Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders
Abstract
:1. Introduction
- Genetic mechanisms. This involves the dysfunction of various genes involved in the pathogenesis of mental disorders. Both genetic and environmental factors influence cognitive development, but while the genotype remains constant, epigenetic (environmental) factors may vary and influence cognitive functioning throughout a person’s lifetime and even before birth. For example, babies whose mothers drank alcohol during pregnancy can be born with fetal alcohol spectrum disorder (FASD) and have severe cognitive impairment [50]. Genomic studies have identified thousands of genetic loci associated with mental illness according to the results of multiple genome-wide association studies (GWAS) [51,52].
- Epigenetic mechanisms. Epigenetics is currently attracting more and more attention due to its role in mental illness studies, and it can provide a certain understanding of the causes both of schizophrenia and cognitive dysfunction. The understanding epigenetics of chromatin stability, gene regulation, response to environmental factors, and disease states has grown rapidly over the past two decades [53]. Epigenetic mechanisms tightly control gene expression and repression without any changes in the DNA sequence and, importantly, may serve as a mechanism to explain the absence of heredity in schizophrenia [54]. Epigenetics is a complex biological process that regulates DNA accessibility and gene transcription [55]. Chromatin is regulated by DNA methylation and post-translational modification of histones. DNA methylation is a process involving attachment of a methyl group to cytosine in DNA [56]. DNA methylation is catalyzed by related DNA methyltransferases (DNMT) [57,58]. These modifications alter gene transcription and can be highly stable and hereditary [59]. In contrast, histone modification is a more dynamic and complex process with a large number of post-translational modifications [60]. The regulation of histone tails is more easily reversible than DNA methylation and is likely to play an important role in neuroplasticity and disease pathogenesis [61].
- Dysfunction of neurotransmitter systems. This involves the impaired neuroplasticity and synthesis of neurotrophic factors that support nerve cell function The dysfunction of neurotransmitter systems, impaired neuroplasticity, and synthesis of neurotrophic factors that support nerve cell function are direct consequences of disorders in genetic and epigenetic mechanisms associated with cognitive decline. Discrete neural networks functioning by means of neurotransmitter systems underlie all cognitive processes. Dopamine, noradrenaline (norepinephrine), serotonin, acetylcholine, glutamate, and γ-aminobutyric acid (GABA) play an important role in the regulation of cognitive processes. Understanding neurobiological processes underlying cognitive functioning is essential for interpreting the behavior of both healthy and mentally ill persons [62].
- Neuroinflammation. Most psychiatric disorders, and consequently, cognitive dysfunctions, have an inflammatory component. Inflammatory processes accompany the disease, but some researchers believe that neuroinflammation may play a key role in the pathogenesis of the disease. Inflammatory processes also have a neuroprotective role, performing a protective function in the disruption of CNS structure and function [63]. Inflammation is seen as an integral part of the mechanisms of CNS homeostatic repair and defense [63]. The immune system is involved in many CNS processes, including neurodevelopment, synaptic plasticity, and circuit maintenance [64]. Thus, neuroinflammation is a multifaceted process. The process of neuroinflammation includes (1) induction of a local immune response by immune cells in the CNS, (2) higher production of pro-inflammatory cytokines and chemokines, (3) additional recruitment of immune cells from the CNS to the primary site of injury or infection, (4) permeability of the blood-encephalic barrier and leukocyte penetration, from blood to brain, and (5) resolving inflammation and tissue remodeling [64]. The role of neuroinflammation in the formation of psychiatric disorders is bidirectional. On the one hand, any influences, such as stress or neurodegeneration, lead to a disruption of homeostasis and neuroinflammation. On the other hand, chronic inflammation and chronic subclinical inflammation can lead to CNS dysfunction, specifically cognitive dysfunction.
- The Framingham General Cardiovascular Risk Score (FGCRS) is a scale designed to assess cardiovascular risk factors. Scores on this scale are correlated with cognitive decline and Mini-mental State Examination scales (MMSE) [67], the Preclinical Alzheimer Cognitive Composite [68,69], a more rapid decline in memory, executive function, and verbal fluency [66]. Chronic pro-inflammatory status is also closely related to cardiovascular disease, which is also a pathogenetic link to cognitive decline in mental illness [65].
- Mitochondrial dysfunction. Mitochondria in eukaryotic cells act as an energy center; disruption of their function can lead to disruption of metabolic processes in the cell [70]. Mitochondria play an essential role in multiple neuronal functions: synaptic transmission, Ca2+ signaling, action potential generation, and ion homeostasis; impaired mitochondrial function contributes to impaired brain neuroplasticity [71]. Normal mitochondrial activity in the brain is also important because the brain uses large amounts of ATP but is unable to store large amounts of energy [70].
