropathica. Int. J. Mol. Sci. 2020, 21, 734. [Google Scholar] [CrossRef] [Green Version]
- Bin, B.H.; Seo, J.; Kim, S.T. Function, Structure, and Transport Aspects of ZIP and ZnT Zinc Transporters in Immune Cells. J. Immunol. Res. 2018, 2018, 9365747. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, H.; Soleimani, M.; Girijashanker, K.; Reed, J.M.; He, L.; Dalton, T.P.; Nebert, D.W. Cd2+ versus Zn2+ uptake by the ZIP8 HCO3−-dependent symporter: Kinetics, electrogenicity and trafficking. Biochem. Biophys. Res. Commun. 2008, 365, 814–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.; Chai, J.; Love, J.; Fu, D. Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB. J. Biol. Chem. 2010, 285, 39013–39020. [Google Scholar] [CrossRef] [Green Version]
- Bin, B.H.; Hojyo, S.; Seo, J.; Hara, T.; Takagishi, T.; Mishima, K.; Fukada, T. The Role of the Slc39a Family of Zinc Transporters in Zinc Homeostasis in Skin. Nutrients 2018, 10, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin, B.-H.; Bhin, J.; Takaishi, M.; Toyoshima, K.-E.; Kawamata, S.; Ito, K.; Hara, T.; Watanabe, T.; Irié, T.; Takagishi, T.; et al. Requirement of zinc transporter ZIP10 for epidermal development: Implication of the ZIP10–p63 axis in epithelial homeostasis. Proc. Natl. Acad. Sci. USA 2017, 114, 12243–12248. [Google Scholar] [PubMed] [Green Version]
- Lažetić, V.; Wu, F.; Cohen, L.B.; Reddy, K.C.; Chang, Y.-T.; Gang, S.S.; Bhabha, G.; Troemel, E.R. The transcription factor ZIP-1 promotes resistance to intracellular infection in Caenorhabditis elegans. Nat. Commun. 2022, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Bin, B.H.; Lee, S.H.; Bhin, J.; Irié, T.; Kim, S.; Seo, J.; Mishima, K.; Lee, T.R.; Hwang, D.; Fukada, T.; et al. The epithelial zinc transporter ZIP10 epigenetically regulates human epidermal homeostasis by modulating histone acetyltransferase activity. Br. J. Dermatol. 2019, 180, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.G.; Bin, B.H. Different Actions of Intracellular Zinc Transporters ZIP7 and ZIP13 Are Essential for Dermal Development. Int. J. Mol. Sci. 2019, 20, 3941. [Google Scholar] [CrossRef] [Green Version]
- Subramanian Vignesh, K.; Deepe, G.S., Jr. Metallothioneins: Emerging Modulators in Immunity and Infection. Int. J. Mol. Sci. 2017, 18, 2197. [Google Scholar] [CrossRef] [Green Version]
- Jagadeesan, S.; Kaliyadan, F. Acrodermatitis Enteropathica; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Bin, B.H.; Hojyo, S.; Ryong Lee, T.; Fukada, T. Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and the mutant zinc transporter ZIP13. Rare Dis. 2014, 2, e974982. [Google Scholar] [CrossRef] [Green Version]
- Ramoz, N.; Rueda, L.A.; Bouadjar, B.; Montoya, L.S.; Orth, G.; Favre, M. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat. Genet. 2002, 32, 579–581. [Google Scholar] [CrossRef]
- Ramoz, N.; Taïeb, A.; Rueda, L.A.; Montoya, L.S.; Bouadjar, B.; Favre, M.; Orth, G. Evidence for a nonallelic heterogeneity of epidermodysplasia verruciformis with two susceptibility loci mapped to chromosome regions 2p21-p24 and 17q25. J. Investig. Dermatol. 2000, 114, 1148–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orth, G. Host defenses against human papillomaviruses: Lessons from epidermodysplasia verruciformis. Curr. Top. Microbiol. Immunol. 2008, 321, 59–83. [Google Scholar] [PubMed]
- Golan, Y.; Kambe, T.; Assaraf, Y.G. The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency. Met. Integr. Biometal Sci. 2017, 9, 1352–1366. [Google Scholar] [CrossRef] [PubMed]
- Miletta, M.C.; Bieri, A.; Kernland, K.; Schöni, M.H.; Petkovic, V.; Flück, C.E.; Eblé, A.; Mullis, P.E. Transient Neonatal Zinc Deficiency Caused by a Heterozygous G87R Mutation in the Zinc Transporter ZnT-2 (SLC30A2) Gene in the Mother Highlighting the Importance of Zn2+ for Normal Growth and Development. Int. J. Endocrinol. 2013, 2013, 259189. [Google Scholar] [CrossRef] [Green Version]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- Kambe, T.; Yamaguchi-Iwai, Y.; Sasaki, R.; Nagao, M. Overview of mammalian zinc transporters. Cell. Mol. Life Sci. CMLS 2004, 61, 49–68. [Google Scholar] [CrossRef]
- Huang, L.; Kirschke, C.P.; Zhang, Y.; Yu, Y.Y. The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 2005, 280, 15456–15463. [Google Scholar] [CrossRef] [Green Version]
- Bin, B.-H.; Bhin, J.; Seo, J.; Kim, S.-Y.; Lee, E.; Park, K.; Choi, D.-H.; Takagishi, T.; Hara, T.; Hwang, D.; et al. Requirement of Zinc Transporter SLC39A7/ZIP7 for Dermal Development to Fine-Tune Endoplasmic Reticulum Function by Regulating Protein Disulfide Isomerase. J. Investig. Dermatol. 2017, 137, 1682–1691. [Google Scholar] [CrossRef]
- Fukada, T.; Civic, N.; Furuichi, T.; Shimoda, S.; Mishima, K.; Higashiyama, H.; Idaira, Y.; Asada, Y.; Kitamura, H.; Yamasaki, S.; et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS ONE 2008, 3, e3642. [Google Scholar] [CrossRef]
- Jeong, J.; Walker, J.M.; Wang, F.; Park, J.G.; Palmer, A.E.; Giunta, C.; Rohrbach, M.; Steinmann, B.; Eide, D.J. Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers–Danlos syndrome. Proc. Natl. Acad. Sci. USA 2012, 109, E3530–E3538. [Google Scholar] [CrossRef] [Green Version]
