Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: Mechanisms and Clinical Implications in Cardiovascular Disease
Abstract
:1. Introduction
2. Impairment of cGMP Signalling
3. “NO Resistance” in Cardiovascular Disease States
3.1. Coronary Artery Disease
3.2. Coronary Artery Spasm
3.3. Heart Failure
3.4. Aortic Valve Stenosis
3.5. Diabetes
3.6. Aging
4. Mechanisms of NO Resistance
4.1. Prognostic Implications of NO Resistance
4.2. Circumvention and Amelioration of Platelet NO Resistance
4.3. Circumvention of NO Resistance
4.3.1. Nitrite (NO2−)
4.3.2. Nitroxyl
4.4. NO-Independent Stimulators and Activators of Guanylate Cyclase
4.5. Amelioration of Platelet NO Resistance
4.5.1. Angiotensin-Converting Enzyme (ACE) Inhibitors
4.5.2. Angiotensin-(1-7)
4.5.3. Statins
4.5.4. Perhexiline
4.5.5. Glycaemic Control
5. Impairment of cAMP Signalling
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohan, G.; Malayala, S.V.; Mehta, P.; Balla, M. A Comprehensive Review of Congenital Platelet Disorders, Thrombocytopenias and Thrombocytopathies. Cureus 2020, 12, e11275. [Google Scholar] [CrossRef] [PubMed]
- Jennings, L.K. Mechanisms of platelet activation: Need for new strategies to protect against platelet-mediated atherothrombosis. Thromb. Haemost. 2009, 102, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Westein, E.; Niego, B.; Hagemeyer, C.E. Shear-Dependent Platelet Aggregation: Mechanisms and Therapeutic Opportunities. Front. Cardiovasc. Med. 2019, 6, 141. [Google Scholar] [CrossRef] [PubMed]
- Procter, N.E.; Chong, C.R.; Sverdlov, A.L.; Chan, W.P.; Chirkov, Y.Y.; Horowitz, J.D. Aging of platelet nitric oxide signaling: Pathogenesis, clinical implications, and therapeutics. Semin. Thromb. Hemost. 2014, 40, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Hurst, N.L.; Nooney, V.B.; Raman, B.; Chirkov, Y.Y.; De Caterina, R.; Horowitz, J.D. Clopidogrel “resistance”: Pre- vs post-receptor determinants. Vasc. Pharmacol. 2013, 59, 152–161. [Google Scholar] [CrossRef]
- Ault, K.A.; Cannon, C.P.; Mitchell, J.; McCahan, J.; Tracy, R.P.; Novotny, W.F.; Reimann, J.D.; Braunwald, E. Platelet activation in patients after an acute coronary syndrome: Results from the TIMI-12 trial. Thrombolysis in Myocardial Infarction. J. Am. Coll. Cardiol. 1999, 33, 634–639. [Google Scholar] [CrossRef] [Green Version]
- Kamath, S.; Blann, A.D.; Chin, B.S.; Lanza, F.; Aleil, B.; Cazenave, J.P.; Lip, G.Y. A study of platelet activation in atrial fibrillation and the effects of antithrombotic therapy. Eur. Heart J. 2002, 23, 1788–1795. [Google Scholar] [CrossRef] [Green Version]
- Ohara, K.; Inoue, H.; Nozawa, T.; Hirai, T.; Iwasa, A.; Okumura, K.; Lee, J.D.; Shimizu, A.; Hayano, M.; Yano, K. Accumulation of risk factors enhances the prothrombotic state in atrial fibrillation. Int. J. Cardiol. 2008, 126, 316–321. [Google Scholar] [CrossRef]
- Gurbel, P.A.; Gattis, W.A.; Fuzaylov, S.F.; Gaulden, L.; Hasselblad, V.; Serebruany, V.L.; O’Connor, C.M. Evaluation of platelets in heart failure: Is platelet activity related to etiology, functional class, or clinical outcomes? Am. Heart J. 2002, 143, 1068–1075. [Google Scholar] [CrossRef]
- Imam, H.; Nguyen, T.H.; Stafford, I.; Liu, S.; Heresztyn, T.; Chirkov, Y.Y.; Horowitz, J.D. Impairment of platelet NO signalling in coronary artery spasm: Role of hydrogen sulphide. Br. J. Pharmacol. 2021, 178, 1639–1650. [Google Scholar] [CrossRef]
- Chirkov, Y.Y.; Holmes, A.S.; Martelli, J.D.; Horowitz, J.D. Effect of perindopril on platelet nitric oxide resistance in patients with chronic heart failure secondary to ischemic left ventricular dysfunction. Am. J. Cardiol. 2004, 93, 1438–1440. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, Y.Y.; Holmes, A.S.; Willoughby, S.R.; Stewart, S.; Wuttke, R.D.; Sage, P.R.; Horowitz, J.D. Stable angina and acute coronary syndromes are associated with nitric oxide resistance in platelets. J. Am. Coll. Cardiol. 2001, 37, 1851–1857. [Google Scholar] [CrossRef]
- Procter, N.E.; Ball, J.; Liu, S.; Hurst, N.; Nooney, V.B.; Goh, V.; Stafford, I.; Heresztyn, T.; Carrington, M.; Ngo, D.T.; et al. Impaired platelet nitric oxide response in patients with new onset atrial fibrillation. Int. J. Cardiol. 2015, 179, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Anfossi, G.; Russo, I.; Massucco, P.; Mattiello, L.; Doronzo, G.; De Salve, A.; Trovati, M. Impaired synthesis and action of antiaggregating cyclic nucleotides in platelets from obese subjects: Possible role in platelet hyperactivation in obesity. Eur. J. Clin. Investig. 2004, 34, 482–489. [Google Scholar] [CrossRef]
