Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity?
Abstract
:1. Introduction
2. Neurotoxicity of General Anesthetics
3. Neuroprotective Strategies
Study | Drug Regimen | Species | Anesthesia Regimen | Mechanism | Drug Effects |
---|---|---|---|---|---|
Mitochondrial stability and ROS | |||||
Yon 2006 [43] | Melatonin 1, 5, 10, 20 mg/kg s.c. | Rat, PND7 | Triple cocktail * for 2, 4 or 6 h | Mitochondrial stabilization | ↓cortex and anterior thalamus neuroapoptosis ↑Bcl-xL ↓Cytochrome c |
Li 2018 [44] | Melatonin 10 mg/kg i.p. | Rat, PND7 | 1.5% iso for 4 h | PKC/Nrf2 activation | ↓hippocampal neuroapoptosis ↓mitochondrial damage ↓ROS, MDA; ↑SOD, GPx |
Ji 2015 [45] | Curcumin 20 mg/kg i.p. | Mouse PND6–8 | 3% sevo 2 h daily, 3 consecutive days | ROS scavenging | ↑Freezing (CFC) ↓Escape latency (MWM) ↓Cortex and hippocampus neuroapoptosis ↑BDNF |
Bai 2013 [46] | Resveratrol 50, 100, 200 µM for 24 h | Primary neurons | 2% iso for 6 h | PI3K/Akt activation | ↓neuroapoptosis ↑mitochondrial stability ↑CAT, SOD, ATP, Ca2+ |
Tang 2021 [47] | Resveratrol 100 mg/kg daily for 6 days, i.p. | Mouse PND6–8 | 3% sevo for 2 h daily for 3 consecutive days | ↓inflammation | ↓NF-kB, IL-6, TNF-α ↓microglial activation ↓Escape latency (MWM) |
Boscolo 2013 [33] | Pramipexole 1 mg/kg four doses, i.p. | Rat PND7 | Triple cocktail * for 6 h | N/A | ↑learning and memory (MWM) Females more than males |
Boscolo 2012 [48] | Pramipexole 1 mg/kg four doses, i.p. | Rat PND7 | Triple cocktail * for 6 h | Mitochondrial stabilization ROS scavenger | ↓subiculum neuroapoptosis ↓mitochondrial damage ↑learning and memory (RAM) |
Liu 2013 [49] | L-carnitine 1, 30, 100 µM for 24 h | Primary neurons | 10 µM ketamine for 24 h | ROS scavenging | ↓ROS ↓neuroapoptosis Preserves neuronal morphology |
Yan 2014 [50] | L-carnitine 30 µM (culture) 300 mg/kg (rats) | Rat PND7–9; Primary neurons | 10 µM ketamine (cultures) 75 mg/kg for 3 consecutive days (rats) | ↓inflammation ↓ROS | ↓hippocampal neuroapoptosis ↓ROS, proinflammatory factors ↑learning and memory (MWM, passive avoidance test) |
Zou 2008 [51] | L-carnitine 50–500 mg/kg i.p. | Rat PND7 | 75%N2O + 0.55% iso for 2, 4, 6, 8 h | Mitochondrial stabilization | ↓cortex neuroapoptosis Normalized Bax/Bcl-xL ratio |
Ma 2016 [52] | α-lipoic acid 100 mg/kg i.p. | Rat PND7 | 2.5% sevo for 2 h | ↑PI3K/Akt ↓GSK-3β | ↓hippocampal neuroapoptosis ↑learning and memory (MWM) |
Zhao 2018 [53] | α-lipoic acid 5 µM | Primary neurons | 4% desflurane for 2–96 h | Mitochondrial stabilization ↓ROS ↑PI3K/Akt | ↓neuroapoptosis ↑SOD, ↑pAkt normalized Bax/Bcl-2 ratio |
Signal transduction pathways | |||||
Tsuchimoto 2011 [54] | EPO 50,000 IU/kg s.c. | Mouse PND7 | 1% iso for 6 h | N/A | ↓dentate gyrus neurodegeneration ↑learning and memory (MWM) |
Pellegrini 2014 [55] | EPO 5000 IU/kg i.p. | Rat PND7 | 2% sevo for 6 h | ↑BDNF ↑NGF | ↓cortex neuroapoptosis ↑object recognition (NOR) ↑learning and memory (MWM) |
Lv 2017 [56] | DEX 25–75 µg/kg i.p. | Rat PND7 | 100 mg/kg propofol | ↑PI3K/Akt | ↓hippocampal neuroapoptosis ↑pAkt ↑pGSK-3β |
Li 2014 [57] | DEX 25–75 µg/kg i.p. | Rat PND7 | 0.75% iso for 6 h | ↑PI3K/Akt | ↓hippocampal neuroapoptosis normalized Bad/Bcl-xL ratio |
Liu 2013 [58] | Lithium 5 × 120 mg/kg over 6 h, i.p. | Rat PND7 | 5 × 20 mg/kg ketamine over 6, i.p. | ↑PI3K/Akt | ↓neuroapoptosis ↑pAkt ↑pGSK-3β ↓cyclin D1 |
Straiko 2009 [59] | Lithium 6 mEq/kg, i.p. | Mouse PND5 | 40 mg/kg ketamine, s.c., or 50 mg/kg propofol, i.p. | ↑MAPK/ERK | ↓cortex and caudate/putamen neuroapoptosis ↑pERK1/2 |
Zhong 2006 [60] | Lithium 10 mg/kg, i.p. | Mouse PND7; Primary neurons | 2 × 2.5 mg/kg ethanol, s.c. | ?? not PI3K/Akt | ↓widespread neuroapoptosis ↓primary neuronal death |
Noguchi 2016 [61] | Lithium 0.15–0.75 mEq/kg, i.v. | Rhesus, PND6 | 1.5–3% iso for 5 h | ↑MAPK/ERK?? | ↓neurons and oligodendrocyte apoptosis |
Wang 2018 [62] | Minocycline 2 × 30 mg/kg, s.c. | Mouse PND5 | 2 × 2.5 mg/kg ethanol, s.c. | ↑PI3K/Akt | ↓thalamus, cortex, cerebellum neuroapoptosis ↓IL-6, MCP-1, CCR-2 ↑pAkt, pGSK-3β |
Ren 2019 [63] | Minocycline 2 × 30 mg/kg s.c. | Mouse PND5 | 2 × 2.5 mg/kg ethanol, s.c. | ↑PI3K/Akt ↑MAPK/ERK | ↓spinal cord neuroapoptosis ↓MCP-1, IL-6 ↑pAkt, pGSK-3β, pERK1/2 |
Giri 2018 [64] | Minocycline 40 mg/kg, i.p. | Rat PND7 | 9 mg/kg midazolam, i.p. | N/A | ↑SGZ and SVZ neurogenesis ↑learning and memory (MWM) |
Lu 2017 [65] | Minocycline 40 mg/kg, i.p. | Rat PND7 | 40 mg/kg ketamine, i.p. | ↑PI3K/Akt | ↑SGZ and SVZ neurogenesis ↑pAkt, pGSK-3β ↑learning and memory (MWM) |
Wang 2013 [66] | NsTyr 10 mg/kg (rats); 1 µM (culture) | Rat, PND7; Primary neurons | 3% sevo for 2, 4, 6, 8 h | ↑MAPK/ERK Mitochondrial stabilization | ↓neuroapoptosis ↑pERK1/2, ↑Bcl-2 ↑Learning and memory (MWM) |
Steroid hormones | |||||
Li 2014 [67] | 17β-estradiol 600 µg/kg, s.c. | Rat PND7 | 75 mg/kg ketamine for 3 h consecutive days, i.p. | ↑BDNF ↑PI3K/Akt | ↑cortex neuroapoptosis ↑pAkt, ↑BDNF ↑learning and memory (MWM) |
Lu 2006 [68] | 17β-estradiol 3 × 300 µg/kg, s.c. | Rat PND7 | Triple cocktail * 2, 4, 6 h | ↑PI3K/Akt?? | ↓thalamus and cortex neuroapoptosis |
Asimiadou 2005 [69] | 17β-estradiol 300–900 µg/kg i.p. | Rat PND7 Primary neurons | phenobarbital/phenytoin (50 mg/kg) MK801 (0.5 mg/kg | ↑MAPK/ERK ↑PI3K/Akt Estrogen receptors? | ↓neuroapoptosis ↑pAkt, ↑pERK 1/2 |
