Effect of Pre-Heating on the Monomer Elution and Porosity of Conventional and Bulk-Fill Resin-Based Dental Composites
Abstract
:1. Introduction
2. Results
2.1. Micro-Computed Tomography Measurements
2.2. Reversed-Phase High-Performance Liquid Chromatography Measurements
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Micro-Computed Tomography Measurements
4.3. Reversed-Phase High-Performance Liquid Chromatography Measurements
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lempel, E.; Lovász, B.V.; Bihari, E.; Krajczár, K.; Jeges, S.; Tóth, Á.; Szalma, J. Long-term clinical evaluation of direct resin composite restorations in vital vs. endodontically treated posterior teeth—Retrospective study up to 13 years. Dent. Mater. 2019, 35, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.P.; Li, S.; Mukherjee, I.; Guo, Y.; Patel, A.C.; Baran, G.; Wei, Y. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent. Mater. 2009, 25, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Lohbauer, U.; Zinelis, S.; Rahiotis, C.; Petschelt, A.; Eliades, G. The effect of resin composite pre-heating on monomer conversion and polymerization shrinkage. Dent. Mater. 2009, 25, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Loumprinis, N.; Maier, E.; Belli, R.; Petschelt, A.; Eliades, G.; Lohbauer, U. Viscosity and stickiness of dental resin composites at elevated temperatures. Dent. Mater. 2021, 37, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Opdam, N.J.; Roeters, J.J.; Peters, T.C.; Burgersdijk, R.C.; Kuijs, R.H. Consistency of resin composites for posterior use. Dent. Mater. 1996, 12, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Elbishari, H.; Satterthwaite, J.; Silikas, N. Effect of filler size and temperature on packing stress and viscosity of resin-composites. Int. J. Mol. Sci. 2011, 12, 5330–5338. [Google Scholar] [CrossRef] [Green Version]
- Baroudi, K.; Rodrigues, J.C. Flowable resin composites: A systematic review and clinical considerations. J. Clin. Diagn. Res. 2015, 9, ZE18–ZE24. [Google Scholar] [CrossRef]
- Al-Ahdal, K.; Silikas, N.; Watts, D.C. Rheological properties of resin composites according to variations in composition and temperature. Dent. Mater. 2014, 30, 517–524. [Google Scholar] [CrossRef]
- Wagner, W.C.; Aksu, M.N.; Neme, A.M.; Linger, J.B.; Pink, F.E.; Walker, S. Effect of pre-heating resin composite on restoration microleakage. Oper. Dent. 2008, 33, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F. Monomer conversion of pre-heated composite. J. Dent. Res. 2005, 84, 663–667. [Google Scholar] [CrossRef]
- Nada, K.; El-Mowafy, O. Effect of precuring warming on mechanical properties of restorative composites. Int. J. Dent. 2011, 2011, 536212. [Google Scholar] [CrossRef]
- Kampanas, N.S. Resin composite pre-heating—A literature review of the laboratory results. Int. J. Oral Dent. Health 2018, 4, 074. [Google Scholar]
- Lempel, E.; Czibulya, Z.; Kovács, B.; Szalma, J.; Tóth, Á.; Kunsági-Máté, S.; Varga, Z.; Böddi, K. Degree of conversion and BisGMA, TEGDMA, UDMA elution from flowable bulk fill composites. Int. J. Mol. Sci. 2016, 7, 732. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.S.; Almeida, G.; Poskus, L.T.; Guimarães, J.G. Relationship between the degree of conversion; solubility and salivary sorption of a hybrid and nanofilled resin composite: Influence of the light activation mode. Appl. Oral Sci. 2008, 16, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Moldovan, M.; Balazsi, R.; Soanca, A.; Roman, A.; Sarosi, C.; Prodan, D.; Vlassa, M.; Cojocaru, I.; Saceleanu, V.; Cristescu, I. Evaluation of the degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials 2019, 12, 2109. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Gallo, S.; Poggio, C.; Ricaldone, V.; Arciola, C.R.; Scribante, A. New resin-based bulk-fill composites: In vitro evaluation of micro-hardness and depth of cure as infection risk indexes. Materials 2020, 13, 1308. [Google Scholar] [CrossRef] [Green Version]