- Worthley, M.I.; Holmes, A.S.; Willoughby, S.R.; Kucia, A.M.; Heresztyn, T.; Stewart, S.; Chirkov, Y.Y.; Zeitz, C.J.; Horowitz, J.D. The deleterious effects of hyperglycemia on platelet function in diabetic patients with acute coronary syndromes mediation by superoxide production, resolution with intensive insulin administration. J. Am. Coll. Cardiol. 2007, 49, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, Y.Y.; Chirkova, L.P.; Sage, R.E.; Horowitz, J.D. Impaired responsiveness of platelets from patients with stable angina pectoris to antiaggregating and cyclicAMP-elevating effects of prostaglandin E1. J. Cardiovasc. Pharmacol. 1995, 25, 961–966. [Google Scholar] [CrossRef]
- Tziros, C.; Freedman, J.E. The many antithrombotic actions of nitric oxide. Curr. Drug Targets 2006, 7, 1243–1251. [Google Scholar] [CrossRef]
- Freedman, J.E.; Ting, B.; Hankin, B.; Loscalzo, J.; Keaney, J.F., Jr.; Vita, J.A. Impaired platelet production of nitric oxide predicts presence of acute coronary syndromes. Circulation 1998, 98, 1481–1486. [Google Scholar] [CrossRef]
- Marjanovic, J.A.; Li, Z.; Stojanovic, A.; Du, X. Stimulatory roles of nitric-oxide synthase 3 and guanylyl cyclase in platelet activation. J. Biol. Chem. 2005, 280, 37430–37438. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Hellermann, G.R.; Solomonson, L.P. Nitric oxide release from resting human platelets. Thromb. Res. 1995, 77, 87–96. [Google Scholar] [CrossRef]
- Böhmer, A.; Gambaryan, S.; Tsikas, D. Human blood platelets lack nitric oxide synthase activity. Platelets 2015, 26, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Gambaryan, S.; Kobsar, A.; Hartmann, S.; Birschmann, I.; Kuhlencordt, P.J.; Müller-Esterl, W.; Lohmann, S.M.; Walter, U. NO-synthase-/NO-independent regulation of human and murine platelet soluble guanylyl cyclase activity. J. Thromb. Haemost. 2008, 6, 1376–1384. [Google Scholar] [CrossRef] [PubMed]
- Radziwon-Balicka, A.; Lesyk, G.; Back, V.; Fong, T.; Loredo-Calderon, E.L.; Dong, B.; El-Sikhry, H.; El-Sherbeni, A.A.; El-Kadi, A.; Ogg, S.; et al. Differential eNOS-signalling by platelet subpopulations regulates adhesion and aggregation. Cardiovasc. Res. 2017, 113, 1719–1731. [Google Scholar] [CrossRef] [PubMed]
- Anfossi, G.; Russo, I.; Massucco, P.; Mattiello, L.; Trovati, M. Platelet resistance to the antiaggregating effect of N-acetyl-L-cysteine in obese, insulin-resistant subjects. Thromb. Res. 2003, 110, 39–46. [Google Scholar] [CrossRef]
- Chirkov, Y.Y.; Naujalis, J.I.; Sage, R.E.; Horowitz, J.D. Antiplatelet effects of nitroglycerin in healthy subjects and in patients with stable angina pectoris. J. Cardiovasc. Pharmacol. 1993, 21, 384–389. [Google Scholar] [CrossRef]
- Woods, J.D.; Edwards, J.S.; Ritter, J.M. Inhibition by nitroprusside of platelet calcium mobilization: Evidence for reduced sensitivity to nitric oxide in essential hypertension. J. Hypertens. 1993, 11, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Raitakari, O.T.; Seale, J.P.; Celermajer, D.S. Impaired vascular responses to nitroglycerin in subjects with coronary atherosclerosis. Am. J. Cardiol. 2001, 87, 217–219. [Google Scholar] [CrossRef]
- Schächinger, V.; Britten, M.B.; Zeiher, A.M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000, 101, 1899–1906. [Google Scholar] [CrossRef] [Green Version]
- Willoughby, S.R.; Stewart, S.; Holmes, A.S.; Chirkov, Y.Y.; Horowitz, J.D. Platelet nitric oxide responsiveness: A novel prognostic marker in acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2661–2666. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.P.; Ngo, D.T.; Sverdlov, A.L.; Rajendran, S.; Stafford, I.; Heresztyn, T.; Chirkov, Y.Y.; Horowitz, J.D. Premature aging of cardiovascular/platelet function in polycystic ovarian syndrome. Am. J. Med. 2013, 126, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.R.; Liu, S.; Licari, G.; Heresztyn, T.; Chirkov, Y.Y.; Ngo, D.T.; Horowitz, J.D. Reversal of hyperglycemia: Effects on nitric oxide signaling. Am. J. Med. 2015, 128, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Willoughby, S.R.; Chan, W.P.; Liberts, E.A.; Heresztyn, T.; Saha, M.; Marber, M.S.; Norman, R.J.; Horowitz, J.D. Polycystic ovary syndrome is associated with severe platelet and endothelial dysfunction in both obese and lean subjects. Atherosclerosis 2009, 204, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Stepien, J.M.; Prideaux, R.M.; Willoughby, S.R.; Chirkov, Y.Y.; Horowitz, J.D. Pilot study examining the effect of cholesterol lowering on platelet nitric oxide responsiveness and arterial stiffness in subjects with isolated mild hypercholesterolaemia. Clin. Exp. Pharmacol. Physiol. 2003, 30, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Bergandi, L.; Cordero, M.; Anselmino, M.; Ferraro, G.; Ravera, L.; Dalmasso, P.; Moiraghi, C.; Trevi, G.P.; Ghigo, D.; Bosia, A.; et al. Altered nitric oxide/cGMP platelet signaling pathway in platelets from patients with acute coronary syndromes. Clin. Res. Cardiol. Off. J. Ger. Card. Soc. 2010, 99, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.T.; Sverdlov, A.L.; Willoughby, S.R.; Nightingale, A.K.; Chirkov, Y.Y.; McNeil, J.J.; Horowitz, J.D. Determinants of occurrence of aortic sclerosis in an aging population. JACC Cardiovasc. Imaging 2009, 2, 919–927. [Google Scholar] [CrossRef]