- Bin, B.H.; Fukada, T.; Hosaka, T.; Yamasaki, S.; Ohashi, W.; Hojyo, S.; Miyai, T.; Nishida, K.; Yokoyama, S.; Hirano, T. Biochemical characterization of human ZIP13 protein: A homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J. Biol. Chem. 2011, 286, 40255–40265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adulcikas, J.; Norouzi, S.; Bretag, L.; Sohal, S.S.; Myers, S. The zinc transporter SLC39A7 (ZIP7) harbours a highly-conserved histidine-rich N-terminal region that potentially contributes to zinc homeostasis in the endoplasmic reticulum. Comput. Biol. Med. 2018, 100, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Anzilotti, C.; Swan, D.J.; Boisson, B.; Deobagkar-Lele, M.; Oliveira, C.; Chabosseau, P.; Engelhardt, K.R.; Xu, X.; Chen, R.; Alvarez, L.; et al. An essential role for the Zn2+ transporter ZIP7 in B cell development. Nat. Immunol. 2019, 20, 350–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Wan, Z.; Zhou, B. Drosophila ZIP13 is posttranslationally regulated by iron-mediated stabilization. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2019, 1866, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, X.; Tang, Q.-Q. Transcriptional regulation of adipocyte differentiation: A central role for CCAAT/enhancer-binding protein (C/EBP) β. J. Biol. Chem. 2015, 290, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Fukunaka, A.; Fukada, T.; Bhin, J.; Suzuki, L.; Tsuzuki, T.; Takamine, Y.; Bin, B.-H.; Yoshihara, T.; Ichinoseki-Sekine, N.; Naito, H. Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-β expression. PLoS Genet. 2017, 13, e1006950. [Google Scholar] [CrossRef]
- Skalny, A.V.; Aschner, M.; Tinkov, A.A. Zinc. Adv. Food Nutr. Res. 2021, 96, 251–310. [Google Scholar]
- Narváez-Caicedo, C.; Moreano, G.; Sandoval, B.A.; Jara-Palacios, M. Zinc Deficiency among Lactating Mothers from a Peri-Urban Community of the Ecuadorian Andean Region: An Initial Approach to the Need of Zinc Supplementation. Nutrients 2018, 10, 869. [Google Scholar] [CrossRef] [Green Version]
- Rokunohe, D.; Nakano, H.; Ikenaga, S.; Umegaki, N.; Kaneko, T.; Matsuhashi, Y.; Tando, Y.; Toyoki, Y.; Hakamada, K.; Kusumi, T. Reduction in epidermal Langerhans cells in patients with necrolytic migratory erythema. J. Dermatol. Sci. 2008, 50, 76–80. [Google Scholar] [CrossRef]
- Tierney, E.P.; Badger, J. Etiology and pathogenesis of necrolytic migratory erythema: Review of the literature. Medscape Gen. Med. 2004, 6, 4. [Google Scholar]
- Vannucchi, H.; Fávaro, R.M.; Cunha, D.F.; Marchini, J.S. Assessment of zinc nutritional status of pellagra patients. Alcohol Alcohol. 1995, 30, 297–302. [Google Scholar] [PubMed]
- Nakamura, H.; Sekiguchi, A.; Ogawa, Y.; Kawamura, T.; Akai, R.; Iwawaki, T.; Makiguchi, T.; Yokoo, S.; Ishikawa, O.; Motegi, S.I. Zinc deficiency exacerbates pressure ulcers by increasing oxidative stress and ATP in the skin. J. Dermatol. Sci. 2019, 95, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, N.F.; Miller, L.V.; Hambidge, K.M. Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Paediatr. Int. Child Health 2014, 34, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, S.; Küry, S.; Giraud, M.; Dréno, B.; Kharfi, M.; Bézieau, S. An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica. Hum. Mutat. 2009, 30, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Maverakis, E.; Fung, M.A.; Lynch, P.J.; Draznin, M.; Michael, D.J.; Ruben, B.; Fazel, N. Acrodermatitis enteropathica and an overview of zinc metabolism. J. Am. Acad. Dermatol. 2007, 56, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Perafán-Riveros, C.; França, L.F.S.; Alves, A.C.F.; Sanches, J.A., Jr. Acrodermatitis enteropathica: Case report and review of the literature. Pediatr. Dermatol. 2002, 19, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Nistor, N.; Ciontu, L.; Frasinariu, O.-E.; Lupu, V.V.; Ignat, A.; Streanga, V. Acrodermatitis enteropathica: A case report. Medicine 2016, 95, e3553. [Google Scholar] [CrossRef] [PubMed]
- Krieger, I.; Evans, G. Acrodermatitis enteropathica without hypozincemia: Therapeutic effect of a pancreatic enzyme preparation due to a zinc-binding ligand. J. Pediatr. 1980, 96, 32–35. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, M.Y.; Kim, H.O.; Lee, M.D.; Park, Y.M. Acrodermatitis enteropathica-like eruption associated with combined nutritional deficiency. J. Korean Med. Sci. 2005, 20, 908–911. [Google Scholar] [CrossRef]
- Jensen, S.L.; McCuaig, C.; Zembowicz, A.; Hurt, M.A. Bullous lesions in acrodermatitis enteropathica delaying diagnosis of zinc deficiency: A report of two cases and review of the literature. J. Cutan. Pathol. 2008, 35, 1–13. [Google Scholar] [CrossRef]
- Zimmerman, A.W.; Hambidge, K.M.; Lepow, M.L.; Greenberg, R.D.; Stover, M.L.; Casey, C.E. Acrodermatitis in breast-fed premature infants: Evidence for a defect of mammary zinc secretion. Pediatrics 1982, 69, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, V.N.; Jain, S. Acrodermatitis enteropathica. Clin. Dermatol. 2000, 18, 745–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, T.-a.; Miyazaki, S.; Kobayashi, M.; Nishino, K.; Goto, T.; Matsunaga, M.; Ooi, M.; Shirakawa, H.; Tani, F.; Kawamura, T. Zinc deficiency causes delayed ATP clearance and adenosine generation in rats and cell culture models. Commun. Biol. 2018, 1, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- al-Rashida, M.; Iqbal, J. Therapeutic Potentials of Ecto-Nucleoside Triphosphate Diphosphohydrolase, Ecto-Nucleotide Pyrophosphatase/Phosphodiesterase, Ecto-5′-Nucleotidase, and Alkaline Phosphatase Inhibitors. Med. Res. Rev. 2014, 34, 703–743. [Google Scholar] [CrossRef]