- Lempel, E.; Czibulya, Z.; Kunsági-Máté, S.; Szalma, J.; Sümegi, B.; Böddi, K. Quantification of conversion degree and monomer elution from dental composite using HPLC and micro-Raman spectroscopy. Chromatographia 2014, 77, 1137–1144. [Google Scholar] [CrossRef]
- Durner, J.; Obermaier, J.; Draenert, M.; Ilie, N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent. Mater. 2012, 28, 1146–1153. [Google Scholar] [CrossRef]
- El-Korashy, D.I. Post-gel shrinkage strain and degree of conversion of preheated resin composite cured using different regimens. Oper. Dent. 2010, 35, 172–179. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F.; Giudici, R. Polymerization kinetics of pre-heated composite. J. Dent. Res. 2006, 85, 38–43. [Google Scholar] [CrossRef]
- Ferracane, J. Elution of leachable components from composites. J. Oral Rehabil. 1994, 21, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Barszczewska-Rybarek, I.M. A guide through the dental dimethacrylate polymer network structural characterization and interpretation of physico-mechanical properties. Materials 2019, 12, 4047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lempel, E.; Őri, Z.; Szalma, J.; Lovász, B.V.; Kiss, A.; Tóth, Á.; Kunsági-Máté, S. Effect of exposure time and pre-heating on the conversion degree of conventional, bulk-fill, fibre-reinforced and polyacid-modified resin composites. Dent. Mater. 2019, 35, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Daronch, M.; Rueggeberg, F.A.; Moss, L.; de Goes, M.F. Clinically relevant issues related to preheating composites. J. Esthet. Restor. Dent. 2006, 18, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Fróes-Salgado, N.R.; Silva, L.M.; Kawano, Y.; Francci, C.; Reis, A.; Loguercio, A.D. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent. Mater. 2010, 26, 908–914. [Google Scholar] [CrossRef]
- Kincses, D.; Böddi, K.; Őri, Z.; Lovász, B.V.; Jeges, S.; Szalma, J.; Kunsági-Máté, S.; Lempel, E. Pre-heating effect on monomer elution and degree of conversion of contemporary and thermoviscous bulk-fill resin-based composites. Polymers 2021, 13, 3599. [Google Scholar] [CrossRef]
- Franz, A.; Konig, F.; Lucas, T.; Watts, D.C.; Schedle, A. Cytotoxic effects of dental bonding substances as a function of degree of conversion. Dent. Mater. 2009, 25, 232–239. [Google Scholar] [CrossRef]
- Murray, P.E.; Garcia–Godoy, C.; Garcia–Godoy, F. How is the biocompatibility of dental biomaterials evaluated? Med. Oral Pathol. Oral Chir. Buccal 2007, 12, E258–E266. [Google Scholar]
- Demirel, G.; Orhan, A.I.; Irmak, Ö.; Aydin, F.; Buyuksungur, A.; Bilecenoǧlu, B.; Orhan, K. Micro-computed tomographic evaluation of the effects of pre-heating and sonic delivery on the internal void formation of bulk-fill composites. Dent. Mater. J. 2021, 40, 525–531. [Google Scholar] [CrossRef]
- Sun, J.; Lin-Gibson, S. X-ray microcomputed tomography for measuring polymerization shrinkage of polymeric dental composites. Dent. Mater. 2008, 24, 228–234. [Google Scholar] [CrossRef]
- Samet, N.; Kwon, K.R.; Good, P.; Weber, H.-P. Voids and interlayer gaps in Class 1 posterior composite restorations: A comparison between a microlayer and a 2-layer technique. Quintessence Int. 2006, 37, 803–809. [Google Scholar]