- Sverdlov, A.L.; Ngo, D.T.; Horowitz, J.D. Pathogenesis of aortic sclerosis: Association with low BMI, tissue nitric oxide resistance, but not systemic inflammatory activation. Am. J. Cardiovasc. Dis. 2012, 2, 43–49. [Google Scholar] [PubMed]
- Sandner, P.; Zimmer, D.P.; Milne, G.T.; Follmann, M.; Hobbs, A.; Stasch, J.P. Soluble Guanylate Cyclase Stimulators and Activators. Handb. Exp. Pharmacol. 2021, 264, 355–394. [Google Scholar]
- Maron, B.A.; Zhang, Y.Y.; Handy, D.E.; Beuve, A.; Tang, S.S.; Loscalzo, J.; Leopold, J.A. Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells. J. Biol. Chem. 2009, 284, 7665–7672. [Google Scholar] [CrossRef] [Green Version]
- Sayed, N.; Baskaran, P.; Ma, X.; van den Akker, F.; Beuve, A. Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc. Natl. Acad. Sci. USA 2007, 104, 12312–12317. [Google Scholar] [CrossRef] [Green Version]
- Sayed, N.; Kim, D.D.; Fioramonti, X.; Iwahashi, T.; Durán, W.N.; Beuve, A. Nitroglycerin-induced S-nitrosylation and desensitization of soluble guanylyl cyclase contribute to nitrate tolerance. Circ. Res. 2008, 103, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, J.; Stark, K.; Esslinger, U.B.; Rumpf, P.M.; Koesling, D.; de Wit, C.; Kaiser, F.J.; Braunholz, D.; Medack, A.; Fischer, M.; et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 2013, 504, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Dangel, O.; Mergia, E.; Karlisch, K.; Groneberg, D.; Koesling, D.; Friebe, A. Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. J. Thromb. Haemost. JTH 2010, 8, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, Y.Y.; Holmes, A.S.; Chirkova, L.P.; Horowitz, J.D. Nitrate resistance in platelets from patients with stable angina pectoris. Circulation 1999, 100, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, S.; Sleight, P.; Pogue, J.; Bosch, J.; Davies, R.; Dagenais, G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N. Engl. J. Med. 2000, 342, 145–153. [Google Scholar] [PubMed]
- Fox, K.M. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: Randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 2003, 362, 782–788. [Google Scholar] [PubMed]
- Rajendran, S.; Chirkov, Y.Y. Platelet hyperaggregability: Impaired responsiveness to nitric oxide (“platelet NO resistance”) as a therapeutic target. Cardiovasc. Drugs Ther. 2008, 22, 193–203. [Google Scholar] [CrossRef]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef]
- Collet, C.; Conte, E.; Mushtaq, S.; Brouwers, S.; Shinke, T.; Coskun, A.U.; Pu, Z.; Hakim, D.; Stone, P.H.; Andreini, D. Reviewing imaging modalities for the assessment of plaque erosion. Atherosclerosis 2021, 318, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K.; Libby, P.; Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 2015, 278, 483–493. [Google Scholar] [CrossRef]
- Kim, H.O.; Kim, C.J.; Kim, W.; Cho, J.M.; Soeda, T.; Takano, M.; Yan, B.P.; Crea, F.; Niccoli, G.; Vergallo, R.; et al. Relative risk of plaque erosion among different age and sex groups in patients with acute coronary syndrome. J. Thromb. Thrombolysis 2020, 49, 352–359. [Google Scholar] [CrossRef]
- Fahed, A.C.; Jang, I.K. Plaque erosion and acute coronary syndromes: Phenotype, molecular characteristics and future directions. Nat. Rev. Cardiol. 2021, 18, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Partida, R.A.; Libby, P.; Crea, F.; Jang, I.K. Plaque erosion: A new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur. Heart J. 2018, 39, 2070–2076. [Google Scholar] [CrossRef] [PubMed]
- Vergallo, R.; Jang, I.K.; Crea, F. New prediction tools and treatment for ACS patients with plaque erosion. Atherosclerosis 2021, 318, 45–51. [Google Scholar] [CrossRef]
- Grégory, F. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis 2021, 318, 60–69. [Google Scholar] [CrossRef]
- Folco, E.J.; Mawson, T.L.; Vromman, A.; Bernardes-Souza, B.; Franck, G.; Persson, O.; Nakamura, M.; Newton, G.; Luscinskas, F.W.; Libby, P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1901–1912. [Google Scholar] [CrossRef]
- Franck, G.; Mawson, T.L.; Folco, E.J.; Molinaro, R.; Ruvkun, V.; Engelbertsen, D.; Liu, X.; Tesmenitsky, Y.; Shvartz, E.; Sukhova, G.K.; et al. Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury: Implications for Superficial Erosion. Circ. Res. 2018, 123, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Pasterkamp, G.; Crea, F.; Jang, I.K. Reassessing the Mechanisms of Acute Coronary Syndromes. Circ. Res. 2019, 124, 150–160. [Google Scholar] [CrossRef]