2. Schizophrenia
3. Depression
4. MCI and Alzheimer’s Disease
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Aβ | amyloid-beta |
AD | Alzheimer’s disease |
APOE | apolipoprotein E gene |
ApoE | apolipoprotein E |
APP | amyloid precursor protein |
BBB | blood–brain barrier |
BDNF | brain-derived neurotrophic factor |
CDR | clinical dementia rating scale |
CNS | central nervous system |
CRP | C-reactive protein |
CSF | cerebrospinal fluid |
DHA | docosahexaenoic acid |
DNMT | DNA methyltransferases |
GABA | γ-aminobutyric acid |
GDNF | glial cell derived neurotrophic factor |
GWAS | genome-wide association studies |
HDAC | histone deacetylase |
IL | interleukin |
IQ | intelligence quotient |
MCI | mild cognitive impairment |
MCP-1 | monocyte chemoattractant protein-1 |
aMCI | amnestic mild cognitive impairment |
naMCI | nonamnestic mild cognitive impairment |
MoCA | Montreal Cognitive Assessment |
mRNA | messenger RNA |
miRNA | microRNA |
MMSE | Mini-mental State Examination score |
MRI | magnetic resonance imaging |
NGF | nerve growth factor |
NMDAR | N-methyl-D-aspartate receptor |
PFC | prefrontal cortex |
p75NTR | neurotrophin receptor p75 |
SNP | single nucleotide polymorphism |
sTNFR | soluble tumor necrosis factor receptor |
sTREM2 | soluble triggering receptor expressed on myeloid cells 2 |
TNF | tumor necrosis factor |
VEGF | vascular endothelial growth factor |
VILIP-1 | visinin-like protein-1 |
YKL-40 | chitinase-3-like protein 1 |
References
- Castaneda, A.E.; Tuulio-Henriksson, A.; Marttunen, M.; Suvisaari, J.; Lönnqvist, J. A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J. Affect. Disord. 2008, 106, 1–27. [Google Scholar] [CrossRef]
- Robinson, S.; Goddard, L.; Dritschel, B.; Wisley, M.; Howlin, P. Executive functions in children with autism spectrum disorders. Brain Cogn. 2009, 71, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Marazziti, D.; Consoli, G.; Picchetti, M.; Carlini, M.; Faravelli, L. Cognitive impairment in major depression. Eur. J. Pharmacol. 2010, 626, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, M.M.; Gerraty, R.T. A meta-analytic investigation of neurocognitive deficits in bipolar illness: Profile and effects of clinical state. Neuropsychology 2009, 23, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Kalkstein, S.; Hurford, I.; Gur, R.C. Neurocognition in schizophrenia. Curr. Top. Behav. Neurosci. 2010, 4, 373–390. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.R.; Marx, B.; Chen, M.S.; Depue, B.E.; Hayes, S.M.; Hayes, J.P. Behavioral and neural correlates of memory suppression in PTSD. J. Psychiatr. Res. 2019, 112, 30–37. [Google Scholar] [CrossRef]
- Gale, S.A.; Acar, D.; Daffner, K.R. Dementia. Am. J. Med. 2018, 131, 1161–1169. [Google Scholar] [CrossRef]
- van Erp, T.G.M.; Walton, E.; Hibar, D.P.; Lianne, S.; Wenhao, J.; David, C.G.; Godfrey, D.P.; Nailin, Y.; Masaki, F.; Ryota, H.; et al. Cortical Brain Abnormalities in 4474 Individuals with Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) Consortium. Biol. Psychiatry 2018, 84, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Zobel, I.; Werden, D.; Linster, H.; Dykierek, P.; Drieling, T.; Berger, M.; Schramm, E. Theory of mind deficits in chronically depressed patients. Depress. Anxiety 2010, 27, 821–828. [Google Scholar] [CrossRef]
- Mueller, A.; Hong, D.S.; Shepard, S.; Moore, T. Linking ADHD to the Neural Circuitry of Attention. Trends Cogn. Sci. 2017, 21, 474–488. [Google Scholar] [CrossRef]
- Gruner, P.; Pittenger, C. Cognitive inflexibility in Obsessive-Compulsive Disorder. Neuroscience 2017, 345, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Benzina, N.; Mallet, L.; Burguière, E.; N’Diaye, K.; Pelissolo, A. Cognitive Dysfunction in Obsessive-Compulsive Disorder. Curr. Psychiatry Rep. 2016, 18, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, L.; Cordier, R.; Munro, N.; Joosten, A.; Speyer, R. A systematic review of pragmatic language interventions for children with autism spectrum disorder. PLoS ONE 2017, 12, e0172242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corcoran, C.M.; Cecchi, G.A. Using Language Processing and Speech Analysis for the Identification of Psychosis and Other Disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, R.W.; Zakzanis, K.K. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology 1998, 12, 426–445. [Google Scholar] [CrossRef] [PubMed]