Li 2019 [70] | 17β-estradiol 3 × 100 µg/kg i.p. (rats) 100 nM for 24 h (cultures) | Rat PND7; Primary neurons | ketamine: 40 mg/kg i.p. (rats) 100 µM for 24 h (cultures) | GSK-3β inactivation | ↑learning and memory (MWM) ↑proliferation, ↓apoptosis (cultures) ↓pGSK-3β |
Yang 2021 [71] | Testosterone | Rat PND6 | 3% sevo, 2 h daily for 3 consecutive days | GSK-3β inactivation | ↑endogenous brain testosterone ↓tau phosphorylation ↓learning and memory (MWM) |
Epigenetic changes | |||||
Dalla Massara 2016 [72] | sodium butyrate 1.2 g/kg i.p. (rats) 5 mM for 24 h (cultures) | Rat PND7 Primary neurons | Triple cocktail * for 6 h (rats) or 24 h (cultures) | HDAC inhibition | ↑histone H3 acetylation ↑number of neurons and dendritic branches ↓mIPSC half-width and decay |
Joksimovic 2018 [73] | entinostat 10 mg/kg i.p. | Rat PND7 | Triple cocktail * for 6 h | HDAC inhibition | ↑histone H3 acetylation normalization of mIPSC freq. |
Zhong 2016 [74] | swimming exercise 4 × 5 min for 4 weeks | Mouse PND7–9 | 0.75% iso, 4 h daily for 3 consecutive days | ↑HAT?? ↓HDAC?? | ↑Freezing (CFC) ↑histone acetylation ↑hippocampal CBP |
Anesthetic-sparing | |||||
Cattano 2008 [75] | Xenon 70% for 4 h | Mouse PND7 | 0.75% iso for 4 h | NMDA antagonism | ↓cortex and caudate/putamen neuroapoptosis when combined with iso |
Gill 2021 [76] | Xenon 0, 35, 70% for 6 h | Rat PND8 | 2.7% sevo alone 1.8% sevo + 35% xenon 0.9% sevo + 70% xenon for 6 h | NMDA antagonism? | ↓acidosis ↓hippocampus and cortex neuroapoptosis (70% xenon) |
Ma 2007 [77] | Xenon 30, 60, 75% xenon ± iso for 6 h | Rat PND7 | 0.75% iso ± xenon for 6 h | Mitochondrial stabilization | ↓hippocampal neuroapoptosis ↓caspase-3 and -9 ↓cytochrome C |
Shu 2010 [78] | Xenon 70% for 2 h pretreatment | Rat PND7 | 70% N2O + 0.75% iso for 6 h | Mitochondrial stabilization | ↓hippocampus and cortex neuroapoptosis ↑Bcl-2, ↓cytochrome c, p53 ↑Freezing (CFC) |
3.1. Mitochondrial Stability and Reactive Oxygen Species (ROS) Scavenging
3.2. Modulation of Intracellular Signal-Transduction Pathways
3.3. Steroid Hormones
3.4. Modulation of Epigenetic Modifications
3.5. Anesthetic-Sparing Strategy
3.6. The Timing of GA Exposure and Regional Anesthesia
4. Development of Alternate General Anesthetics
5. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jevtovic-Todorovic, V.; Hartman, R.E.; Izumi, Y.; Benshoff, N.D.; Dikranian, K.; Zorumski, C.F.; Olney, J.W.; Wozniak, D.F. Early Exposure to Common Anesthetic Agents Causes Widespread Neurodegeneration in the Developing Rat Brain and Persistent Learning Deficits. J. Neurosci. 2003, 23, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, S.; Carter, L.B.; Ori, C.; Jevtovic-Todorovic, V. Research article: Clinical Anesthesia Causes Permanent Damage to the Fetal Guinea Pig Brain. Brain Pathol. 2008, 18, 198–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slikker, W.; Zou, X.; Hotchkiss, C.E.; Divine, R.L.; Sadovova, N.; Twaddle, N.C.; Doerge, D.R.; Scallet, A.C.; Patterson, T.A.; Hanig, J.P.; et al. Ketamine-Induced Neuronal Cell Death in the Perinatal Rhesus Monkey. Toxicol. Sci. 2007, 98, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Paule, M.; Li, M.; Allen, R.; Liu, F.; Zou, X.; Hotchkiss, C.; Hanig, J.; Patterson, T.; Slikker, W.; Wang, C. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol. Teratol. 2011, 33, 220–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenning, K.J.; Noguchi, K.K.; Martin, L.D.; Manzella, F.M.; Cabrera, O.H.; Dissen, G.A.; Brambrink, A.M. Isoflurane exposure leads to apoptosis of neurons and oligodendrocytes in 20- and 40-day old rhesus macaques. Neurotoxicol. Teratol. 2017, 60, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, K.; Johnson, S.; Dissen, G.; Martin, L.; Manzella, F.; Schenning, K.; Olney, J.; Brambrink, A. Isoflurane exposure for three hours triggers apoptotic cell death in neonatal macaque brain. Br. J. Anaesth. 2017, 119, 524–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.; Li, Q.; Guo, Q.; Xiong, Y.; Guo, D.; Yang, H.; Shu, Y. Ketamine induces hippocampal apoptosis through a mechanism associated with the caspase-1 dependent pyroptosis. Neuropharmacology 2018, 128, 63–75. [Google Scholar] [CrossRef]
- Olney, J.W.; Tenkova, T.; Dikranian, K.; Muglia, L.J.; Jermakowicz, W.; D’Sa, C.; Roth, K. Ethanol-Induced Caspase-3 Activation in the in Vivo Developing Mouse Brain. Neurobiol. Dis. 2002, 9, 205–219. [Google Scholar] [CrossRef]
- Raper, P.J.; Alvarado, M.C.; Murphy, K.L.; Baxter, P.M.G. Multiple Anesthetic Exposure in Infant Monkeys Alters Emotional Reactivity to an Acute Stressor. Anesthesiology 2015, 123, 1084–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creeley, C.; Dikranian, K.; Dissen, G.; Martin, L.; Olney, J.; Brambrink, A. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br. J. Anaesth. 2013, 110, i29–i38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilder, M.R.T.; Flick, M.R.P.; Sprung, M.J.; Katusic, M.S.K.; Barbaresi, M.W.J.; Mickelson, M.C.; Gleich, M.S.J.; Schroeder, M.D.R.; Weaver, M.A.L.; Warner, M.D.O. Early Exposure to Anesthesia and Learning Disabilities in a Population-based Birth Cohort. Anesthesiology 2009, 110, 796–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, D.; Flick, R.P.; Zaccariello, M.J.; Colligan, R.C.; Katusic, S.K.; Schroeder, D.R.; Hanson, A.C.; Buenvenida, S.L.; Gleich, S.J.; Wilder, R.T.; et al. Association between Exposure of Young Children to Procedures Requiring General Anesthesia and Learning and Behavioral Outcomes in a Population-based Birth Cohort. Anesthesiology 2017, 127, 227–240. [Google Scholar] [CrossRef]