- Ironside, J.G.; Makinson, O.F. Resin restorations: Causes of porosities. Quintessence Int. 1993, 24, 867–873. [Google Scholar]
- Malkoç, M.A.; Sevimay, M.; Tatar, İ.; Çelik, H.H. Micro-CT detection and characterization of porosity in luting cements. J. Prosthodont. 2015, 24, 553–561. [Google Scholar] [CrossRef]
- Hiramatsu, D.A.; Moretti-Neto, R.T.; Ferraz, B.F.R.; Porto, V.C.; Rubo, J.H. Roughness and porosity of provisional crowns. Pós-Grad. Rev. 2011, 18, 108–112. [Google Scholar]
- Opdam, N.J.; Roeters, J.J.; Joosten, M.; Veeke, O. Porosities and voids in Class I restorations placed by six operators using a packable or syringable composite. Dent. Mater. 2002, 18, 58–63. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhang, W.; Lee, S.; Roggenkamp, C.L. The porosities or voids included in composite resin restorations. Adv. Mater. Res. 2013, 833, 349–354. [Google Scholar]
- Chuang, S.F.; Jin, Y.T.; Lin, T.S.; Chang, C.H.; Garcia-Godoy, F. Effects of lining materials on microleakage and internal voids of Class II resin-based composite restorations. Am. J. Dent. 2003, 16, 84–90. [Google Scholar]
- Mullejans, R.; Lang, H.; Schuler, N.; Baldawi, M.O.; Raab, W.H. Increment technique for extended Class V restorations: An experimental study. Oper. Dent. 2003, 28, 352–356. [Google Scholar]
- Balthazard, R.; Jager, S.; Dahoun, A.; Gerdolle, D.; Engels-Deutsch, M.; Mortie, E. High-resolution tomography study of the porosity of three restorative resin composites. Clin. Oral. Investig. 2014, 18, 1613–1618. [Google Scholar] [CrossRef]
- Buelvas, D.D.A.; Besegato, J.F.; Vicentin, B.L.S.; Jussiani, E.I.; Hoeppner, M.G.; Andrello, A.C.; Di Mauro, E. Impact of light-cure protocols on the porosity and shrinkage of commercial bulk fill resin composites with different flowability. J. Polym. Res. 2020, 27, 292. [Google Scholar] [CrossRef]
- Yang, J.; Silikas, N.; Watts, D.C. Pre-heating effects on extrusion force, stickiness and packability of resin-based composite. Dent. Mater. 2019, 35, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Tauböck, T.T.; Tarle, Z.; Marovic, D.; Attin, T. Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. J. Dent. 2015, 43, 1358–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atai, M.; Ahmadi, M.; Babanzadeh, S.; Watts, D.C. Synthesis, characterization, shrinkage and curing kinetics of a new low-shrinkage urethane dimethacrylate monomer for dental application. Dent. Mater. 2007, 23, 1030–1041. [Google Scholar]
- Marcondes, R.L.; Lima, V.P.; Barbon, F.J.; Isolan, C.P.; Carvalho, M.A.; Salvador, M.V.; Lima, A.F.; Moraes, R.R. Viscosity and thermal kinetics of 10 preheated restorative resin composites and effect of ultrasound energy on film thickness. Dent. Mater. 2020, 36, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Anseth, K.S.; Newman, S.M.; Bowman, C.M. Polymeric dental composites: Properties and reaction behavior of multimethacrylate dental restorations. Adv. Polym. Sci. 1995, 122, 177–217. [Google Scholar]
- Gauthier, M.A.; Stangel, I.; Ellis, T.H.; Zhy, X.X. Oxygen inhibition in dental resins. J. Dent. Res. 2005, 84, 725–729. [Google Scholar] [CrossRef]
- Guo, X.; Yu, Y.; Gao, S.; Zhang, Z.; Zhao, H. Biodegradation of dental resin-based compositeZEA potential factor affecting the bonding effect: A narrative review. Biomedicines 2022, 10, 2313. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Achilias, D.S.; Karabela, M.M. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 207–218. [Google Scholar] [CrossRef]