- Keefe, R.S.; Eesley, C.E.; Poe, M.P. Defining a cognitive function decrement in schizophrenia. Biol. Psychiatry 2005, 57, 688–691. [Google Scholar] [CrossRef]
- Green, M.F. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J. Clin. Psychiatry 2006, 67, e12. [Google Scholar] [CrossRef]
- Shmukler, A.B.; Gurovich, I.Y.; Agius, M.; Zaytseva, Y. Long-term trajectories of cognitive deficits in schizophrenia: A critical overview. Eur. Psychiatry 2015, 30, 1002–1010. [Google Scholar] [CrossRef]
- Mihaljević-Peleš, A.; Bajs Janović, M.; Šagud, M.; Živković, M.; Janović, Š.; Jevtović, S. Cognitive deficit in schizophrenia: An overview. Psychiatr. Danub. 2019, 31, 139–142. [Google Scholar]
- Reichenberg, A. The assessment of neuropsychological functioning in schizophrenia. Dial. Clin. Neurosci. 2010, 12, 383–392. [Google Scholar]
- Nuechterlein, K.H.; Dawson, M.E.; Gitlin, M.; Ventura, J.; Goldstein, M.J.; Snyder, K.S.; Yee, C.M.; Mintz, J. Developmental Processes in Schizophrenic Disorders: Longitudinal studies of vulnerability and stress. Schizophr. Bull. 1992, 18, 387–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addington, J.; Brooks, B.L.; Addington, D. Cognitive functioning in first episode psychosis: Initial presentation. Schizophr. Res. 2003, 44, 47–56. [Google Scholar] [CrossRef]
- Velthorst, E.; Mollon, J.; Murray, R.M.; de Haan, L.; Germeys, I.M.; Glahn, D.C.; Arango, C.; van der Ven, E.; Di Forti, M.; Bernardo, M.; et al. Cognitive functioning throughout adulthood and illness stages in individuals with psychotic disorders and their unaffected siblings. Mol. Psychiatry 2021, 26, 4529–4543. [Google Scholar] [CrossRef]
- Kuha, A.; Tuulio-Henriksson, A.; Eerola, M.; Perälä, J.; Suvisaari, J.; Partonen, T.; Lönnqvist, J. Impaired executive performance in healthy siblings of schizophrenia patients in a population-based study. Schizophr. Res. 2007, 92, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Lin, A.; Wood, S.J.; Yung, A.R.; McGorry, P.D.; Pantelis, C. Cognitive deficits in youth with familial and clinical high risk to psychosis: A systematic review and meta-analysis. Acta Psychiatr. Scan. 2014, 130, 1–15. [Google Scholar] [CrossRef]
- Tripathi, A.; Kar, S.K.; Shukla, R. Cognitive Deficits in Schizophrenia: Understanding the Biological Correlates and Remediation Strategies. Clin. Psychopharmacol. 2018, 16, 7–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, F.; Xiang, H.; Tan, S.; Yang, F.; Fan, H.; Guo, H.; Kochunov, P.; Wang, Z.; Hong, L.E.; Tan, Y. Subcortical structures and cognitive dysfunction in first episode schizophrenia. Psychiatry Res. Neuroimaging 2019, 286, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.Y.; Wong, A.H.C. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol. Sin. 2018, 39, 733–753. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, R.S.; Xiao, H.X.; Syeda, K.; Vinberg, M.; Carvalho, A.F.; Mansur, R.B.; Maruschak, N.; Cha, D.S. The prevalence, measurement, and treatment of the cognitive dimension/domain in major depressive disorder. CNS Drugs 2015, 29, 577–589. [Google Scholar] [CrossRef]
- Millan, M.J.; Agid, Y.; Brüne, M.; Bullmore, E.T.; Carter, C.S.; Clayton, N.S.; Connor, R.; Davis, S.; Deakin, B.; DeRubeis, R.J.; et al. Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nat. Rev. Drug Discov. 2012, 11, 141–168. [Google Scholar] [CrossRef]
- Conradi, H.J.; Ormel, J.; de Jonge, P. Presence of individual (residual) symptoms during depressive episodes and periods of remission: A 3-year prospective study. Psychol. Med. 2011, 41, 1165–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; Bromet, E.J. The epidemiology of depression across cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moussavi, S.; Chatterji, S.; Verdes, E.; Tandon, A.; Patel, V.; Ustun, B. Depression, chronic diseases, and decrements in health: Results from the World Health Surveys. Lancet 2007, 370, 851–858. [Google Scholar] [CrossRef]
- Diniz, B.S.; Butters, M.A.; Albert, S.M.; Dew, M.A.; Reynolds, C.F. Late-life depression and risk of vascular dementia and Alzheimer’s disease: Systematic review and meta-analysis of community-based cohort studies. Br. J. Psychiatry 2013, 202, 329–335. [Google Scholar] [CrossRef]