- Fujimoto, S.; Tsuji, T.; Fujiwara, T.; Takeda, T.-a.; Merriman, C.; Fukunaka, A.; Nishito, Y.; Fu, D.; Hoch, E.; Sekler, I. The PP-motif in luminal loop 2 of ZnT transporters plays a pivotal role in TNAP activation. Biochem. J. 2016, 473, 2611–2621. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, T.; Ogawa, Y.; Nakamura, Y.; Nakamizo, S.; Ohta, Y.; Nakano, H.; Kabashima, K.; Katayama, I.; Koizumi, S.; Kodama, T.; et al. Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency. J. Clin. Investig. 2012, 122, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kawamura, T. Zinc in Keratinocytes and Langerhans Cells: Relevance to the Epidermal Homeostasis. J. Immunol. Res. 2018, 2018, 5404093. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, N.; Kumamoto, T.; Robson, S.C.; Sévigny, J.; Matsue, H.; Enjyoji, K.; Takashima, A. CD39 is the dominant Langerhans cell–associated ecto-NTPDase: Modulatory roles in inflammation and immune responsiveness. Nat. Med. 2002, 8, 358–365. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kinoshita, M.; Mizumura, N.; Miyazaki, S.; Aoki, R.; Momosawa, A.; Shimada, S.; Kambe, T.; Kawamura, T. Purinergic Molecules in the Epidermis. J. Investig. Dermatol. 2018, 138, 2486–2488. [Google Scholar] [CrossRef] [Green Version]
- Castori, M. Ehlers-danlos syndrome, hypermobility type: An underdiagnosed hereditary connective tissue disorder with mucocutaneous, articular, and systemic manifestations. ISRN Dermatol. 2012, 2012, 751768. [Google Scholar] [CrossRef] [Green Version]
- Giunta, C.; Elçioglu, N.H.; Albrecht, B.; Eich, G.; Chambaz, C.; Janecke, A.R.; Yeowell, H.; Weis, M.; Eyre, D.R.; Kraenzlin, M.; et al. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome--an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am. J. Hum. Genet. 2008, 82, 1290–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Wang, X.F. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009, 19, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Abreu, J.G.; Ketpura, N.I.; Reversade, B.; De Robertis, E. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat. Cell Biol. 2002, 4, 599–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Kim, S.H.; Li, G.C. Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem. Biophys. Res. Commun. 1999, 254, 264–268. [Google Scholar] [CrossRef]
- Huang, L.; Chen, C.H. Proteasome regulators: Activators and inhibitors. Curr. Med. Chem. 2009, 16, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K. The proteasome: Overview of structure and functions. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009, 85, 12–36. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.H. Regulation of Protein Degradation by Proteasomes in Cancer. J. Cancer Prev. 2018, 23, 153–161. [Google Scholar] [CrossRef]
- Cohen-Kaplan, V.; Livneh, I.; Avni, N.; Fabre, B.; Ziv, T.; Kwon, Y.T.; Ciechanover, A. p62-and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl. Acad. Sci. USA 2016, 113, E7490–E7499. [Google Scholar] [CrossRef]
- Besche, H.C.; Sha, Z.; Kukushkin, N.V.; Peth, A.; Hock, E.M.; Kim, W.; Gygi, S.; Gutierrez, J.A.; Liao, H.; Dick, L. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J. 2014, 33, 1159–1176. [Google Scholar] [CrossRef] [Green Version]
- Pancheri, E.; Guglielmi, V.; Wilczynski, G.M.; Malatesta, M.; Tonin, P.; Tomelleri, G.; Nowis, D.; Vattemi, G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers 2020, 12, 2540. [Google Scholar] [CrossRef]
- Starheim, K.K.; Holien, T.; Misund, K.; Johansson, I.; Baranowska, K.A.; Sponaas, A.M.; Hella, H.; Buene, G.; Waage, A.; Sundan, A. Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells. Blood Cancer J. 2016, 6, e446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiber, A.; Ravid, T. Chaperoning proteins for destruction: Diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules 2014, 4, 704–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esser, C.; Alberti, S.; Höhfeld, J. Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2004, 1695, 171–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin, B.H.; Hojyo, S.; Hosaka, T.; Bhin, J.; Kano, H.; Miyai, T.; Ikeda, M.; Kimura-Someya, T.; Shirouzu, M.; Cho, E.G.; et al. Molecular pathogenesis of spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins. EMBO Mol. Med. 2014, 6, 1028–1042. [Google Scholar] [CrossRef] [PubMed]
- Kogan, S.; Sood, A.; Garnick, M. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds A Compend. Clin. Res. Pract. 2017, 29, 102–106. [Google Scholar]
- Toyoda, M.; Morohashi, M. Pathogenesis of acne. Med. Electron Microsc. 2001, 34, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Cong, T.-X.; Hao, D.; Wen, X.; Li, X.-H.; He, G.; Jiang, X. From pathogenesis of acne vulgaris to anti-acne agents. Arch. Dermatol. Res. 2019, 311, 337–349. [Google Scholar] [CrossRef]
- Beylot, C.; Auffret, N.; Poli, F.; Claudel, J.-P.; Leccia, M.-T.; Del Giudice, P.; Dreno, B. Propionibacterium acnes: An update on its role in the pathogenesis of acne. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 271–278. [Google Scholar] [CrossRef]
- Gollnick, H. Current Concepts of the Pathogenesis of Acne. Drugs 2003, 63, 1579–1596. [Google Scholar] [CrossRef]
- Dreno, B.; Gollnick, H.P.M.; Kang, S.; Thiboutot, D.; Bettoli, V.; Torres, V.; Leyden, J.; the Global Alliance to Improve Outcomes in Acne. Understanding innate immunity and inflammation in acne: Implications for management. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, J.; Eber, A.E.; Perper, M.; Nascimento, V.M.; Nouri, K.; Keri, J.E. The role of zinc in the treatment of acne: A review of the literature. Dermatol. Ther. 2018, 31, e12576. [Google Scholar] [CrossRef] [PubMed]
- Yee, B.E.; Richards, P.; Sui, J.Y.; Marsch, A.F. Serum zinc levels and efficacy of zinc treatment in acne vulgaris: A systematic review and meta-analysis. Dermatol. Ther. 2020, 33, e14252. [Google Scholar] [CrossRef] [PubMed]