- Lempel, E.; Őri, Z.; Kincses, D.; Lovász, B.V.; Kunsági-Máté, S.; Szalma, J. Degree of conversion and in vitro temperature rise of pulp chamber during polymerization of flowable and sculptable conventional, bulk-fill and short-fibre reinforced resin composite. Dent. Mater. 2021, 37, 983–997. [Google Scholar] [CrossRef]
- Pluddemann, E.P. Silane coupling agents. In Plenum; Springer: New York, NY, USA, 1982; p. 111. [Google Scholar]
- Pongprueksa, P.; De Munck, J.; Duca, R.C.; Poels, K.; Covaci, A.; Hoet, P. Monomer elution in relation to degree of conversion for different types of composite. J. Dent. 2015, 43, 1448–1455. [Google Scholar] [CrossRef]
- Chaharom, M.E.E.; Safyari, L.; Safarvand, H.; Jafari-Navimipour, E.; Alizadeh-Oskoee, P.; Ajami, A.A.; Abed-Kahnamouei, M.; Bahari, M. The effect of pre-heating on monomer elution from bulk-fill resin composites. J. Clin. Exp. Dent. 2020, 12, e813–e820. [Google Scholar] [CrossRef]
- Deb, S.; Di Silvio, L.; Mackler, H.E.; Millar, B.J. Pre-warming of dental composites. Dent. Mater. 2011, 27, e51–e59. [Google Scholar] [CrossRef]
- Łagocka, R.; Mazurek-Mochol, M.; Jakubowska, K.; Bendyk-Szeffer, M.; Chlubek, D.; Buczkowska-Radlinska, J. Analysis of base monomer elution from 3 flowable bulk-fill composite resins using high performance liquid chromatography (HPLC). Med. Sci. Monit. 2018, 24, 4679–4690. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Karabela, M.M. Effect of the amount of 3-methacryloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dent. Mater. 2009, 25, 1315–1324. [Google Scholar] [CrossRef]
- Szczesio-Wlodarczyk, A.; Sokolowski, J.; Kleczewska, J.; Bociong, K. Ageing of dental composites based on methacrylate resins-A critical review of the causes and method of assessment. Polymers 2020, 12, 882. [Google Scholar] [CrossRef]
- Polydorou, O.; Huberty, C.; Wolkewitz, M.; Bolek, R.; Hellwig, E.; Kümmerer, K. The effect of storage medium on the elution of monomers from composite materials. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 68–74. [Google Scholar] [CrossRef]
- Tanaka, K.; Taira, M.; Shintani, H.; Wakasa, K.; Yamaki, M. Residual monomers (TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin when immersed in water. J. Oral Rehabil. 1991, 18, 353–362. [Google Scholar] [CrossRef]
- Moad, C.L.; Moad, G. Fundamentals of reversible addition–fragmentation chain transfer (RAFT). Chem. Teach. Int. Best Pract. Chem. Educ. 2021, 3, 3–17. [Google Scholar] [CrossRef]
- Gorsche, C.; Koch, T.; Moszner, N.; Liska, R. Exploring the benefits of β-allyl sulfones for more homogeneous dimethacrylate photopolymer networks. Polym. Chem. 2015, 6, 2038–2047. [Google Scholar] [CrossRef]
- Padam, S. Sample size for experimental studies. J. Clin. Prev. Card. 2012, 1, 88–93. [Google Scholar]
RBC | Monomer | Temp | Mean (S.D.) | t-Value | p-Value | 95% CI | |
---|---|---|---|---|---|---|---|
Lower Value | Upper Value | ||||||
Enamel Plus HRi | UDMA | RT | 3.5 (0.13) | 26.5 | <0.001 | 1.37 | 1.66 |
PH | 5.02 (0.05) | ||||||
DDMA | RT | 4.89 (0.24) | 10.1 | <0.001 | 0.005 | 0.03 | |
PH | 7.57 (0.24) | ||||||
TCDDD | RT | 0.05 (0.01) | 19.1 | <0.001 | 2.36 | 3 | |
PH | 0.07 (0.01) | ||||||
Estelite Ʃ Quick | TEGDMA | RT | 3.44 (1.13) | 11.2 | <0.001 | −0.6 | 1.78 |
PH | 4.05 (0.1) | ||||||
BisGMA | RT | 4.06 (0.24) | 7.9 | <0.001 | 0.79 | 1.32 | |
PH | 5.12 (0.09) | ||||||
Filtek Z250 | TEGDMA | RT | 0.07 (0.01) | 3.7 | 0.006 | −0.003 | 0.02 |
PH | 0.06 (0.01) | ||||||
UDMA | RT | 0.62 (0.01) | 9.6 | <0.001 | 0.19 | 0.28 | |