- Ing, C.; Hegarty, M.; Perkins, J.; Whitehouse, A.; DiMaggio, C.; Sun, M.; Andrews, H.; Li, G.; Sun, L.; von Ungern-Sternberg, B. Duration of general anaesthetic exposure in early childhood and long-term language and cognitive ability. Br. J. Anaesth. 2017, 119, 532–540. [Google Scholar] [CrossRef]
- Ing, C.; DiMaggio, C.; Whitehouse, A.; Hegarty, M.K.; Brady, J.; von Ungern-Sternberg, B.S.; Davidson, A.; Wood, A.J.; Li, G.; Sun, L.S. Long-term Differences in Language and Cognitive Function After Childhood Exposure to Anesthesia. Pediatrics 2012, 130, e476–e485. [Google Scholar] [CrossRef] [Green Version]
- DiMaggio, C.; Sun, L.S.; Li, G. Early Childhood Exposure to Anesthesia and Risk of Developmental and Behavioral Disorders in a Sibling Birth Cohort. Anesth. Analg. 2011, 113, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Wilder, R.T.; Voigt, R.G.; Olson, M.D.; Sprung, J.; Weaver, A.L.; Schroeder, D.R.; Warner, D.O. Cognitive and Behavioral Outcomes After Early Exposure to Anesthesia and Surgery. Pediatrics 2011, 128, e1053–e1061. [Google Scholar] [CrossRef] [Green Version]
- Ikonomidou, C.; Bittigau, P.; Ishimaru, M.J.; Wozniak, D.F.; Koch, C.; Genz, K.; Price, M.T.; Stefovska, V.; Hörster, F.; Tenkova, T.; et al. Ethanol-Induced Apoptotic Neurodegeneration and Fetal Alcohol Syndrome. Science 2000, 287, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, F.; Thompson, A.J.; Riaz, S.; Pehar, M.; Rice, T.; Syed, N.I. Anesthetics: From modes of action to unconsciousness and neurotoxicity. J. Neurophysiol. 2019, 122, 760–787. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidou, C.; Bosch, F.; Miksa, M.; Bittigau, P.; Vöckler, J.; Dikranian, K.; Tenkova, T.I.; Stefovska, V.; Turski, L.; Olney, J.W. Blockade of NMDA Receptors and Apoptotic Neurodegeneration in the Developing Brain. Science 1999, 283, 70–74. [Google Scholar] [CrossRef]
- Ben-Ari, Y. Excitatory actions of gaba during development: The nature of the nurture. Nat. Rev. Neurosci. 2002, 3, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, O.H.; Tesic, V.; Tat, Q.L.; Chastain, S.; Quillinan, N.; Jevtovic-Todorovic, V. Sevoflurane-Induced Dysregulation of Cation-Chloride Cotransporters NKCC1 and KCC2 in Neonatal Mouse Brain. Mol. Neurobiol. 2020, 57, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yon, J.-H.; Daniel-Johnson, J.; Carter, L.; Jevtovic-Todorovic, V. Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 2005, 135, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Young, C.; Jevtovic-Todorovic, V.; Qin, Y.-Q.; Tenkova, T.; Wang, H.; Labruyere, J.; Olney, J.W. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br. J. Pharmacol. 2005, 146, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Lunardi, N.; Ori, C.; Erisir, A.; Jevtovic-Todorovic, V. General Anesthesia Causes Long-Lasting Disturbances in the Ultrastructural Properties of Developing Synapses in Young Rats. Neurotox. Res. 2009, 17, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, B.V.; Feinstein, B.S.D.; Lunardi, M.N.; Joksovic, M.P.M.; Boscolo, A.; Todorovic, M.S.M. General Anesthesia Causes Long-term Impairment of Mitochondrial Morphogenesis and Synaptic Transmission in Developing Rat Brain. J. Am. Soc. Anesthesiol. 2011, 115, 992–1002. [Google Scholar] [CrossRef] [Green Version]
- Boscolo, A.; Milanovic, P.D.; Starr, B.J.A.; Sanchez, B.V.; Oklopcic, B.A.; Moy, L.; Ori, C.C.; Erisir, A.; Jevtovic-Todorovic, M.V. Early Exposure to General Anesthesia Disturbs Mitochondrial Fission and Fusion in the Developing Rat Brain. J. Am. Soc. Anesthesiol. 2013, 118, 1086–1097. [Google Scholar] [CrossRef] [Green Version]
- DiGruccio, M.R.; Joksimovic, S.; Joksovic, P.M.; Lunardi, N.; Salajegheh, R.; Jevtovic-Todorovic, V.; Beenhakker, M.P.; Goodkin, H.P.; Todorovic, S.M. Hyperexcitability of rat thalamocortical networks after exposure to general anesthesia during brain development. J. Neurosci. 2015, 35, 1481–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, T.J.; Stamenic, T.T.; Todorovic, S.M. Neonatal general anesthesia causes lasting alterations in excitatory and inhibitory synaptic transmission in the ventrobasal thalamus of adolescent female rats. Neurobiol. Dis. 2019, 127, 472–481. [Google Scholar] [CrossRef]
- Schaefer, M.L.; Perez, P.J.; Wang, M.; Gray, C.; Krall, C.; Sun, X.; Hunter, E.; Skinner, J.; Johns, R.A. Neonatal Isoflurane Anesthesia or Disruption of Postsynaptic Density-95 Protein Interactions Change Dendritic Spine Densities and Cognitive Function in Juvenile Mice. J. Am. Soc. Anesthesiol. 2020, 133, 812–823. [Google Scholar] [CrossRef]
- Wan, J.; Shen, C.-M.; Wang, Y.; Wu, Q.-Z.; Wang, Y.-L.; Liu, Q.; Sun, Y.-M.; Cao, J.-P.; Wu, Y.-Q. Repeated exposure to propofol in the neonatal period impairs hippocampal synaptic plasticity and the recognition function of rats in adulthood. Brain Res. Bull. 2021, 169, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, F.; Shi, J. Neonatal exposure to sevoflurane caused cognitive deficits by dysregulating SK2 channels and GluA2-lacking AMPA receptors in juvenile rat hippocampus. Neuropharmacology 2018, 141, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, Y.; Zhang, C.; Tang, C.; Wang, Y.; Ren, J.; Chen, X.; Zhang, Y.; Zhu, Z.-Q. Effect of repeated neonatal sevoflurane exposure on the learning, memory and synaptic plasticity at juvenile and adult age. Am. J. Transl. Res. 2017, 9, 4974–4983. [Google Scholar]