- Lidén, S.; Göransson, K.; Odsell, L. Clinical evaluation in acne. Acta Derm.-Venereol. Suppl. 1980, 89 (Suppl. 89), 47–52. [Google Scholar]
- Gupta, M.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S. Zinc therapy in dermatology: A review. Dermatol. Res. Pract. 2014, 2014, 709152. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, P.; Chu, C. Chloroxylenol and zinc oxide containing cream (Nels cream®) vs. 5% benzoyl peroxide cream in the treatment of acne vulgaris. A double-blind, randomized, controlled trial. Clin. Exp. Dermatol. 2000, 25, 16–20. [Google Scholar] [CrossRef]
- Michaëlsson, G.; Juhlin, L.; Vahlquist, A. Effects of Oral Zinc and Vitamin A in Acne. Arch. Dermatol. 1977, 113, 31–36. [Google Scholar] [CrossRef]
- Vahlquist, A.; Michaëlsson, G.; Juhlin, L. Acne treatment with oral zinc and vitamin A: Effects on the serum levels of zinc and retinol binding protein (RBP). Acta Derm.-Venereol. 1978, 58, 437–442. [Google Scholar]
- Kobayashi, H.; Aiba, S.; Tagami, H. Successful treatment of dissecting cellulitis and acne conglobata with oral zinc. Br. J. Dermatol. 1999, 141, 1136–1152. [Google Scholar] [CrossRef]
- Weimar, V.M.; Puhl, S.C.; Smith, W.H.; tenBroeke, J.E. Zinc Sulfate in Acne Vulgaris. Arch. Dermatol. 1978, 114, 1776–1778. [Google Scholar] [CrossRef]
- Nast, A.; Dreno, B.; Bettoli, V.; Degitz, K.; Erdmann, R.; Finlay, A.; Ganceviciene, R.; Haedersdal, M.; Layton, A.; López-Estebaranz, J. European evidence-based (S3) guidelines for the treatment of acne. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 1–29. [Google Scholar] [CrossRef]
- Hillstrom, L.; Pettersson, L.; Hellbe, L.; Kjellin, A.; Leczinsky, C.G.; Nordwall, C. Comparison of oral treatment with zinc sulphate and placebo in acne vulgaris. Br. J. Dermatol. 1977, 97, 679–684. [Google Scholar] [CrossRef]
- Verma, K.; Saini, A.; Dhamija, S. Oral zinc sulphate therapy in acne vulgaris: A double-blind trial. Acta Derm.-Venereol. 1980, 60, 337–340. [Google Scholar] [PubMed]
- Dreno, B.; Moyse, D.; Alirezai, M.; Amblard, P.; Auffret, N.; Beylot, C.; Bodokh, I.; Chivot, M.; Daniel, F.; Humbert, P. Multicenter randomized comparative double-blind controlled clinical trial of the safety and efficacy of zinc gluconate versus minocycline hydrochloride in the treatment of inflammatory acne vulgaris. Dermatology 2001, 203, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Katsambas, A.; Dessinioti, C. New and emerging treatments in dermatology: Acne. Dermatol. Ther. 2008, 21, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Bowe, W.P.; Joshi, S.S.; Shalita, A.R. Diet and acne. J. Am. Acad. Dermatol. 2010, 63, 124–141. [Google Scholar] [CrossRef]
- Sardana, K.; Garg, V.K. An observational study of methionine-bound zinc with antioxidants for mild to moderate acne vulgaris. Dermatol. Ther. 2010, 23, 411–418. [Google Scholar] [CrossRef]
- Walocko, F.M.; Eber, A.E.; Keri, J.E.; Al-harbi, M.A.; Nouri, K. The role of nicotinamide in acne treatment. Dermatol. Ther. 2017, 30, e12481. [Google Scholar] [CrossRef]
- Niren, N.M.; Torok, H.M. The Nicomide Improvement in Clinical Outcomes Study (NICOS): Results of an 8-week trial. Cutis 2006, 77 (Suppl. 1), 17–28. [Google Scholar]
- Sharquie, K.E.; Al-Mashhadani, S.A.; Noaimi, A.A.; Hasan, A.A. Topical zinc sulphate (25%) solution: A new therapy for actinic keratosis. J. Cutan. Aesthetic Surg. 2012, 5, 53–56. [Google Scholar] [CrossRef]
- Park, H.; Kim, C.W.; Kim, S.S.; Park, C.W. The Therapeutic Effect and the Changed Serum Zinc Level after Zinc Supplementation in Alopecia Areata Patients Who Had a Low Serum Zinc Level. Ann. Dermatol. 2009, 21, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Lux-Battistelli, C. Combination therapy with zinc gluconate and PUVA for alopecia areata totalis: An adjunctive but crucial role of zinc supplementation. Dermatol. Ther. 2015, 28, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.R.; Marsh, R.G.; Draelos, Z.D. Zinc and Skin Health: Overview of Physiology and Pharmacology. Dermatol. Surg. 2005, 31, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Chretien, J.H.; Esswein, J.G.; Sharpe, L.M.; Kiely, J.J.; Lyddon, F.E. Efficacy of Undecylenic Acid–Zinc Undecylenate Powder in Culture Positive Tinea Pedis. Int. J. Dermatol. 1980, 19, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Famenini, S.; Goh, C. Evidence for supplemental treatments in androgenetic alopecia. J. Drugs Dermatol. 2014, 13, 809–812. [Google Scholar] [PubMed]
- Berger, R.S.; Fu, J.L.; Smiles, K.A.; Turner, C.B.; Schnell, B.M.; Werchowski, K.M.; Lammers, K.M. The effects of minoxidil, 1% pyrithione zinc and a combination of both on hair density: A randomized controlled trial. Br. J. Dermatol. 2003, 149, 354–362. [Google Scholar] [CrossRef]
- Sharquie, K.E.; Najim, R.A.; Al-Dori, W.S.; Al-Hayani, R.K. Oral zinc sulfate in the treatment of Behcet’s disease: A double blind cross-over study. J. Dermatol. 2006, 33, 541–546. [Google Scholar] [CrossRef]
- Bulur, I.; Onder, M. Behçet disease: New aspects. Clin. Dermatol. 2017, 35, 421–434. [Google Scholar] [CrossRef]
- Ascione, J.-M.; Forestier, S.; Rollat-Corvol, I. Deodorant Composition Comprising a Water-Soluble Zinc Salt as Odor-Absorbing Agent. U.S. Patent 6,632,421, 14 October 2003. [Google Scholar]
- Li, W.; Liu, M. Method and Composition for Preventing Sweat-Related Odor. U.S. Patent 6,426,061, 30 July 2002. [Google Scholar]
