Usnic Acid-Mediated Exchange of Protons for Divalent Metal Cations across Lipid Membranes: Relevance to Mitochondrial Uncoupling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Impact of Divalent Metal Cations on a UA-Induced Electrical Current across a Planar BLM
2.2. UA-Mediated Alkalization inside Liposomes in the Presence of Divalent Metal Cations
2.3. UA-Mediated Efflux of Divalent Cations from Liposomes
2.4. Effect of Divalent Metal Cations on the CD and Absorbance Spectra of UA
3. Materials and Methods
3.1. Materials
3.2. Planar Lipid Bilayers
3.3. Pyranine-Loaded Liposomes
3.4. Ca2+- and Zn2+-Loaded Liposomes
3.5. Circular Dichroism Spectra of Metal–Usnic Acid Complexes in Methanol
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, R.B.; Feldott, G.; Lardy, H.A. The mode of action of the antibiotic, usnic acid. Arch. Biochem. 1950, 28, 317–323. [Google Scholar] [PubMed]
- Abo-Khatwa, A.N.; Al-Robai, A.A.; Al-Jawhari, D.A. Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria. Nat. Toxins 1996, 4, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Matsumaru, K.; Rettori, D.; Kaplowitz, N. Usnic acid-induced necrosis of cultured mouse hepatocytes: Inhibition of mitochondrial function and oxidative stress. Biochem. Pharmacol. 2004, 67, 439–451. [Google Scholar] [CrossRef]
- Einarsdottir, E.; Groeneweg, J.; Bjornsdottir, G.G.; Harethardottir, G.; Omarsdottir, S.; Ingolfsdottir, K.; Ogmundsdottir, H.M. Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med. 2010, 76, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Bessadottir, M.; Egilsson, M.; Einarsdottir, E.; Magnusdottir, I.H.; Ogmundsdottir, M.H.; Omarsdottir, S.; Ogmundsdottir, H.M. Proton-shuttling lichen compound usnic acid affects mitochondrial and lysosomal function in cancer cells. PLoS ONE 2012, 7, e51296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonenko, Y.N.; Khailova, L.S.; Rokitskaya, T.I.; Nosikova, E.S.; Nazarov, P.A.; Luzina, O.A.; Salakhutdinov, N.F.; Kotova, E.A. Mechanism of action of an old antibiotic revisited: Role of calcium ions in protonophoric activity of usnic acid. Biochim. Biophys. Acta Bioenerg. 2019, 1860, 310–316. [Google Scholar] [CrossRef]
- Liberman, E.A.; Topaly, V.P.; Tsofina, L.M.; Jasaitis, A.A.; Skulachev, V.P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 1969, 222, 1076–1078. [Google Scholar] [CrossRef] [PubMed]
- Terada, H. Uncouplers of oxidative phosphorylation. Environ. Health Perspect. 1990, 87, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Kotova, E.A.; Antonenko, Y.N. Fifty years of research on protonophores: Mitochondrial uncoupling as a basis for therapeutic action. Acta Nat. 2022, 14, 4–13. [Google Scholar] [CrossRef]
- Ingolfsdottir, K. Usnic acid. Phytochemistry 2002, 61, 729–736. [Google Scholar] [CrossRef]
- Cocchietto, M.; Skert, N.; Nimis, P.L. A review on usnic acid, an interesting natural compound. Naturwissenschaften 2002, 89, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.A.; de Melo, M.G.; Rabelo, T.K.; Nunes, P.S.; Santos, S.L.; Serafini, M.R.; Santos, M.R.; Quintans-Junior, L.J.; Gelain, D.P. Review of the biological properties and toxicity of usnic acid. Nat. Prod. Res. 2015, 29, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Luzina, O.A.; Salakhutdinov, N.F. Biological activity of usnic acid and its derivatives: Part 2. Effects on higher organisms. Molecular and physicochemical aspects. Russ. J. Bioorg. Chem. 2016, 42, 249–268. [Google Scholar] [CrossRef]
- Filimonov, A.S.; Yarovaya, O.I.; Zaykovskaya, A.V.; Rudometova, N.B.; Shcherbakov, D.N.; Chirkova, V.Y.; Baev, D.S.; Borisevich, S.S.; Luzina, O.A.; Pyankov, O.V.; et al. (+)-Usnic Acid and Its Derivatives as Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses 2022, 14, 2154. [Google Scholar] [CrossRef]
- Oh, E.; Wang, W.; Park, K.-H.; Park, C.; Cho, Y.; Lee, J.; Kang, E.; Kang, H. (+)-Usnic acid and its salts, inhibitors of SARS-CoV-2, identifed by using in silico methods and in vitro assay. Sci. Rep. 2022, 12, 13118. [Google Scholar] [CrossRef] [PubMed]