- Boscolo, A.; Ori, C.; Bennett, J.; Wiltgen, B.; Jevtovic-Todorovic, V. Mitochondrial protectant pramipexole prevents sex-specific long-term cognitive impairment from early anaesthesia exposure in rats. Br. J. Anaesth. 2013, 110, i47–i52. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, E.L.T.; Yang, S.M.; Choi, C.S.; Mabunga, D.F.N.; Kim, H.J.; Cheong, J.H.; Ryu, J.H.; Koo, B.-N.; Shin, C.Y. Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats. Biomol. Ther. 2015, 23, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.L.; Baxter, M.G. Long-Term Effects of Neonatal Single or Multiple Isoflurane Exposures on Spatial Memory in Rats. Front. Neurol. 2013, 4, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L. Early childhood general anaesthesia exposure and neurocognitive development. Br. J. Anaesth. 2010, 105, i61–i68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diana, P.; Joksimovic, S.M.; Faisant, A.; Jevtovic-Todorovic, V. Early exposure to general anesthesia impairs social and emotional development in rats. Mol. Neurobiol. 2020, 57, 41–50. [Google Scholar] [CrossRef]
- Lee, B.H.; Chan, J.T.; Kraeva, E.; Peterson, K.; Sall, J.W. Isoflurane exposure in newborn rats induces long-term cognitive dysfunction in males but not females. Neuropharmacology 2014, 83, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.-Y.; Shi, G.; Zhao, P. Neonatal Sevoflurane Exposure Impairs Learning and Memory by the Hypermethylation of Hippocampal Synaptic Genes. Mol. Neurobiol. 2021, 58, 895–904. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, Y.; Zhao, P. Sirtuin 2 Inhibition Attenuates Sevoflurane-Induced Learning and Memory Deficits in Developing Rats via Modulating Microglial Activation. Cell. Mol. Neurobiol. 2019, 40, 437–446. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, L.; Liao, P.; Huang, L.; Chen, Z.; Liao, D.; Yang, L.; Wang, J.; Yu, G.; Wang, L.; et al. Astroglial dysfunctions drive aberrant synaptogenesis and social behavioral deficits in mice with neonatal exposure to lengthy general anesthesia. PLoS Biol. 2019, 17, e3000086. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xue, H.; Gao, Q.; Zhao, P. Effects of early postnatal sevoflurane exposure on oligodendrocyte maturation and myelination in cerebral white matter of the rat. Biomed. Pharmacother. 2020, 131, 110733. [Google Scholar] [CrossRef]
- Yon, J.-H.; Carter, L.B.; Reiter, R.J.; Jevtovic-Todorovic, V. Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol. Dis. 2006, 21, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Feng, X.J.; Hu, X.; Chen, Y.P.; Sha, J.C.; Zhang, H.Y.; Fan, H.-G. Effect of melatonin on attenuating the isoflurane-induced oxidative damage is related to PKCα/Nrf2 signaling pathway in developing rats. Brain Res. Bull. 2018, 143, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.-H.; Qiu, L.-L.; Yang, J.-J.; Zhang, H.; Sun, X.-R.; Zhu, S.-H.; Li, W.-Y.; Yang, J.-J. Pre-administration of curcumin prevents neonatal sevoflurane exposure-induced neurobehavioral abnormalities in mice. NeuroToxicology 2015, 46, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Dong, D.-S.; Pei, L. Resveratrol mitigates isoflurane-induced neuroapoptosis by inhibiting the activation of the Akt-regulated mitochondrial apoptotic signaling pathway. Int. J. Mol. Med. 2013, 32, 819–826. [Google Scholar] [CrossRef]
- Le Tang, X.; Wang, X.; Fang, G.; Zhao, Y.L.; Yan, J.; Zhou, Z.; Sun, R.; Luo, A.L.; Li, S.Y. Resveratrol ameliorates sevoflurane-induced cognitive impairment by activating the SIRT1/NF-κB pathway in neonatal mice. J. Nutr. Biochem. 2021, 90, 108579. [Google Scholar] [CrossRef]
- Boscolo, A.; Starr, J.; Sanchez, V.; Lunardi, N.; DiGruccio, M.; Ori, C.; Erisir, A.; Trimmer, P.; Bennett, J.; Jevtovic-Todorovic, V. The abolishment of anesthesia-induced cognitive impairment by timely protection of mitochondria in the developing rat brain: The importance of free oxygen radicals and mitochondrial integrity. Neurobiol. Dis. 2012, 45, 1031–1041. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Patterson, T.A.; Sadovova, N.; Zhang, X.; Liu, S.; Zou, X.; Hanig, J.P.; Paule, M.G.; Slikker, W.; Wang, C. Ketamine-Induced Neuronal Damage and Altered N-Methyl-d-Aspartate Receptor Function in Rat Primary Forebrain Culture. Toxicol. Sci. 2013, 131, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Huang, Y.; Lu, Y.; Chen, J.; Jiang, H. Repeated Administration of Ketamine can Induce Hippocampal Neurodegeneration and Long-Term Cognitive Impairment via the ROS/HIF-1a Pathway in Developing Rats. Cell. Physiol. Biochem. 2014, 33, 1715–1732. [Google Scholar] [CrossRef]
- Zou, X.; Sadovova, N.; Patterson, T.; Divine, R.; Hotchkiss, C.; Ali, S.; Hanig, J.; Paule, M.; Slikker, W.; Wang, C. The effects of l-carnitine on the combination of, inhalation anesthetic-induced developmental, neuronal apoptosis in the rat frontal cortex. Neuroscience 2008, 151, 1053–1065. [Google Scholar] [CrossRef]
- Ma, R.; Wang, X.; Peng, P.; Xiong, J.; Dong, H.; Wang, L.; Ding, Z. α-Lipoic acid inhibits sevoflurane-induced neuronal apoptosis through PI3K/Akt signalling pathway. Cell Biochem. Funct. 2016, 34, 42–47. [Google Scholar] [CrossRef]
- Zhao, H.; Bu, M.; Li, B.; Zhang, Y. Lipoic acid inhibited desflurane-induced hippocampal neuronal apoptosis through Caspase3 and NF-KappaB dependent pathway. Tissue Cell 2018, 50, 37–42. [Google Scholar] [CrossRef]