- Sharquie, K.E.; Noaimi, A.A.; Hameed, S.D. Topical 15% zinc sulfate solution is an effective therapy for feet odor. J. Cosmet. Dermatol. Sci. Appl. 2013, 3, 35867. [Google Scholar] [CrossRef] [Green Version]
- Sharquie, K.E.; Najim, R.A.; Farjou, I.B. A comparative controlled trial of intralesionally-administered zinc sulphate, hypertonic sodium chloride and pentavalent antimony compound against acute cutaneous leishmaniasis. Clin. Exp. Dermatol. 1997, 22, 169–173. [Google Scholar] [CrossRef]
- Sharquie, K.E.; Najim, R.A.; Farjou, I.B.; Al-Timimi, D.J. Oral zinc sulphate in the treatment of acute cutaneous leishmaniasis. Clin. Exp. Dermatol. 2001, 26, 21–26. [Google Scholar] [CrossRef]
- Minodier, P.; Parola, P. Cutaneous leishmaniasis treatment. Travel Med. Infect. Dis. 2007, 5, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Berne, B.; Venge, P.; Öhman, S. Perifolliculitis Capitis Abscedens et Suffodiens (Hoffman): Complete Healing Associated With Oral Zinc Therapy. Arch. Dermatol. 1985, 121, 1028–1030. [Google Scholar] [CrossRef] [PubMed]
- Simpson, N.B.; Cunliffe, W.J. Disorders of the Sebaceous Glands. In Rook’s Textbook of Dermatology; Blackwell Science Ltd.: Hoboken, NJ, USA, 2004; pp. 2121–2196. [Google Scholar]
- Wiegand, C.; Hipler, U.C.; Boldt, S.; Strehle, J.; Wollina, U. Skin-protective effects of a zinc oxide-functionalized textile and its relevance for atopic dermatitis. Clin. Cosmet. Investig. Dermatol. 2013, 6, 115–121. [Google Scholar] [PubMed] [Green Version]
- Baldwin, S.; Odio, M.R.; Haines, S.L.; O’Connor, R.J.; Englehart, J.S.; Lane, A.T. Skin benefits from continuous topical administration of a zinc oxide/petrolatum formulation by a novel disposable diaper. J. Eur. Acad. Dermatol. Venereol. 2001, 15, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Faghihi, G.; Iraji, F.; Shahingohar, A.; Saidat, A. The efficacy of ‘0.05% Clobetasol + 2.5% zinc sulphate’ cream vs. ‘0.05% Clobetasol alone’ cream in the treatment of the chronic hand eczema: A double-blind study. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Arata, J.; Isaka, H. Erosive pustular dermatosis of the scalp successfully treated with oral zinc sulphate. Br. J. Dermatol. 1982, 106, 742. [Google Scholar] [CrossRef]
- Fernández-Romero, J.A.; Abraham, C.J.; Rodriguez, A.; Kizima, L.; Jean-Pierre, N.; Menon, R.; Begay, O.; Seidor, S.; Ford, B.E.; Gil, P.I. Zinc acetate/carrageenan gels exhibit potent activity in vivo against high-dose herpes simplex virus 2 vaginal and rectal challenge. Antimicrob. Agents Chemother. 2012, 56, 358–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenney, J.; Rodríguez, A.; Kizima, L.; Seidor, S.; Menon, R.; Jean-Pierre, N.; Pugach, P.; Levendosky, K.; Derby, N.; Gettie, A.; et al. A Modified Zinc Acetate Gel, a Potential Nonantiretroviral Microbicide, Is Safe and Effective against Simian-Human Immunodeficiency Virus and Herpes Simplex Virus 2 Infection In Vivo. Antimicrob. Agents Chemother. 2013, 57, 4001–4009. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, A.; Ataei-Pirkooh, A.; Mm Sadeghi, G.; Bokharaei-Salim, F.; Sahrapour, P.; Kiani, S.J.; Moghoofei, M.; Farahmand, M.; Javanmard, D.; Monavari, S.H. Polyethylene glycol-coated zinc oxide nanoparticle: An efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine 2018, 13, 2675–2690. [Google Scholar] [CrossRef]
- Arens, M.; Travis, S. Zinc Salts Inactivate Clinical Isolates of Herpes Simplex Virus In Vitro. J. Clin. Microbiol. 2000, 38, 1758–1762. [Google Scholar] [CrossRef] [Green Version]
- Brocard, A.; Knol, A.C.; Khammari, A.; Dréno, B. Hidradenitis Suppurativa and Zinc: A New Therapeutic Approach. Dermatology 2007, 214, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Hessam, S.; Sand, M.; Meier, N.M.; Gambichler, T.; Scholl, L.; Bechara, F.G. Combination of oral zinc gluconate and topical triclosan: An anti-inflammatory treatment modality for initial hidradenitis suppurativa. J. Dermatol. Sci. 2016, 84, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Battistini, F.; Cordero, C.; Urcuyo, F.G.; Rojas, R.F.; Ollague, W.; Zaias, N. The Treatment of Dermatophytoses of the Glabrous Skin: A Comparison of Undecylenic Acid and its Salt Versus Tolnaftate. Int. J. Dermatol. 1983, 22, 388–389. [Google Scholar] [CrossRef] [PubMed]
- Mathur, N.K.; Bumb, R.A.; Mangal, H.N.; Sharma, M.L. Oral zinc as an adjunct to dapsone in lepromatous leprosy. Int. J. Lepr. 1984, 52, 331–338. [Google Scholar]
- Sehgal, V.N.; Prasad, P.V.S.; Kaviarasan, P.K.; Rajan, D. Trophic skin ulceration in leprosy: Evaluation of the efficacy of topical phenytoin sodium zinc oxide paste. Int. J. Dermatol. 2014, 53, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, L.E.; Koyanagi, A. Zinc and infection: A review. Ann. Trop. Paediatr. 2005, 25, 149–160. [Google Scholar] [CrossRef]
- Sharquie, K.E.; Al-Mashhadani, S.A.; Salman, H.A. Topical 10% Zinc Sulfate Solution for Treatment of Melasma. Dermatol. Surg. 2008, 34, 1346–1349. [Google Scholar]
- Castanedo-Cazares, J.P.; Hernandez-Blanco, D.; Carlos-Ortega, B.; Fuentes-Ahumada, C.; Torres-Álvarez, B. Near-visible light and UV photoprotection in the treatment of melasma: A double-blind randomized trial. Photodermatol. Photoimmunol. Photomed. 2014, 30, 35–42. [Google Scholar] [CrossRef]
- Kaye, E.T.; Levin, J.A.; Blank, I.H.; Arndt, K.A.; Anderson, R.R. Efficiency of opaque photoprotective agents in the visible light range. Arch. Dermatol. 1991, 127, 351–355. [Google Scholar] [CrossRef]
- Rodrigues, M.; Pandya, A.G. Melasma: Clinical diagnosis and management options. Australas. J. Dermatol. 2015, 56, 151–163. [Google Scholar] [CrossRef]