- Backor, M.; Gaburjakova, J.; Hudak, J.; Zeigler, W. The biological role of secondary metabolites from lichens. 1. The influence of usnic acid on bimolecular lipid membranes. Acta Fac. Rerum Nat. Univ. Comen.-Physiol. Plant. 1997, 29, 67–71. [Google Scholar]
- McLaughlin, S.G.; Dilger, J.P. Transport of protons across membranes by weak acids. Physiol. Rev. 1980, 60, 825–863. [Google Scholar] [CrossRef]
- Chelombitko, M.A.; Firsov, A.M.; Kotova, E.A.; Rokitskaya, T.I.; Khailova, L.S.; Popova, L.B.; Chernyak, B.V.; Antonenko, Y.N. Usnic acid as calcium ionophore and mast cells stimulator. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183303. [Google Scholar] [CrossRef]
- Rokitskaya, T.I.; Kotova, E.A.; Antonenko, Y.N. Anomalous potentials on bilayer lipid membranes in the presence of usnic acid: Markin-Sokolov versus Nernst-Donnan equilibrium. Bioelectrochemistry 2021, 141, 107825. [Google Scholar] [CrossRef]
- Backor, M.; Loppi, S. Interactions of lichens with heavy metals. Biol. Plant. 2009, 53, 214–222. [Google Scholar] [CrossRef]
- Takani, M.; Yajima, T.; Masuda, H.; Yamauchi, O. Spectroscopic and structural characterization of copper(II) and palladium(II) complexes of a lichen substance usnic acid and its derivatives. Possible forms of environmental metals retained in lichens. J. Inorg. Biochem. 2002, 91, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Cavalloro, V.; Marrubini, G.; Stabile, R.; Rossi, D.; Linciano, P.; Gheza, G.; Assini, S.; Martino, E.; Collina, S. Microwave-assisted extraction and HPLC-UV-CD determination of (S)-usnic acid in Cladonia foliace. Molecules 2021, 26, 455. [Google Scholar] [CrossRef] [PubMed]
- Cabral, J.P. Differential sensitivity of four Lobaria lichens to copper in vitro. Environ. Toxicol. Chem. 2002, 21, 2468–2476. [Google Scholar] [CrossRef] [PubMed]
- Carafoli, E. The fateful encounter of mitochondria with calcium: How did it happen? Biochim. Biophys. Acta 2010, 1797, 595–606. [Google Scholar]
- Zhang, G.; Gruskos, J.J.; Afzal, M.S.; Buccella, D. Visualizing changes in mitochondrial Mg2+ during apoptosis with organelle-targeted triazole-based ratiometric fluorescent sensors. Chem. Sci. 2015, 6, 6841–6846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, R.; Tabata, S.; Shindo, Y.; Hotta, K.; Suzuki, K.; Soga, T.; Oka, K. Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress. Sci. Rep. 2016, 6, 30027. [Google Scholar] [CrossRef]
- Mueller, P.; Rudin, D.O.; Tien, H.T.; Wescott, W.C. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 1963, 67, 534–535. [Google Scholar] [CrossRef]
- Chen, Y.; Schindler, M.; Simon, S.M. A mechanism for tamoxifen-mediated inhibition of acidification. J. Biol. Chem. 1999, 274, 18364–18373. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rokitskaya, T.I.; Arutyunyan, A.M.; Khailova, L.S.; Kataeva, A.D.; Firsov, A.M.; Kotova, E.A.; Antonenko, Y.N. Usnic Acid-Mediated Exchange of Protons for Divalent Metal Cations across Lipid Membranes: Relevance to Mitochondrial Uncoupling. Int. J. Mol. Sci. 2022, 23, 16203. https://doi.org/10.3390/ijms232416203
Rokitskaya TI, Arutyunyan AM, Khailova LS, Kataeva AD, Firsov AM, Kotova EA, Antonenko YN. Usnic Acid-Mediated Exchange of Protons for Divalent Metal Cations across Lipid Membranes: Relevance to Mitochondrial Uncoupling. International Journal of Molecular Sciences. 2022; 23(24):16203. https://doi.org/10.3390/ijms232416203
Chicago/Turabian StyleRokitskaya, Tatyana I., Alexander M. Arutyunyan, Ljudmila S. Khailova, Alisa D. Kataeva, Alexander M. Firsov, Elena A. Kotova, and Yuri N. Antonenko. 2022. "Usnic Acid-Mediated Exchange of Protons for Divalent Metal Cations across Lipid Membranes: Relevance to Mitochondrial Uncoupling" International Journal of Molecular Sciences 23, no. 24: 16203. https://doi.org/10.3390/ijms232416203
APA StyleRokitskaya, T. I., Arutyunyan, A. M., Khailova, L. S., Kataeva, A. D., Firsov, A. M., Kotova, E. A., & Antonenko, Y. N. (2022). Usnic Acid-Mediated Exchange of Protons for Divalent Metal Cations across Lipid Membranes: Relevance to Mitochondrial Uncoupling. International Journal of Molecular Sciences, 23(24), 16203. https://doi.org/10.3390/ijms232416203