- Tsuchimoto, T.; Ueki, M.; Miki, T.; Morishita, J.; Maekawa, N. Erythropoietin attenuates isoflurane-induced neurodegeneration and learning deficits in the developing mouse brain. Pediatr. Anesth. 2011, 21, 1209–1213. [Google Scholar] [CrossRef]
- Pellegrini, L.; Bennis, Y.; Velly, L.; Grandvuillemin, I.; Pisano, P.; Bruder, N.; Guillet, B. Erythropoietin protects newborn rat against sevoflurane-induced neurotoxicity. Pediatr. Anesth. 2014, 24, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Wei, Y.; Chen, Y.; Zhang, X.; Gong, Z.; Jiang, Y.; Gong, Q.; Zhou, L.; Wang, H.; Xie, Y. Dexmedetomidine attenuates propofol-induce neuroapoptosis partly via the activation of the PI3k/Akt/GSK3β pathway in the hippocampus of neonatal rats. Environ. Toxicol. Pharmacol. 2017, 52, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zeng, M.; Chen, W.; Liu, C.; Wang, F.; Han, X.; Zuo, Z.; Peng, S. Dexmedetomidine Reduces Isoflurane-Induced Neuroapoptosis Partly by Preserving PI3K/Akt Pathway in the Hippocampus of Neonatal Rats. PLoS ONE 2014, 9, e93639. [Google Scholar] [CrossRef]
- Liu, J.-R.; Baek, C.W.; Han, X.H.; Shoureshi, P.; Soriano, S.G. Role of glycogen synthase kinase-3β in ketamine-induced developmental neuroapoptosis in rats. Br. J. Anaesth. 2013, 110, i3–i9. [Google Scholar] [CrossRef] [Green Version]
- Straiko, P.M.M.W.; Young, M.C.; Cattano, D.; Creeley, P.C.E.; Wang, B.H.; Smith, B.D.J.; Johnson, S.A.; Li, E.S.; Olney, M.J.W. Lithium Protects against Anesthesia-induced Developmental Neuroapoptosis. J. Am. Soc. Anesthesiol. 2009, 110, 862–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, J.; Yang, X.; Yao, W.; Lee, W. Lithium protects ethanol-induced neuronal apoptosis. Biochem. Biophys. Res. Commun. 2006, 350, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, K.; Johnson, S.A.; Kristich, L.E.; Martin, L.D.; Dissen, G.A.; Olsen, E.A.; Olney, J.W.; Brambrink, A.M. Lithium Protects Against Anaesthesia Neurotoxicity in The Infant Primate Brain. Sci. Rep. 2016, 6, 22427. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Yang, F.; Ren, Z.; Xu, M.; Frank, J.A.; Ke, Z.-J.; Luo, J. Minocycline protects developing brain against ethanol-induced damage. Neuropharmacology 2018, 129, 84–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.; Wang, X.; Xu, M.; Frank, J.A.; Luo, J. Minocycline attenuates ethanol-induced cell death and microglial activation in the developing spinal cord. Alcohol 2019, 79, 25–35. [Google Scholar] [CrossRef]
- Giri, P.K.; Lu, Y.; Lei, S.; Li, W.; Zheng, J.; Lu, H.; Chen, X.; Liu, Y.; Zhang, P. Pretreatment with minocycline improves neurogenesis and behavior performance after midazolam exposure in neonatal rats. NeuroReport 2018, 29, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Giri, P.; Lei, S.; Zheng, J.; Li, W.; Wang, N.; Chen, X.; Lu, H.; Zuo, Z.; Liu, Y.; et al. Pretreatment with minocycline restores neurogenesis in the subventricular zone and subgranular zone of the hippocampus after ketamine exposure in neonatal rats. Neuroscience 2017, 352, 144–154. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Yang, R.; Hu, S.-F.; Wang, H.; Ma, Z.-W.; Lu, Y. N-stearoyl-l-tyrosine ameliorates sevoflurane induced neuroapoptosis via MEK/ERK1/2 MAPK signaling pathway in the developing brain. Neurosci. Lett. 2013, 541, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, B.; Wu, H.; Yu, Y.; Xue, G.; Hou, Y. 17β-estradiol attenuates ketamine-induced neuroapoptosis and persistent cognitive deficits in the developing brain. Brain Res. 2014, 1593, 30–39. [Google Scholar] [CrossRef]
- Lu, L.X.; Yon, J.-H.; Carter, L.B.; Jevtovic-Todorovic, V. General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis 2006, 11, 1603–1615. [Google Scholar] [CrossRef] [PubMed]
- Asimiadou, S.; Bittigau, P.; Felderhoff-Mueser, U.; Manthey, D.; Sifringer, M.; Pesditschek, S.; Dzietko, M.; Kaindl, A.M.; Pytel, M.; Studniarczyk, D.; et al. Protection with estradiol in developmental models of apoptotic neurodegeneration. Ann. Neurol. 2005, 58, 266–276. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Wei, H.; Lu, Y.; Lei, S.; Zheng, J.; Lu, H.; Chen, X.; Liu, Y.; Zhang, P. 17β-Estradiol Treatment Attenuates Neurogenesis Damage and Improves Behavior Performance After Ketamine Exposure in Neonatal Rats. Front. Cell. Neurosci. 2019, 13, 251. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, F.; Gao, J.; Dong, Y.; Zhang, Y.; Yang, G.; Soriano, S.G.; Feng, H.-J.; Xie, Z. Testosterone attenuates sevoflurane-induced tau phosphorylation and cognitive impairment in neonatal male mice. Br. J. Anaesth. 2021, 127, 929–941. [Google Scholar] [CrossRef]
- Massara, L.D.; Osuru, H.P.; Oklopcic, A.; Milanovic, D.; Joksimovic, S.M.; Caputo, V.; DiGruccio, M.R.; Ori, C.; Wang, G.; Todorovic, S.M.; et al. General Anesthesia Causes Epigenetic Histone Modulation of c-Fos and Brain-derived Neurotrophic Factor, Target Genes Important for Neuronal Development in the Immature Rat Hippocampus. Anesthesiology 2016, 124, 1311–1327. [Google Scholar] [CrossRef] [Green Version]
- Joksimovic, S.M.; Osuru, H.P.; Oklopcic, A.; Beenhakker, M.P.; Jevtovic-Todorovic, V.; Todorovic, S.M. Histone Deacetylase Inhibitor Entinostat (MS-275) Restores Anesthesia-induced Alteration of Inhibitory Synaptic Transmission in the Developing Rat Hippocampus. Mol. Neurobiol. 2018, 55, 222–228. [Google Scholar] [CrossRef]