- Tan, Y.; Yang, S.; Chen, R.; Sheng, Z.; Zhou, P.; Liu, C.; Zhao, H.; Song, L.; Li, J.; Zhou, J.; et al. High Plasma Myeloperoxidase Is Associated with Plaque Erosion in Patients with ST-Segment Elevation Myocardial Infarction. J. Cardiovasc. Transl. Res. 2020, 13, 908–915. [Google Scholar] [CrossRef]
- Dogné, S.; Flamion, B. Endothelial Glycocalyx Impairment in Disease: Focus on Hyaluronan Shedding. Am. J. Pathol. 2020, 190, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.S.; Ann, S.H.; Singh, G.B.; Lim, K.H.; Yoon, H.J.; Hur, S.H.; Her, A.Y.; Koo, B.K.; Akasaka, T. OCT-Defined Morphological Characteristics of Coronary Artery Spasm Sites in Vasospastic Angina. JACC Cardiovasc. Imaging 2015, 8, 1059–1067. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Bai, Z.; Zhu, L.; Liang, Y.; Fan, X.; Li, J.; Wen, H.; Shi, T.; Zhao, Q.; Wang, Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur. J. Med. Chem. 2020, 205, 112665. [Google Scholar] [CrossRef] [PubMed]
- Keith, M.; Geranmayegan, A.; Sole, M.J.; Kurian, R.; Robinson, A.; Omran, A.S.; Jeejeebhoy, K.N. Increased oxidative stress in patients with congestive heart failure. J. Am. Coll. Cardiol. 1998, 31, 1352–1356. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.A.; Ellis, G.R.; Chirkov, Y.Y.; Holmes, A.S.; Payne, N.; Blackman, D.J.; Jackson, S.K.; Lewis, M.J.; Horowitz, J.D.; Frenneaux, M.P. Determinants of platelet responsiveness to nitric oxide in patients with chronic heart failure. Eur. J. Heart Fail. 2004, 6, 47–54. [Google Scholar] [CrossRef]
- Borgognone, A.; Shantsila, E.; Worrall, S.M.; Prompunt, E.; Loka, T.; Loudon, B.L.; Chimen, M.; Ed Rainger, G.; Lord, J.M.; Turner, A.; et al. Nitrite circumvents platelet resistance to nitric oxide in patients with heart failure preserved ejection fraction and chronic atrial fibrillation. Cardiovasc. Res. 2018, 114, 1313–1323. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, S.R.; Rajendran, S.; Chan, W.P.; Procter, N.; Leslie, S.; Liberts, E.A.; Heresztyn, T.; Chirkov, Y.Y.; Horowitz, J.D. Ramipril sensitizes platelets to nitric oxide: Implications for therapy in high-risk patients. J. Am. Coll. Cardiol. 2012, 60, 887–894. [Google Scholar] [CrossRef]
- Uretsky, B.F.; Thygesen, K.; Armstrong, P.W.; Cleland, J.G.; Horowitz, J.D.; Massie, B.M.; Packer, M.; Poole-Wilson, P.A.; Ryden, L. Acute coronary findings at autopsy in heart failure patients with sudden death: Results from the assessment of treatment with lisinopril and survival (ATLAS) trial. Circulation 2000, 102, 611–616. [Google Scholar] [CrossRef]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef]
- Chirkov, Y.Y.; Holmes, A.S.; Willoughby, S.R.; Stewart, S.; Horowitz, J.D. Association of aortic stenosis with platelet hyperaggregability and impaired responsiveness to nitric oxide. Am. J. Cardiol. 2002, 90, 551–554. [Google Scholar] [CrossRef]
- Hungerford, S.L.; Adji, A.I.; Hayward, C.S.; Muller, D.W.M. Ageing, Hypertension and Aortic Valve Stenosis: A Conscious Uncoupling. Heart Lung Circ. 2021, 30, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, A.K.; Horowitz, J.D. Aortic sclerosis: Not an innocent murmur but a marker of increased cardiovascular risk. Heart (Br. Card. Soc.) 2005, 91, 1389–1393. [Google Scholar] [CrossRef] [Green Version]
- Otto, C.M.; Lind, B.K.; Kitzman, D.W.; Gersh, B.J.; Siscovick, D.S. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N. Engl. J. Med. 1999, 341, 142–147. [Google Scholar] [CrossRef]
- Velagic, A.; Qin, C.; Woodman, O.L.; Horowitz, J.D.; Ritchie, R.H.; Kemp-Harper, B.K. Nitroxyl: A Novel Strategy to Circumvent Diabetes Associated Impairments in Nitric Oxide Signaling. Front. Pharmacol. 2020, 11, 727. [Google Scholar] [CrossRef]
- Anderson, R.A.; Ellis, G.R.; Evans, L.M.; Morris, K.; Chirkov, Y.Y.; Horowitz, J.D.; Jackson, S.K.; Rees, A.; Lewis, M.J.; Frenneaux, M.P. Platelet nitrate responsiveness in fasting and postprandial type 2 diabetes. Diabetes Vasc. Dis. Res. 2005, 2, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Rauch, U.; Crandall, J.; Osende, J.I.; Fallon, J.T.; Chesebro, J.H.; Fuster, V.; Badimon, J.J. Increased thrombus formation relates to ambient blood glucose and leukocyte count in diabetes mellitus type 2. Am. J. Cardiol. 2000, 86, 246–249. [Google Scholar] [CrossRef]
- Aoki, I.; Shimoyama, K.; Aoki, N.; Homori, M.; Yanagisawa, A.; Nakahara, K.; Kawai, Y.; Kitamura, S.I.; Ishikawa, K. Platelet-dependent thrombin generation in patients with diabetes mellitus: Effects of glycemic control on coagulability in diabetes. J. Am. Coll. Cardiol. 1996, 27, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Turk, Z.; Flego, I.; Kerum, G. Platelet aggregation in type 1 diabetes without microvascular disease during continuous subcutaneous insulin infusion. Horm. Metab. Res. Horm. 1996, 28, 95–100. [Google Scholar] [CrossRef]