- Victor, F.C.; Gelber, J.; Rao, B. Melasma: A review. J. Cutan. Med. Surg. Inc. Med. Surg. Dermatol. 2004, 8, 97–102. [Google Scholar] [CrossRef]
- Osterwalder, U.; Sohn, M.; Herzog, B. Global state of sunscreens. Photodermatol. Photoimmunol. Photomed. 2014, 30, 62–80. [Google Scholar] [CrossRef] [PubMed]
- Khanna, V.J.; Shieh, S.; Benjamin, J.; Somach, S.; Zaim, M.T.; Dorner, W., Jr.; Shill, M.; Wood, G.S. Necrolytic acral erythema associated with hepatitis C: Effective treatment with interferon alfa and zinc. Arch. Dermatol. 2000, 136, 755–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, M.A.; Hull, C.; Horn, T.D. Necrolytic Acral Erythema: A Patient From the United States Successfully Treated With Oral Zinc. Arch. Dermatol. 2005, 141, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Najarian, D.J.; Lefkowitz, I.; Balfour, E.; Pappert, A.S.; Rao, B.K. Zinc deficiency associated with necrolytic acral erythema. J. Am. Acad. Dermatol. 2006, 55 (Suppl. 5), S108–S110. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, S.A.; Reynolds, N.J. Necrolytic migratory erythema and zinc deficiency. Br. J. Dermatol. 1997, 136, 783–785. [Google Scholar] [CrossRef]
- Sharquie, K.E.; Najim, R.A.; Al-Hayani, R.K.; Al-Nuaimy, A.A.; Maroof, D.M. The therapeutic and prophylactic role of oral zinc sulfate in management of recurrent aphthous stomatitis (ras) in comparison with dapsone. Saudi Med. J. 2008, 29, 734–738. [Google Scholar]
- Altenburg, A.; El-Haj, N.; Micheli, C.; Puttkammer, M.; Abdel-Naser, M.B.; Zouboulis, C.C. The treatment of chronic recurrent oral aphthous ulcers. Dtsch. Arztebl. Int. 2014, 111, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Belenguer-Guallar, I.; Jiménez-Soriano, Y.; Claramunt-Lozano, A. Treatment of recurrent aphthous stomatitis. A literature review. J. Clin. Exp. Dent. 2014, 6, e168. [Google Scholar] [CrossRef]
- Edgar, N.R.; Saleh, D.; Miller, R.A. Recurrent aphthous stomatitis: A review. J. Clin. Aesthetic Dermatol. 2017, 10, 26. [Google Scholar]
- Skaare, A.B.; Herlofson, B.B.; Barkvoll, P. Mouthrinses containing triclosan reduce the incidence of recurrent aphthous ulcers (RAU). J. Clin. Periodontol. 1996, 23, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Mehdipour, M.; Taghavi Zenouz, A.; Bahramian, A.; Yazdani, J.; Pouralibaba, F.; Sadr, K. Comparison of the Effect of Mouthwashes with and without Zinc and Fluocinolone on the Healing Process of Erosive Oral Lichen Planus. J. Dent. Res. Dent. Clin. Dent. Prospect. 2010, 4, 25–28. [Google Scholar]
- Chaitanya, N.C.; Chintada, S.; Kandi, P.; Kanikella, S.; Kammari, A.; Waghamare, R.S. Zinc Therapy in Treatment of Symptomatic Oral Lichen Planus. Indian Dermatol. Online J. 2019, 10, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Faergemann, J.; Fredriksson, T. An open trial of the effect of a zinc pyrithione shampoo in tinea versicolor. Cutis 1980, 25, 667–669. [Google Scholar] [PubMed]
- Gupta, A.K.; Foley, K.A. Antifungal Treatment for Pityriasis Versicolor. J. Fungi 2015, 1, 13–29. [Google Scholar] [CrossRef]
- Hald, M.; Arendrup, M.C.; Svejgaard, E.L.; Lindskov, R.; Foged, E.K.; Saunte, D.M. Evidence-based Danish guidelines for the treatment of Malassezia-related skin diseases. Acta Derm.-Venereol. 2015, 95, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Sharquie, K.E.; Al-Dori, W.S.; Sharquie, I.K.; Al-Nuaimy, A.A. Treatment of Pityriasis Versicolour with Topical 15% Zinc Sulfate Solution. raqi J. Comm. Med. 2008, 21, 61–63. [Google Scholar]
- Sadeghian, G.; Ziaei, H.; Nilforoushzadeh, M. Treatment of localized psoriasis with a topical formulation of zinc pyrithione. Acta Derm. APA 2011, 20, 187–190. [Google Scholar]
- Clemmensen, O.J.; Siggaard-Andersen, J.; Worm, A.M.; Stahl, D.; Frost, F.; Bloch, I. Psoriatic arthritis treated with oral zinc sulphate. Br. J. Dermatol. 1980, 103, 411–415. [Google Scholar] [CrossRef]
- Strömberg, H.-E.; Ågren, M.S. Topical zinc oxide treatment improves arterial and venous leg ulcers. Br. J. Dermatol. 1984, 111, 461–468. [Google Scholar] [CrossRef]
- Ågren, M.S.; Strömberg, H.-E. Topical Treatment of Pressure Ulcers: A Randomized Comparative Trial of Varidase® and Zinc Oxide. Scand. J. Plast. Reconstr. Surg. 1985, 19, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Apelqvist, J.; Larsson, J.; Lstenström, A. Topical treatment of necrotic foot ulcers in diabetic patients: A comparative trial of DuoDerm and MeZinc. Br. J. Dermatol. 1990, 123, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Cornwall, M.W. Zinc iontophoresis to treat ischemic skin ulcers. Phys. Ther. 1981, 61, 359–360. [Google Scholar] [CrossRef] [PubMed]
- Yaghoobi, R.; Omidian, M.; Bagherani, N. Comparison of therapeutic efficacy of topical corticosteroid and oral zinc sulfate-topical corticosteroid combination in the treatment of vitiligo patients: A clinical trial. BMC Dermatol. 2011, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharquie, K.E.; Khorsheed, A.A.; Al-Nuaimy, A.A. Topical zinc sulphate solution for treatment of viral warts. Saudi Med. J. 2007, 28, 1418–1421. [Google Scholar] [PubMed]
- Mun, J.-H.; Kim, S.-H.; Jung, D.-S.; Ko, H.-C.; Kim, B.-S.; Kwon, K.-S.; Kim, M.-B. Oral zinc sulfate treatment for viral warts: An open-label study. J. Dermatol. 2011, 38, 541–545. [Google Scholar] [CrossRef]
- Yaghoobi, R.; Sadighha, A.; Baktash, D. Evaluation of oral zinc sulfate effect on recalcitrant multiple viral warts: A randomized placebo-controlled clinical trial. J. Am. Acad. Dermatol. 2009, 60, 706–708. [Google Scholar] [CrossRef]