- Zhong, T.; Ren, F.; Huang, C.; Zou, W.; Yang, Y.; Pan, Y.; Sun, B.; Wang, E.; Guo, Q. Swimming exercise ameliorates neurocognitive impairment induced by neonatal exposure to isoflurane and enhances hippocampal histone acetylation in mice. Neuroscience 2016, 316, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Cattano, D.; Williamson, P.; Fukui, K.; Avidan, M.; Evers, A.S.; Olney, J.W.; Young, C. Potential of xenon to induce or to protect against neuroapoptosis in the developing mouse brain. Can. J. Anesth. 2008, 55, 429–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, H.; Pickering, A.E. The effects of xenon on sevoflurane anesthesia-induced acidosis and brain cell apoptosis in immature rats. Pediatr. Anesth. 2021, 31, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Williamson, P.; Januszewski, A.; Nogaro, M.-C.; Hossain, M.; Ong, L.P.; Shu, Y.; Franks, N.; Maze, M. Xenon Mitigates Isoflurane-induced Neuronal Apoptosis in the Developing Rodent Brain. J. Am. Soc. Anesthesiol. 2007, 106, 746–753. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.; Patel, S.M.; Pac-Soo, C.; Fidalgo, A.R.; Wan, Y.; Maze, M.; Ma, D. Xenon Pretreatment Attenuates Anesthetic-induced Apoptosis in the Developing Brain in Comparison with Nitrous Oxide and Hypoxia. J. Am. Soc. Anesthesiol. 2010, 113, 360–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinou, J.-C.; Youle, R.J. Mitochondria in Apoptosis: Bcl-2 Family Members and Mitochondrial Dynamics. Dev. Cell 2011, 21, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407, 770–776. [Google Scholar] [CrossRef]
- Heiden, M.G.V.; Chandel, N.S.; Williamson, E.K.; Schumacker, P.T.; Thompson, C.B. Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria. Cell 1997, 91, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Earnshaw, W.C.; Martins, L.M.; Kaufmann, S.H. Mammalian Caspases: Structure, Activation, Substrates, and Functions During Apoptosis. Annu. Rev. Biochem. 1999, 68, 383–424. [Google Scholar] [CrossRef]
- Joksimovic, S.M.; DiGruccio, M.R.; Boscolo, A.; Jevtovic-Todorovic, V.; Todorovic, S.M. The Role of Free Oxygen Radicals in Lasting Hyperexcitability of Rat Subicular Neurons After Exposure to General Anesthesia During Brain Development. Mol. Neurobiol. 2019, 57, 208–216. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- Bloom, D.A.; Jaiswal, A.K. Phosphorylation of Nrf2 at Ser40 by Protein Kinase C in Response to Antioxidants Leads to the Release of Nrf2 from INrf2, but Is Not Required for Nrf2 Stabilization/Accumulation in the Nucleus and Transcriptional Activation of Antioxidant Response Element-mediated NAD(P)H:Quinone Oxidoreductase-1 Gene Expression. J. Biol. Chem. 2003, 278, 44675–44682. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, Y.; Sternberg, P.; Cai, J. Essential Roles of the PI3 Kinase/Akt Pathway in Regulating Nrf2-Dependent Antioxidant Functions in the RPE. Investig. Opthalmol. Vis. Sci. 2008, 49, 1671–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friling, R.S.; Bensimon, A.; Tichauer, Y.; Daniel, V. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc. Natl. Acad. Sci. USA 1990, 87, 6258–6262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Tan, D.-X.; Sainz, R.M.; Mayo, J.C.; Lopez-Burillo, S. Melatonin: Reducing the toxicity and increasing the efficacy of drugs. J. Pharm. Pharmacol. 2010, 54, 1299–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banez, M.J.; Geluz, M.I.; Chandra, A.; Hamdan, T.; Biswas, O.S.; Bryan, N.S.; Von Schwarz, E.R. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health. Nutr. Res. 2020, 78, 11–26. [Google Scholar] [CrossRef]
- Marseglia, L.; D’Angelo, G.; Manti, S.; Aversa, S.; Arrigo, T.; Reiter, R.J.; Gitto, E. Analgesic, Anxiolytic and Anaesthetic Effects of Melatonin: New Potential Uses in Pediatrics. Int. J. Mol. Sci. 2015, 16, 1209–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danzeisen, R.; Schwalenstoecker, B.; Gillardon, F.; Buerger, E.; Krzykalla, V.; Klinder, K.; Schild, L.; Hengerer, B.; Ludolph, A.C.; Dorner-Ciossek, C.; et al. Targeted Antioxidative and Neuroprotective Properties of the Dopamine Agonist Pramipexole and Its Nondopaminergic Enantiomer SND919CL2x [(+)2-Amino-4,5,6,7-tetrahydro-6-lpropylamino-benzathiazole Dihydrochloride]. J. Pharmacol. Exp. Ther. 2005, 316, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Böhles, H.; Evangeliou, A.; Bervoets, K.; Eckert, I.; Sewell, A. Carnitine esters in metabolic disease. Eur. J. Nucl. Med. Mol. Imaging 1994, 153, S57–S61. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.L.; McDonald, D.; Borum, P.R. Acylcarnitines: Role in brain. Prog. Lipid Res. 2010, 49, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, D.-M.; Wang, M.-X.; Fan, C.-Y.; Zhou, F.; Wang, S.-J.; Kong, L.-D. The adverse effects of long-term l-carnitine supplementation on liver and kidney function in rats. Hum. Exp. Toxicol. 2015, 34, 1148–1161. [Google Scholar] [CrossRef]
- Tibullo, D.; Volti, G.L.; Giallongo, C.; Grasso, S.; Tomassoni, D.; Anfuso, C.D.; Lupo, G.; Amenta, F.; Avola, R.; Bramanti, V. Biochemical and clinical relevance of alpha lipoic acid: Antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Agents Actions 2017, 66, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Rizzo, M.; Krogager, C.; Kennedy, C.; Georges, C.M.; Knežević, T.; Liberopoulos, E.; Vallée, A.; Pérez-Martínez, P.; Wenstedt, E.F.; et al. Safety Evaluation of α-Lipoic Acid Supplementation: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Clinical Studies. Antioxidants 2020, 9, 1011. [Google Scholar] [CrossRef]