- Oswald, G.A.; Smith, C.C.; Delamothe, A.P.; Betteridge, D.J.; Yudkin, J.S. Raised concentrations of glucose and adrenaline and increased in vivo platelet activation after myocardial infarction. Br. Heart J. 1988, 59, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Barale, C.; Russo, I. Influence of Cardiometabolic Risk Factors on Platelet Function. Int. J. Mol. Sci. 2020, 21, 623. [Google Scholar] [CrossRef] [Green Version]
- Liberale, L.; Montecucco, F.; Tardif, J.C.; Libby, P.; Camici, G.G. Inflamm-ageing: The role of inflammation in age-dependent cardiovascular disease. Eur. Heart J. 2020, 41, 2974–2982. [Google Scholar] [CrossRef] [PubMed]
- Sverdlov, A.L.; Ngo, D.T.; Chan, W.P.; Chirkov, Y.Y.; Horowitz, J.D. Aging of the nitric oxide system: Are we as old as our NO? J. Am. Heart Assoc. 2014, 3, e000973. [Google Scholar] [CrossRef] [Green Version]
- Mongelli, A.; Barbi, V.; Gottardi Zamperla, M.; Atlante, S.; Forleo, L.; Nesta, M.; Massetti, M.; Pontecorvi, A.; Nanni, S.; Farsetti, A.; et al. Evidence for Biological Age Acceleration and Telomere Shortening in COVID-19 Survivors. Int. J. Mol. Sci. 2021, 22, 6151. [Google Scholar] [CrossRef] [PubMed]
- Gue, Y.X.; Gorog, D.A. Reduction in ACE2 may mediate the prothrombotic phenotype in COVID-19. Eur. Heart J. 2020, 41, 3198–3199. [Google Scholar] [CrossRef] [PubMed]
- Bansal, M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr. 2020, 14, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef]
- Roy, B.; Mo, E.; Vernon, J.; Garthwaite, J. Probing the presence of the ligand-binding haem in cellular nitric oxide receptors. Br. J. Pharmacol. 2008, 153, 1495–1504. [Google Scholar] [CrossRef] [Green Version]
- Fernhoff, N.B.; Derbyshire, E.R.; Underbakke, E.S.; Marletta, M.A. Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide. J. Biol. Chem. 2012, 287, 43053–43062. [Google Scholar] [CrossRef] [Green Version]
- Brüne, B.; Schmidt, K.U.; Ullrich, V. Activation of soluble guanylate cyclase by carbon monoxide and inhibition by superoxide anion. Eur. J. Biochem. 1990, 192, 683–688. [Google Scholar] [CrossRef]
- Leo, R.; Praticò, D.; Iuliano, L.; Pulcinelli, F.M.; Ghiselli, A.; Pignatelli, P.; Colavita, A.R.; FitzGerald, G.A.; Violi, F. Platelet activation by superoxide anion and hydroxyl radicals intrinsically generated by platelets that had undergone anoxia and then reoxygenated. Circulation 1997, 95, 885–891. [Google Scholar] [CrossRef]
- Yao, S.K.; Ober, J.C.; Gonenne, A.; Clubb, F.J., Jr.; Krishnaswami, A.; Ferguson, J.J.; Anderson, H.V.; Gorecki, M.; Buja, L.M.; Willerson, J.T. Active oxygen species play a role in mediating platelet aggregation and cyclic flow variations in severely stenosed and endothelium-injured coronary arteries. Circ. Res. 1993, 73, 952–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauersachs, J.; Bouloumié, A.; Mülsch, A.; Wiemer, G.; Fleming, I.; Busse, R. Vasodilator dysfunction in aged spontaneously hypertensive rats: Changes in NO synthase III and soluble guanylyl cyclase expression, and in superoxide anion production. Cardiovasc. Res. 1998, 37, 772–779. [Google Scholar] [CrossRef] [Green Version]
- Ruetten, H.; Zabel, U.; Linz, W.; Schmidt, H.H. Downregulation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats. Circ. Res. 1999, 85, 534–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moncada, S.; Higgs, E.A. Nitric oxide and the vascular endothelium. Handb. Exp. Pharmacol. 2006, 176 Pt 1, 213–254. [Google Scholar]
- Chirkov, Y.Y.; Chirkova, L.P.; Horowitz, J.D. Suppressed anti-aggregating and cGMP-elevating effects of sodium nitroprusside in platelets from patients with stable angina pectoris. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1996, 354, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Sase, K.; Michel, T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci. 1995, 57, 2049–2055. [Google Scholar] [CrossRef]
- Liu, Y.; Croft, K.D.; Hodgson, J.M.; Mori, T.; Ward, N.C. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide Biol. Chem. 2020, 96, 35–43. [Google Scholar] [CrossRef]
- van Faassen, E.E.; Bahrami, S.; Feelisch, M.; Hogg, N.; Kelm, M.; Kim-Shapiro, D.B.; Kozlov, A.V.; Li, H.; Lundberg, J.O.; Mason, R.; et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med. Res. Rev. 2009, 29, 683–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siminiak, T.; Zozulińska, D.; Zeromska, M.; Wysocki, H. Evidence for plasma-mediated neutrophil superoxide anion production during myocardial infarction. Cardiology 1993, 82, 377–382. [Google Scholar] [CrossRef]