PH | 0.86 (0.04) | ||||||
BisGMA | RT | 0.27 (0.01) | 15.2 | <0.001 | 0.08 | 0.1 | |
PH | 0.36 (0.01) | ||||||
Gaenial Posterior | UDMA | RT | 7.81 (0.3) | 27.7 | <0.001 | 3.66 | 4.57 |
PH | 11.93 (0.3) | ||||||
Viscalor Bulk | TEGDMA | RT | 0.53 (0.01) | 6.7 | <0.001 | 0.05 | 0.09 |
PH | 0.45 (0.02) | ||||||
BisGMA | RT | 8.6 (0.39) | 10.5 | <0.001 | 1.54 | 2.39 | |
PH | 6.6 (0.14) | ||||||
DDMA | RT | 0.1 (0) | 1.5 | 0.17 | −0.003 | 0.02 | |
PH | 0.1 (0) | ||||||
Filtek One Bulk | UDMA | RT | 0.49 (0.02) | 2.7 | 0.28 | 0.004 | 0.05 |
PH | 0.46 (0.01) | ||||||
BisGMA | RT | 0.59 (0.02) | 2.5 | 0.04 | 0.003 | 0.07 | |
PH | 0.55 (0.03) | ||||||
DDMA | RT | 1.21 (0.04) | 3.9 | 0.004 | 0.03 | 0.13 | |
PH | 1.13 (0.03) |
Factor | Monomer release | |||||||
---|---|---|---|---|---|---|---|---|
BisGMA | UDMA | TEGDMA | DDDMA | |||||
p-Value | η2 | p-Value | η2 | p-Value | η2 | p-Value | η2 | |
Material | <0.001 | 0.99 | <0.001 | 0.99 | <0.001 | 0.99 | <0.001 | 0.99 |
Temperature | <0.001 | 0.98 | <0.001 | 0.98 | <0.001 | 0.79 | <0.001 | 0.93 |
M × T | <0.001 | 0.98 | <0.001 | 0.98 | <0.001 | 0.92 | <0.001 | 0.97 |
Material | Manufacturer | PPT | Acronym Code | Matrix | Filler | Filler Load |
---|---|---|---|---|---|---|
VisCalor Bulk | Voco, Cuxhaven, Germany | 24 °C | VCB_24 | BisGMA, aliphatic DMA | Nano-hybrid (not detailed by the company) | 83 wt% |
65 °C | VCB_65 | |||||
Filtek One Bulk Fill Restorative | 3M ESPE, St. Paul, MN, USA | 24 °C | FOB_24 | AFM, UDMA, AUDMA, DDMA | 20 nm silica, 4–11 nm Zr, Zr-silica, 0.1 µm ytterbium-trifluoride | 58.5 vol% 76.5 wt% |
55 °C | FOB_55 | |||||
Filtek Z250 | 3M ESPE, St. Paul, MN, USA | 24 °C | FZ_24 | BisGMA, BisEMA, TEGDMA, UDMA | 0.01–3.5 µm (mean 0.6 µm) silanated Zr-silica | 60 vol% 82 wt% |
55 °C | FZ_55 | |||||
G-ænial Posterior | GC, Leuven, Belgium | 24 °C | GP_24 | UDMA, TCDDD DMA | F-Al-silicate, Sr-glass, lanthanide-F | 65 vol% 77 wt% |
55 °C | GP_55 | |||||
Enamel Plus Hri Bio Function | Micerium S.p.A., Avegno, Italy | 24 °C | EP_24 | UDMA, TCDDD | 0.005–0.05 µm dispersed SiO2, 0.2–3 µm glass particle | 60 vol% 74 wt% |
55 °C | EP_55 | |||||
Estelite Sigma Quick | Tokuyama, Tokio, Japan | 24 °C | ESQ_24 | TEGDMA, BisGMA | 0.2 µm spherical Si-Zr, TiO2 | 71 vol% 82 wt% |
55 °C | ESQ_55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunavári, E.; Berta, G.; Kiss, T.; Szalma, J.; Fráter, M.; Böddi, K.; Lempel, E. Effect of Pre-Heating on the Monomer Elution and Porosity of Conventional and Bulk-Fill Resin-Based Dental Composites. Int. J. Mol. Sci. 2022, 23, 16188. https://doi.org/10.3390/ijms232416188
Dunavári E, Berta G, Kiss T, Szalma J, Fráter M, Böddi K, Lempel E. Effect of Pre-Heating on the Monomer Elution and Porosity of Conventional and Bulk-Fill Resin-Based Dental Composites. International Journal of Molecular Sciences. 2022; 23(24):16188. https://doi.org/10.3390/ijms232416188
Chicago/Turabian StyleDunavári, Erika, Gergely Berta, Tamás Kiss, József Szalma, Márk Fráter, Katalin Böddi, and Edina Lempel. 2022. "Effect of Pre-Heating on the Monomer Elution and Porosity of Conventional and Bulk-Fill Resin-Based Dental Composites" International Journal of Molecular Sciences 23, no. 24: 16188. https://doi.org/10.3390/ijms232416188
APA StyleDunavári, E., Berta, G., Kiss, T., Szalma, J., Fráter, M., Böddi, K., & Lempel, E. (2022). Effect of Pre-Heating on the Monomer Elution and Porosity of Conventional and Bulk-Fill Resin-Based Dental Composites. International Journal of Molecular Sciences, 23(24), 16188. https://doi.org/10.3390/ijms232416188