- Brunet, A.; Datta, S.R.; Greenberg, M.E. Transcription-dependent and -independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr. Opin. Neurobiol. 2001, 11, 297–305. [Google Scholar] [CrossRef]
- Eblen, S.T. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv. Cancer Res. 2018, 138, 99–142. [Google Scholar] [CrossRef]
- Luo, H.R.; Hattori, H.; Hossain, M.A.; Hester, L.; Huang, Y.; Lee-Kwon, W.; Donowitz, M.; Nagata, E.; Snyder, S.H. Akt as a mediator of cell death. Proc. Natl. Acad. Sci. USA 2003, 100, 11712–11717. [Google Scholar] [CrossRef] [Green Version]
- Maurer, U.; Preiss, F.; Brauns-Schubert, P.; Schlicher, L.; Charvet, C. GSK-3–at the crossroads of cell death and survival. J. Cell Sci. 2014, 127, 1369–1378. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Yu, S.X.; Lu, Y.; Bast, R.; Woodgett, J.; Mills, G.B. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. USA 2000, 97, 11960–11965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, L.O.; Smith, S.; Chen, R.-H.; Fingar, D.C.; Blenis, J. Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol. 2002, 4, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Shacka, J.J.; Eells, J.; Suarez-Quian, C.; Przygodzki, R.; Beleslin-Cokic, B.; Lin, C.-S.; Nikodem, V.M.; Hempstead, B.; Flanders, K.C.; et al. Erythropoietin receptor signalling is required for normal brain development. Development 2002, 129, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, A.; Aher, S.M. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst. Rev. 2014, 4, CD004863. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Hossain, M.; Rajakumaraswamy, N.; Arshad, M.; Sanders, R.D.; Franks, N.; Maze, M. Dexmedetomidine produces its neuroprotective effect via the α2A-adrenoceptor subtype. Eur. J. Pharmacol. 2004, 502, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Dahmani, S.; Paris, A.; Jannier, V.; Hein, L.; Rouelle, D.; Scholz, J.; Gressens, P.; Mantz, J. Dexmedetomidine Increases Hippocampal Phosphorylated Extracellular Signal–regulated Protein Kinase 1 and 2 Content by an α2-Adrenoceptor–independent Mechanism. J. Am. Soc. Anesthesiol. 2008, 108, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Sanders, R.D.; Xu, J.; Shu, Y.; Januszewski, A.; Halder, S.; Fidalgo, A.; Sun, P.; Hossain, M.; Ma, D.; Maze, M. Dexmedetomidine Attenuates Isoflurane-induced Neurocognitive Impairment in Neonatal Rats. J. Am. Soc. Anesthesiol. 2009, 110, 1077–1085. [Google Scholar] [CrossRef] [Green Version]
- Perez-Zoghbi, J.F.; Zhu, W.; Neudecker, V.; Grafe, M.R.; Brambrink, A.M. Neurotoxicity of sub-anesthetic doses of sevoflurane and dexmedetomidine co-administration in neonatal rats. NeuroToxicology 2020, 79, 75–83. [Google Scholar] [CrossRef]
- Liu, J.-R.; Yuki, K.; Baek, C.; Han, X.-H.; Soriano, S.G. Dexmedetomidine-Induced Neuroapoptosis Is Dependent on Its Cumulative Dose. Anesth. Analg. 2016, 123, 1008–1017. [Google Scholar] [CrossRef]
- Perez-Zoghbi, J.F.; Zhu, W.; Grafe, M.R.; Brambrink, A.M. Dexmedetomidine-mediated neuroprotection against sevoflurane-induced neurotoxicity extends to several brain regions in neonatal rats. Br. J. Anaesth. 2017, 119, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Gertler, R.; Brown, H.C.; Mitchell, D.H.; Silvius, E.N. Dexmedetomidine: A Novel Sedative-Analgesic Agent. In Baylor University Medical Center Proceedings; Informa UK Limited: London, UK, 2001; Volume 14, pp. 13–21. [Google Scholar]
- Alam, A.; Suen, K.C.; Hana, Z.; Sanders, R.D.; Maze, M.; Ma, D. Neuroprotection and neurotoxicity in the developing brain: An update on the effects of dexmedetomidine and xenon. Neurotoxicol. Teratol. 2017, 60, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Möller, T.; Bard, F.; Bhattacharya, A.; Biber, K.; Campbell, B.; Dale, E.; Eder, C.; Gan, L.; Garden, G.; Hughes, Z.; et al. Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor. Glia 2016, 64, 1788–1794. [Google Scholar] [CrossRef]
- Lu, Y.; Lei, S.; Wang, N.; Lu, P.; Li, W.; Zheng, J.; Giri, P.K.; Lu, H.; Chen, X.; Zuo, Z.; et al. Protective Effect of Minocycline Against Ketamine-Induced Injury in Neural Stem Cell: Involvement of PI3K/Akt and Gsk-3 Beta Pathway. Front. Mol. Neurosci. 2016, 9, 135. [Google Scholar] [CrossRef]
- Gitlin, M. Lithium side effects and toxicity: Prevalence and management strategies. Int. J. Bipolar Disord. 2016, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finley, P.R. Drug Interactions with Lithium: An Update. Clin. Pharmacokinet. 2016, 55, 925–941. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Kan, M.-Y.; Yang, Z.-H.; Ding, W.-L.; Yi, J.; Chen, H.-Z.; Lu, Y. Neuroprotective effects of N-stearoyltyrosine on transient global cerebral ischemia in gerbils. Brain Res. 2009, 1287, 146–156. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, K.; Suo, W.; Yao, L.; Fu, Q.; Cui, Y.; Fu, G.; Chen, H.; Lu, Y. N-stearoyltyrosine protects primary neurons from Aβ-induced apoptosis through modulating mitogen-activated protein kinase activity. Neuroscience 2010, 169, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, J.L.; McCarthy, M.M. Estradiol Exacerbates Hippocampal Damage in a Model of Preterm Infant Brain Injury. Endocrinology 2003, 144, 2350–2359. [Google Scholar] [CrossRef] [Green Version]
- Chinn, G.A.; Duong, K.; Horovitz, T.R.; Russell, J.M.S.; Sall, J.W. Testosterone Is Sufficient to Impart Susceptibility to Isoflurane Neurotoxicity in Female Neonatal Rats. 2021. Available online: https://pubmed.ncbi.nlm.nih.gov/34127616/ (accessed on 28 December 2021).