- Vaddi, K.; Nicolini, F.A.; Mehta, P.; Mehta, J.L. Increased secretion of tumor necrosis factor-alpha and interferon-gamma by mononuclear leukocytes in patients with ischemic heart disease. Relevance in superoxide anion generation. Circulation 1994, 90, 694–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassègue, B.; Sorescu, D.; Szöcs, K.; Yin, Q.; Akers, M.; Zhang, Y.; Grant, S.L.; Lambeth, J.D.; Griendling, K.K. Novel gp91(phox) homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 2001, 88, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Mollnau, H.; Wendt, M.; Szöcs, K.; Lassègue, B.; Schulz, E.; Oelze, M.; Li, H.; Bodenschatz, M.; August, M.; Kleschyov, A.L.; et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ. Res. 2002, 90, E58–E65. [Google Scholar] [CrossRef] [Green Version]
- Brosnihan, K.B.; Li, P.; Ferrario, C.M. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 1996, 27 Pt 2, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Roks, A.J.; van Geel, P.P.; Pinto, Y.M.; Buikema, H.; Henning, R.H.; de Zeeuw, D.; van Gilst, W.H. Angiotensin-(1-7) is a modulator of the human renin-angiotensin system. Hypertension 1999, 34, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Chirkov, Y.Y.; Campbell, D.J.; Horowitz, J.D. Angiotensin-(1-7) enhances anti-aggregatory effects of the nitric oxide donor sodium nitroprusside. J. Cardiovasc. Pharmacol. 2005, 46, 459–463. [Google Scholar] [CrossRef]
- Gokce, N.; Keaney, J.F., Jr.; Hunter, L.M.; Watkins, M.T.; Nedeljkovic, Z.S.; Menzoian, J.O.; Vita, J.A. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J. Am. Coll. Cardiol. 2003, 41, 1769–1775. [Google Scholar] [CrossRef] [Green Version]
- Lerman, A.; Zeiher, A.M. Endothelial function: Cardiac events. Circulation 2005, 111, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.R.; Robinson, J.; McCredie, R.; Seale, J.P.; Sorensen, K.E.; Deanfield, J.E.; Celermajer, D.S. Smooth muscle dysfunction occurs independently of impaired endothelium-dependent dilation in adults at risk of atherosclerosis. J. Am. Coll. Cardiol. 1998, 32, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Schächinger, V.; Zeiher, A.M. Quantitative assessment of coronary vasoreactivity in humans in vivo. Importance of baseline vasomotor tone in atherosclerosis. Circulation 1995, 92, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Srihirun, S.; Piknova, B.; Sibmooh, N.; Schechter, A.N. Phosphorylated vasodilator-stimulated phosphoprotein (P-VASPSer239) in platelets is increased by nitrite and partially deoxygenated erythrocytes. PLoS ONE 2018, 13, e0193747. [Google Scholar] [CrossRef] [Green Version]
- Dautov, R.F.; Stafford, I.; Liu, S.; Cullen, H.; Madhani, M.; Chirkov, Y.Y.; Horowitz, J.D. Hypoxic potentiation of nitrite effects in human vessels and platelets. Nitric Oxide Biol. Chem. 2014, 40, 36–44. [Google Scholar] [CrossRef]
- Sandner, P.; Vakalopoulos, A.; Hahn, M.G.; Stasch, J.P.; Follmann, M. Soluble guanylate cyclase stimulators and their potential use: A patent review. Expert Opin. Ther. Pat. 2021, 31, 203–222. [Google Scholar] [CrossRef]
- Bermejo, E.; Sáenz, D.A.; Alberto, F.; Rosenstein, R.E.; Bari, S.E.; Lazzari, M.A. Effect of nitroxyl on human platelets function. Thromb. Haemost. 2005, 94, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.W.; Cherney, M.M.; Lee, A.J.; Francoleon, N.E.; Farmer, P.J.; King, S.B.; Hobbs, A.J.; Miranda, K.M.; Burstyn, J.N.; Fukuto, J.M. The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: Interactions at ferrous heme and cysteine thiols. J. Biol. Chem. 2009, 284, 21788–21796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stasch, J.P.; Becker, E.M.; Alonso-Alija, C.; Apeler, H.; Dembowsky, K.; Feurer, A.; Gerzer, R.; Minuth, T.; Perzborn, E.; Pleiss, U.; et al. NO-independent regulatory site on soluble guanylate cyclase. Nature 2001, 410, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Stasch, J.P.; Schmidt, P.M.; Nedvetsky, P.I.; Nedvetskaya, T.Y.; Meurer, S.; Deile, M.; Taye, A.; Knorr, A.; Lapp, H.; Müller, H.; et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J. Clin. Investig. 2006, 116, 2552–2561. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.H.; Hofmann, F.; Stasch, J.P. Handbook of Experimental Pharmacology 191. cGMP: Generators, effectors and therapeutic implications. Preface. Handb. Exp. Pharmacol. 2009, 191, v–vi. [Google Scholar]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Stacy, R.; Huttner, K.; Watts, J.; Peace, J.; Wirta, D.; Walters, T.; Sall, K.; Seaman, J.; Ni, X.; Prasanna, G.; et al. A Randomized, Controlled Phase I/II Study to Evaluate the Safety and Efficacy of MGV354 for Ocular Hypertension or Glaucoma. Am. J. Ophthalmol. 2018, 192, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Ceconi, C.; Fox, K.M.; Remme, W.J.; Simoons, M.L.; Bertrand, M.; Parrinello, G.; Kluft, C.; Blann, A.; Cokkinos, D.; Ferrari, R. ACE inhibition with perindopril and endothelial function. Results of a substudy of the EUROPA study: PERTINENT. Cardiovasc. Res. 2007, 73, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasini, A.F.; Garbin, U.; Nava, M.C.; Stranieri, C.; Pellegrini, M.; Boccioletti, V.; Luchetta, M.L.; Fabrizzi, P.; Lo Cascio, V.; Cominacini, L. Effect of sulfhydryl and non-sulfhydryl angiotensin-converting enzyme inhibitors on endothelial function in essential hypertensive patients. Am. J. Hypertens. 2007, 20, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, S.; Chirkov, Y.Y.; Horowitz, J.D. Potentiation of platelet responsiveness to nitric oxide by angiotensin-(1-7) is associated with suppression of superoxide release. Platelets 2007, 18, 158–164. [Google Scholar] [CrossRef]