- Khattar, J.A.; Musharrafieh, U.M.; Tamim, H.; Hamadeh, G.N. Topical zinc oxide vs. salicylic acid–lactic acid combination in the treatment of warts. Int. J. Dermatol. 2007, 46, 427–430. [Google Scholar] [CrossRef]
- Friedland, B.A.; Hoesley, C.J.; Plagianos, M.; Hoskin, E.; Zhang, S.; Teleshova, N.; Alami, M.; Novak, L.; Kleinbeck, K.R.; Katzen, L.L.; et al. First-in-Human Trial of MIV-150 and Zinc Acetate Coformulated in a Carrageenan Gel: Safety, Pharmacokinetics, Acceptability, Adherence, and Pharmacodynamics. J. Acquir. Immune Defic. Syndr. 2016, 73, 489–496. [Google Scholar] [CrossRef]
- De Laat, J.T.; De Gruijl, F. The role of UVA in the aetiology of non-melanoma skin cancer. Cancer Surv. 1996, 26, 173–191. [Google Scholar]
- Stary, A.; Robert, C.; Sarasin, A. Deleterious effects of ultraviolet A radiation in human cells. Mutat. Res./DNA Repair 1997, 383, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Danpure, H.J.; Tyrrell, R.M. Oxygen-dependence of near UV (365 NM) lethality and the interaction of near UV and X-rays in two mammalian cell lines. Photochem. Photobiol. 1976, 23, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, Y.H.; Barkauskas, D.S.; Holmes, A.; Grice, J.; Roberts, M.S. Noninvasive in vivo human multiphoton microscopy: A key method in proving nanoparticulate zinc oxide sunscreen safety. J. Biomed. Opt. 2020, 25, 014509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leccia, M.-T.; Richard, M.-J.; Favier, A.; B’Eani, J.-C. Zinc protects against ultraviolet A1-induced DNA damage and apoptosis in cultured human fibroblasts. Biol. Trace Elem. Res. 1999, 69, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Lewicka, Z.A.; Yu, W.W.; Oliva, B.L.; Contreras, E.Q.; Colvin, V.L. Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J. Photochem. Photobiol. A Chem. 2013, 263, 24–33. [Google Scholar] [CrossRef]
- Mitchnick, M.A.; Fairhurst, D.; Pinnell, S.R. Microfine zinc oxide (Z-Cote) as a photostable UVA/UVB sunblock agent. J. Am. Acad. Dermatol. 1999, 40, 85–90. [Google Scholar] [CrossRef]
- Pinnell, S.R.; Fairhurst, D.; Gillies, R.; Mitchnick, M.A.; Kollias, N. Microfine Zinc Oxide is a Superior Sunscreen Ingredient to Microfine Titanium Dioxide. Dermatol. Surg. 2000, 26, 309–314. [Google Scholar] [CrossRef]
- Adler, B.L.; DeLeo, V.A. Sunscreen Safety: A Review of Recent Studies on Humans and the Environment. Curr. Dermatol. Rep. 2020, 9, 1–9. [Google Scholar] [CrossRef]
- Mancuso, J.B.; Maruthi, R.; Wang, S.Q.; Lim, H.W. Sunscreens: An Update. Am. J. Clin. Dermatol. 2017, 18, 643–650. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef]
- Mohammed, Y.H.; Holmes, A.; Haridass, I.N.; Sanchez, W.Y.; Studier, H.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers. J. Investig. Dermatol. 2019, 139, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro-Riviere, N.A.; Wiench, K.; Landsiedel, R.; Schulte, S.; Inman, A.O.; Riviere, J.E. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: An in vitro and in vivo study. Toxicol. Sci. 2011, 123, 264–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, S.E.; Innes, B.; Roberts, M.S.; Tsuzuki, T.; Robertson, T.A.; McCormick, P. Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized zinc oxide formulation. Ski. Pharmacol. Physiol. 2007, 20, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.; Truswell, A.S. Essentials of Human Nutrition; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission, Scientific Committee on Consumer Safety. Opinion on Zinc Oxide (Nano Form): COLIPA n° S76; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Ginzburg, A.L.; Blackburn, R.S.; Santillan, C.; Truong, L.; Tanguay, R.L.; Hutchison, J.E. Zinc oxide-induced changes to sunscreen ingredient efficacy and toxicity under UV irradiation. Photochem. Photobiol. Sci. 2021, 20, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, C.; Marcellini, F.; Nepote, E.; Damiani, E.; Danovaro, R. Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp.). Sci. Total Environ. 2018, 637–638, 1279–1285. [Google Scholar] [CrossRef]
Disorder | Etiology | Treatment | References |
---|---|---|---|
Acne conglobata | Propionibacterium acnes | Successfully treated with a high dose of oral zinc sulphate. | [152] |
Acne vulgaris | Propionibacterium acnes | Clindamycin or erythromycin in combination with zinc acetate or octoate was found to boost therapy efficacy. | [145,146,150,153,154,155,156,157,158,159,160,161,162] |
Papular and pustular acne can be cured with oral zinc sulphate. | |||
Oral zinc gluconate is effective in the management of inflammatory acne. | |||
Antioxidants combined with methionine-bound zinc complex was successful in treating mild to moderate conditions. | |||
The alternative route of treatment can be zinc alone or in combination with nicotinamide. | |||
Actinic keratosis | UV exposure | Topical 25% zinc sulphate resulted in the disappearance of the lesions. | [163] |
Alopecia areata | autoimmune disorder | Oral zinc supplementation showed a noticeable clinical response. | [164,165] |
Athlete’s foot | Trichophyton rubrum | 20% zinc-undecylenate-containing powder was found to be effective in reducing erythema, scaling, and itching. | [166,167] |
Androgenetic alopecia | androgens, genetic predisposition | Significant hair growth was observed with topical zinc pyrithione 1% solution. | [168,169] |
Behcet’s disease | autoimmune disorder | Behcet’s disease was treated with oral zinc sulphate. | [170,171] |
Bromhidrosis | Corynebacterium sp. | Topical zinc salt such as sulphate and zinc oxide were found to be successful in the management of the condition. | [172,173] |