- Korzus, E.; Rosenfeld, M.G.; Mayford, M. CBP Histone Acetyltransferase Activity Is a Critical Component of Memory Consolidation. Neuron 2004, 42, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chastain-Potts, S.E.; Tesic, V.; Tat, Q.L.; Cabrera, O.H.; Quillinan, N.; Jevtovic-Todorovic, V. Sevoflurane Exposure Results in Sex-Specific Transgenerational Upregulation of Target IEGs in the Subiculum. Mol. Neurobiol. 2020, 57, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Devroe, S.; Meeusen, R.; Gewillig, M.; Cools, B.; Poesen, K.; Sanders, R.; Rex, S. Xenon as an adjuvant to sevoflurane anesthesia in children younger than 4 years of age, undergoing interventional or diagnostic cardiac catheterization: A randomized controlled clinical trial. Pediatr. Anesth. 2017, 27, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, H.; Bickler, P.E. Xenon Neurotoxicity in Rat Hippocampal Slice Cultures Is Similar to Isoflurane and Sevoflurane. J. Am. Soc. Anesthesiol. 2013, 119, 335–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyce, J.A. Xenon: Anesthesia for the 21st century. AANA J. 2000, 68, 259–264. [Google Scholar] [PubMed]
- Ko, R.R.; Pinyavat, T.; Stylianos, S.; Lambert, S.M.; Anderson, R.C.; Gallin, P.F.; Maxwell, L.G.; Ward, C.G.; Deshpande, J.K.; Houck, C.S. Optimal Timing of Surgical Procedures in Pediatric Patients. J. Neurosurg. Anesthesiol. 2016, 28, 395–399. [Google Scholar] [CrossRef]
- Hampl, K.; Steinfeldt, T.; Wulf, H. Spinal anesthesia revisited. Curr. Opin. Anaesthesiol. 2014, 27, 549–555. [Google Scholar] [CrossRef]
- Yahalom, D.B.; Athiraman, M.U.; Soriano, M.S.G.; Zurakowski, P.D.; Carpino, M.E.A.; Corfas, P.G.; Berde, M.C.B. Spinal Anesthesia in Infant Rats. J. Am. Soc. Anesthesiol. 2011, 114, 1325–1335. [Google Scholar] [CrossRef] [Green Version]
- Hamurtekin, M.E.; Fitzsimmons, M.B.L.; Shubayev, M.V.I.; Grafe, M.M.R.; Deumens, P.R.; Yaksh, P.T.L.; Walker, M.S.M. Evaluation of Spinal Toxicity and Long-term Spinal Reflex Function after Intrathecal Levobupivaciane in the Neonatal Rat. J. Am. Soc. Anesthesiol. 2013, 119, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.M.; Malkmus, S.; Eddinger, K.; Steinauer, J.; Roberts, A.J.; Shubayev, V.I.; Grafe, M.R.; Powell, S.B.; Yaksh, T.L. Evaluation of neurotoxicity and long-term function and behavior following intrathecal 1% 2-chloroprocaine in juvenile rats. NeuroToxicology 2021, 88, 155–167. [Google Scholar] [CrossRef]
- McCann, M.E.; de Graaff, J.C.; Dorris, L.; Disma, N.; Withington, D.; Bell, G.; Grobler, A.; Stargatt, R.; Hunt, R.W.; Sheppard, S.J.; et al. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): An international, multicentre, randomised, controlled equivalence trial. Lancet 2019, 393, 664–677. [Google Scholar] [CrossRef]
- Williams, R.K.; Black, I.H.; Howard, D.B.; Adams, D.C.; Mathews, D.M.; Friend, A.F.; Meyers, H.W.B. Cognitive Outcome After Spinal Anesthesia and Surgery During Infancy. Anesth. Analg. 2014, 119, 651–660. [Google Scholar] [CrossRef]
- Disma, N.; Clunies-Ross, N.; Chalkiadis, G.A. Is spinal anaesthesia in young infants really safer and better than general anaesthesia? Curr. Opin. Anaesthesiol. 2018, 31, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Leresche, N.; Lambert, R.C. T-type calcium channels in synaptic plasticity. Channels 2016, 11, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Atluri, N.; Joksimovic, S.; Oklopcic, A.; Milanovic, D.; Klawitter, J.; Eggan, P.; Krishnan, K.; Covey, D.; Todorovic, S.; Jevtovic-Todorovic, V. A neurosteroid analogue with T-type calcium channel blocking properties is an effective hypnotic, but is not harmful to neonatal rat brain. Br. J. Anaesth. 2018, 120, 768–778. [Google Scholar] [CrossRef] [Green Version]
- Tesic, V.; Joksimovic, S.M.; Quillinan, N.; Krishnan, K.; Covey, D.F.; Todorovic, S.M.; Jevtovic-Todorovic, V. Neuroactive steroids alphaxalone and CDNC24 are effective hypnotics and potentiators of GABAA currents, but are not neurotoxic to the developing rat brain. Br. J. Anaesth. 2020, 124, 603–613. [Google Scholar] [CrossRef]
- Lin, E.P.; Lee, J.-R.; Lee, C.S.; Deng, M.; Loepke, A.W. Do anesthetics harm the developing human brain? An integrative analysis of animal and human studies. Neurotoxicol. Teratol. 2017, 60, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Warner, D.O.; Zaccariello, M.J.; Katusic, S.K.; Schroeder, D.R.; Hanson, A.C.; Schulte, P.J.; Buenvenida, S.L.; Gleich, S.J.; Wilder, R.T.; Sprung, J.; et al. Neuropsychological and Behavioral Outcomes after Exposure of Young Children to Procedures Requiring General Anesthesia. J. Am. Soc. Anesthesiol. 2018, 129, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.S.; Li, G.; Miller, T.L.K.; Salorio, C.; Byrne, M.W.; Bellinger, D.C.; Ing, C.; Park, R.; Radcliffe, J.; Hays, S.; et al. Association Between a Single General Anesthesia Exposure Before Age 36 Months and Neurocognitive Outcomes in Later Childhood. J. Am. Med. Assoc. 2016, 315, 2312–2320. [Google Scholar] [CrossRef]
- Dobbing, J.; Sands, J. Comparative aspects of the brain growth spurt. Early Hum. Dev. 1979, 3, 79–83. [Google Scholar] [CrossRef]
- Maloney, P.S.E.; Creeley, C.E.; Hartman, R.E.; Yuede, C.M.; Zorumski, C.F.; Jevtovic-Todorovic, V.; Dikranian, K.; Noguchi, K.K.; Farber, N.B.; Wozniak, D.F. Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment. Neurobiol. Learn. Mem. 2019, 165, 106834. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Useinovic, N.; Maksimovic, S.; Near, M.; Quillinan, N.; Jevtovic-Todorovic, V. Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity? Int. J. Mol. Sci. 2022, 23, 1128. https://doi.org/10.3390/ijms23031128
Useinovic N, Maksimovic S, Near M, Quillinan N, Jevtovic-Todorovic V. Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity? International Journal of Molecular Sciences. 2022; 23(3):1128. https://doi.org/10.3390/ijms23031128
Chicago/Turabian StyleUseinovic, Nemanja, Stefan Maksimovic, Michelle Near, Nidia Quillinan, and Vesna Jevtovic-Todorovic. 2022. "Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity?" International Journal of Molecular Sciences 23, no. 3: 1128. https://doi.org/10.3390/ijms23031128
APA StyleUseinovic, N., Maksimovic, S., Near, M., Quillinan, N., & Jevtovic-Todorovic, V. (2022). Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity? International Journal of Molecular Sciences, 23(3), 1128. https://doi.org/10.3390/ijms23031128