- Campbell, D.J.; Kladis, A.; Duncan, A.M. Effects of converting enzyme inhibitors on angiotensin and bradykinin peptides. Hypertension 1994, 23, 439–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogra, G.K.; Watts, G.F.; Chan, D.C.; Stanton, K. Statin therapy improves brachial artery vasodilator function in patients with Type 1 diabetes and microalbuminuria. Diabet. Med. J. Br. Diabet. Assoc. 2005, 22, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Strey, C.H.; Young, J.M.; Lainchbury, J.H.; Frampton, C.M.; Nicholls, M.G.; Richards, A.M.; Scott, R.S. Short-term statin treatment improves endothelial function and neurohormonal imbalance in normocholesterolaemic patients with non-ischaemic heart failure. Heart (Br. Card. Soc.) 2006, 92, 1603–1609. [Google Scholar] [CrossRef]
- Tiefenbacher, C.P.; Friedrich, S.; Bleeke, T.; Vahl, C.; Chen, X.; Niroomand, F. ACE inhibitors and statins acutely improve endothelial dysfunction of human coronary arterioles. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1425–H1432. [Google Scholar] [CrossRef] [Green Version]
- Ananthakrishna, R.; Lee, S.L.; Foote, J.; Sallustio, B.C.; Binda, G.; Mangoni, A.A.; Woodman, R.; Semsarian, C.; Horowitz, J.D.; Selvanayagam, J.B. Randomized controlled trial of perhexiline on regression of left ventricular hypertrophy in patients with symptomatic hypertrophic cardiomyopathy (RESOLVE-HCM trial). Am. Heart J. 2021, 240, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.D.; Sia, S.T.; Macdonald, P.S.; Goble, A.J.; Louis, W.J. Perhexiline maleate treatment for severe angina pectoris--correlations with pharmacokinetics. Int. J. Cardiol. 1986, 13, 219–229. [Google Scholar] [CrossRef]
- Lee, L.; Campbell, R.; Scheuermann-Freestone, M.; Taylor, R.; Gunaruwan, P.; Williams, L.; Ashrafian, H.; Horowitz, J.; Fraser, A.G.; Clarke, K.; et al. Metabolic modulation with perhexiline in chronic heart failure: A randomized, controlled trial of short-term use of a novel treatment. Circulation 2005, 112, 3280–3288. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.A.; Unger, S.A.; Horowitz, J.D. Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem. Pharmacol. 1996, 52, 273–280. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Beck-Oldach, K.; McFadden-Lewis, K.; Murphy, G.A.; Wong, Y.W.; Zhang, Y.; Horowitz, J.D. Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation. Eur. J. Pharmacol. 2006, 531, 13–19. [Google Scholar] [CrossRef]
- Willoughby, S.R.; Stewart, S.; Chirkov, Y.Y.; Kennedy, J.A.; Holmes, A.S.; Horowitz, J.D. Beneficial clinical effects of perhexiline in patients with stable angina pectoris and acute coronary syndromes are associated with potentiation of platelet responsiveness to nitric oxide. Eur. Heart J. 2002, 23, 1946–1954. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, F.; Lüscher, T.F. Endothelial dysfunction in diabetes mellitus. J. Cardiovasc. Pharmacol. 1998, 32 (Suppl. 3), S54–S61. [Google Scholar] [PubMed]
- Kim, S.H.; Park, K.W.; Kim, Y.S.; Oh, S.; Chae, I.H.; Kim, H.S.; Kim, C.H. Effects of acute hyperglycemia on endothelium-dependent vasodilation in patients with diabetes mellitus or impaired glucose metabolism. Endothel. J. Endothel. Cell Res. 2003, 10, 65–70. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, J.P.; Arrebola, M.M.; Villalobos, M.A.; Pinacho, A.; Guerrero, A.; González-Correa, J.A.; Sánchez de la Cuesta, F. Influence of glucose concentration on the effects of aspirin, ticlopidine and clopidogrel on platelet function and platelet-subendothelium interaction. Eur. J. Pharmacol. 2004, 484, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Westerbacka, J.; Yki-Järvinen, H.; Turpeinen, A.; Rissanen, A.; Vehkavaara, S.; Syrjälä, M.; Lassila, R. Inhibition of platelet-collagen interaction: An in vivo action of insulin abolished by insulin resistance in obesity. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trovati, M.; Anfossi, G. Influence of insulin and of insulin resistance on platelet and vascular smooth muscle cell function. J. Diabetes Complicat. 2002, 16, 35–40. [Google Scholar] [CrossRef]
- Katsel, P.L.; Tagliente, T.M.; Schwarz, T.E.; Craddock-Royal, B.D.; Patel, N.D.; Maayani, S. Molecular and biochemical evidence for the presence of type III adenylyl cyclase in human platelets. Platelets 2003, 14, 21–33. [Google Scholar] [CrossRef]