Bromodosis | Sweat buildup leading to bacterial or fungal growth | A topical 15% zinc sulphate solution was found to eliminate foot odor. | [174] |
Cutaneous leishmaniasis | Leishmania | Intralesional 2% zinc sulphate with meglumine and oral zinc sulphate was found to be effective in the management of cutaneous leishmaniasis. | [175,176,177] |
Dissecting cellulitis of the scalp | Unknown | Complete cure with oral zinc sulphate. | [152,178,179] |
Eczema | Immune system overactivity | Textiles treated with zinc oxide can be useful in the management of atopic dermatitis. | [180,181,182] |
For diaper dermatitis, zinc oxide paste was found to be effective in soothing and preventing skin rash. | |||
For hand eczema, a cream containing zinc sulphate (2.5%) combined with clobetasol (0.05%) has improved the condition. | |||
Erosive pustular dermatosis of the scalp | Unknown | Treated with oral zinc sulphate. | [183] |
Herpes genitalis | Herpes simplex virus type 2 | Zinc acetate gel was effective in the prevention of sexual transmission of HSV-2 and HIV. | [184,185] |
Higher concentrations of zinc sulphate were found more effective in the treatment, and prevention of relapse. | |||
Herpes simplex | Herpes simplex virus type 1 | Polyethylene glycol-coated zinc oxide nanoparticles demonstrated antiviral potency against HSV-1 | [186,187] |
Zinc gluconate and zinc lactate was found to effectively inactivate HSV-1 clinical isolates. | |||
Hidradenitis suppurativa | Unknown | The disorder can be managed with oral zinc gluconate alone or in combination with topical triclosan. | [188,189] |
Jock itch | Trichophyton rubrum Trichophyton mentagrophytes | A cream formulated with 20% zinc undecylenate has effectively cleared the skin. | [166,190] |
Leprosy | Mycobacterium leprae | Combining oral zinc with dapsone was found to enhance the therapy’s effectiveness through bacterial clearance and rapid conversion of lepromin. | [191,192,193] |
Topical application of phenytoin sodium zinc oxide paste showed a significant clearance of the bacterial load of trophic ulcers. | |||
Melasma | UV exposure | Topical 10% zinc sulphate resulted in a significant decrease in MASI* scores. | [194,195,196,197,198,199] |
Zinc oxide in sunscreen formulations is used in the management of melasma owing to its photoprotection properties. | |||
Necrolytic acral erythema | Associated with hepatitis C | The condition was treated with oral zinc supplementation. | [200,201,202] |
Necrolytic migratory erythema | Associated with pancreatic glucagonoma | Oral zinc sulfate has been shown to improve the condition. | [203] |
Oral aphthous stomatitis | Unknown | Oral zinc sulphate lowered the risk of relapse in recurrent aphthae and provided both curative and preventative effects. | [204,205,206,207,208] |
Zinc sulphate-containing mouth rinse decreased the frequency of recurring ulcers. | |||
Oral lichen planus | Unknown | 0.2% zinc mouthwash in combination with fluocinolone helped diminish irritability, pain, and lesion surface area. | [209,210] |
Administration of oral zinc acetate showed favorable clinical improvement. | |||
Pityriasis versicolor | Malassezia | Zinc pyrithione 1% in shampoo formulations was found effective in the treatment of pityriasis versicolor. | [211,212,213,214] |
Topical 15% zinc sulphate was effective in the treatment of pityriasis versicolor. | |||
Psoriasis | Unknown | Topical 0.25% zinc pyrithione was found effective for localized plaque psoriasis. | [215] |
Psoriatic arthritis | Unknown | Psoriatic arthritis can be effectively treated with oral zinc sulphate. | [148,216] |
Seborrheic dermatitis | Malassezia | Zinc pyrithione 1% in a shampoo formulation is a therapeutic choice for reducing inflammations and scaling. | [215] |
Ulcers | Poor blood flow | Topical zinc oxide formulations have been used in the treatment of arterial and venous leg ulcers, pressure ulcers, and diabetic foot ulcers. | [6,217,218,219,220] |
Zinc iontophoresis was demonstrated to be beneficial in the treatment of ischemic skin ulcers. | |||
Vitiligo | Melanocyte decrement in relation to genetic and non-genetic factors | Oral zinc sulphate in combination with topical corticosteroids showed a higher response rate than Topical corticosteroids alone in the treatment of vitiligo. | [221] |
Warts | Human papillomavirus | Topical 10% zinc sulfate was found effective for the treatment of plane warts | [222,223,224,225,226] |
Oral zinc sulfate can be used in the treatment of different types of warts. | |||
Topical 20% zinc oxide is considered an effective and safe therapeutic method. | |||
Zinc acetate coformulated in a carrageenan gel demonstrated anti-HIV and anti-human papillomavirus activity. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khafaji, Z.; Brito, S.; Bin, B.-H. Zinc and Zinc Transporters in Dermatology. Int. J. Mol. Sci. 2022, 23, 16165. https://doi.org/10.3390/ijms232416165
Al-Khafaji Z, Brito S, Bin B-H. Zinc and Zinc Transporters in Dermatology. International Journal of Molecular Sciences. 2022; 23(24):16165. https://doi.org/10.3390/ijms232416165
Chicago/Turabian StyleAl-Khafaji, Zubaidah, Sofia Brito, and Bum-Ho Bin. 2022. "Zinc and Zinc Transporters in Dermatology" International Journal of Molecular Sciences 23, no. 24: 16165. https://doi.org/10.3390/ijms232416165
APA StyleAl-Khafaji, Z., Brito, S., & Bin, B. -H. (2022). Zinc and Zinc Transporters in Dermatology. International Journal of Molecular Sciences, 23(24), 16165. https://doi.org/10.3390/ijms232416165