- Burkhart, J.M.; Vaudel, M.; Gambaryan, S.; Radau, S.; Walter, U.; Martens, L.; Geiger, J.; Sickmann, A.; Zahedi, R.P. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012, 120, e73–e82. [Google Scholar] [CrossRef] [Green Version]
- Raslan, Z.; Naseem, K.M. Compartmentalisation of cAMP-dependent signalling in blood platelets: The role of lipid rafts and actin polymerisation. Platelets 2015, 26, 349–357. [Google Scholar] [CrossRef]
- Braune, S.; Küpper, J.H.; Jung, F. Effect of Prostanoids on Human Platelet Function: An Overview. Int. J. Mol. Sci. 2020, 21, 9020. [Google Scholar] [CrossRef]
- Pinto, C.; Papa, D.; Hübner, M.; Mou, T.C.; Lushington, G.H.; Seifert, R. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs. J. Pharmacol. Exp. Ther. 2008, 325, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Akai, T.; Naka, K.; Okuda, K.; Takemura, T.; Fujii, S. Decreased sensitivity of platelets to prostacyclin in patients with diabetes mellitus. Horm. Metab. Res. Horm. 1983, 15, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, M.; Berciaud, P.; Burtin, M.; Dechavanne, M. Refractoriness of diabetic platelets to inhibitory prostaglandins. Prostaglandins Med. 1981, 7, 341–347. [Google Scholar] [CrossRef]
- Russo, I.; Traversa, M.; Bonomo, K.; De Salve, A.; Mattiello, L.; Del Mese, P.; Doronzo, G.; Cavalot, F.; Trovati, M.; Anfossi, G. In central obesity, weight loss restores platelet sensitivity to nitric oxide and prostacyclin. Obesity 2010, 18, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Aulak, K.S.; Al Abdi, S.; Li, L.; Crabb, J.S.; Ghosh, A.; Willard, B.; Stuehr, D.J.; Crabb, J.W.; Dweik, R.A.; Tonelli, A.R. Disease-specific platelet signaling defects in idiopathic pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 320, L739–L749. [Google Scholar] [CrossRef]
- Kahal, H.; Aburima, A.; Spurgeon, B.; Wraith, K.S.; Rigby, A.S.; Sathyapalan, T.; Kilpatrick, E.S.; Naseem, K.M.; Atkin, S.L. Platelet function following induced hypoglycaemia in type 2 diabetes. Diabetes Metab. 2018, 44, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Milluzzo, R.P.; Franchina, G.A.; Capodanno, D.; Angiolillo, D.J. Selatogrel, a novel P2Y(12) inhibitor: A review of the pharmacology and clinical development. Expert Opin. Investig. Drugs 2020, 29, 537–546. [Google Scholar] [CrossRef]
- Procter, N.E.; Hurst, N.L.; Nooney, V.B.; Imam, H.; De Caterina, R.; Chirkov, Y.Y.; Horowitz, J.D. New Developments in Platelet Cyclic Nucleotide Signalling: Therapeutic Implications. Cardiovasc. Drugs Ther. 2016, 30, 505–513. [Google Scholar] [CrossRef]
- Imam, H.; Nguyen, T.H.; De Caterina, R.; Nooney, V.B.; Chong, C.R.; Horowitz, J.D.; Chirkov, Y.Y. Impaired adenylate cyclase signaling in acute myocardial ischemia: Impact on effectiveness of P2Y(12) receptor antagonists. Thromb. Res. 2019, 181, 92–98. [Google Scholar] [CrossRef]
- Nooney, V.B.; Hurst, N.L.; De Caterina, R.; Chirkov, Y.Y.; Horowitz, J.D. Does high on-treatment platelet aggregability reflect poor individual response to clopidogrel? Thromb. Res. 2020, 196, 510–515. [Google Scholar] [CrossRef]
- Cattaneo, M.; Schulz, R.; Nylander, S. Adenosine-mediated effects of ticagrelor: Evidence and potential clinical relevance. J. Am. Coll. Cardiol. 2014, 63, 2503–2509. [Google Scholar] [CrossRef] [Green Version]
- Mahaffey, K.W.; Wojdyla, D.M.; Carroll, K.; Becker, R.C.; Storey, R.F.; Angiolillo, D.J.; Held, C.; Cannon, C.P.; James, S.; Pieper, K.S.; et al. Ticagrelor compared with clopidogrel by geographic region in the Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation 2011, 124, 544–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chirkov, Y.Y.; Nguyen, T.H.; Horowitz, J.D. Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: Mechanisms and Clinical Implications in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 1042. https://doi.org/10.3390/ijms23031042
Chirkov YY, Nguyen TH, Horowitz JD. Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: Mechanisms and Clinical Implications in Cardiovascular Disease. International Journal of Molecular Sciences. 2022; 23(3):1042. https://doi.org/10.3390/ijms23031042
Chicago/Turabian StyleChirkov, Yuliy Y., Thanh H. Nguyen, and John D. Horowitz. 2022. "Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: Mechanisms and Clinical Implications in Cardiovascular Disease" International Journal of Molecular Sciences 23, no. 3: 1042. https://doi.org/10.3390/ijms23031042
APA StyleChirkov, Y. Y., Nguyen, T. H., & Horowitz, J. D. (2022). Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: Mechanisms and Clinical Implications in Cardiovascular Disease. International Journal of Molecular Sciences, 23(3), 1042. https://doi.org/10.3390/ijms23031042