- Koo, P.C.; Berger, C.; Kronenberg, G.; Bartz, J.; Wybitul, P.; Reis, O.; Hoeppner, J. Combined cognitive, psychomotor and electrophysiological biomarkers in major depressive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 823–832. [Google Scholar] [CrossRef]
- Fiori, L.M.; Orri, M.; Aouabed, Z.; Théroux, J.F.; Lin, R.; Nagy, C.; Frey, B.N.; Lam, R.W.; MacQueen, G.M.; Milev, R.; et al. Treatment-emergent and trajectory-based peripheral gene expression markers of antidepressant response. Transl. Psychiatry 2021, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.D.; Shelton, R.C.; Duman, R.S. Functional Biomarkers of Depression: Diagnosis, Treatment, and Pathophysiology. Neuropsychopharmacology 2011, 36, 2375–2394. [Google Scholar] [CrossRef] [PubMed]
- McInerney, S.J.; Gorwood, P.; Kennedy, S.H. Cognition and Biomarkers in Major Depressive Disorder: Endophenotype or Epiphenomenon? Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef]
- Anderson, N.D. State of the science on mild cognitive impairment (MCI). CNS Spectr. 2019, 24, 78–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanford, A.M. Mild Cognitive Impairment. Clin. Geriatr. Med. 2017, 33, 325–337. [Google Scholar] [CrossRef]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Estévez-González, A.; García-Sánchez, C.; Boltes, A.; García-Nonell, C.; Rigau-Ratera, E.; Otermín, P.; Gironell, A.; Kulisevsky, J. La atencion sostenida en la fase preclinica de la enfermedad de Alzheimer [Sustained attention in the preclinical phase of Alzheimer’s disease]. Rev. Neurol. 2003, 36, 829–832. [Google Scholar] [PubMed]
- Grundman, M.; Petersen, R.C.; Ferris, S.H.; Thomas, R.G.; Aisen, P.S.; Bennett, D.A.; Foster, N.L.; Jack, C.R.; Galasko, D.R.; Doody, R.; et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch. Neurol. 2004, 61, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Vuillier, F.; Medeiros-De Bustos, E.; Moulin, T. Exploration d’un deficit neurologique [Evaluation of neurological deficits]. J. Neuroradiol. 2004, 31, 252–261. [Google Scholar] [CrossRef]
- Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. In Proceedings of the Meeting of the International Working Group (IWG) and the American Alzheimer’s Association on “The Preclinical State of AD”, Washington, DC, USA, 23 July 2015. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild Cognitive Impairment. Contin. Minneap. Minn. 2016, 22, 404–418. [Google Scholar] [CrossRef]
- Espinosa, A.; Hernández-Olasagarre, B.; Moreno-Grau, S.; Kleineidam, L.; Heilmann-Heimbach, S.; Hernández, I.; Wolfsgruber, S.; Wagner, H.; Rosende-Roca, M.; Mauleón, A.; et al. Exploring Genetic Associations of Alzheimer’s Disease Loci with Mild Cognitive Impairment Neurocognitive Endophenotypes. Front. Aging Neurosci. 2018, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Labermaier, C.; Masana, M.; Müller, M.B. Biomarkers predicting antidepressant treatment response: How can we advance the field? Dis. Markers 2013, 35, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boksa, P. A way forward for research on biomarkers for psychiatric disorders. J. Psychiatry Neurosci. 2013, 38, 75–77. [Google Scholar] [CrossRef] [Green Version]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.F.; Daly, M.J.; O’donovan, M. Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nat. Rev. Genet. 2012, 13, 537–551. [Google Scholar] [CrossRef]
- Chen, X.; Duan, H.; Xiao, L.; Gan, J. Genetic and Epigenetic Alterations Underlie Oligodendroglia Susceptibility and White Matter Etiology in Psychiatric Disorders. Front. Genet. 2018, 22, 565. [Google Scholar] [CrossRef] [PubMed]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef]
- Snyder, M.A.; Gao, W.J. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr. Res. 2020, 217, 60–70. [Google Scholar] [CrossRef]
- Maeshima, K.; Ide, S.; Hibino, K.; Sasai, M. Liquid-like behavior of chromatin. Curr. Opin. Genet. Dev. 2016, 37, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Bayraktar, G.; Kreutz, M.R. The Role of Activity-Dependent DNA Demethylation in the Adult Brain and in Neurological Disorders. Front. Mol. Neurosci. 2018, 11, 169. [Google Scholar] [CrossRef] [Green Version]
- Guidotti, A.; Grayson, D.R.; Caruncho, H.J. Epigenetic RELN Dysfunction in Schizophrenia and Related Neuropsychiatric Disorders. Front. Cell. Neurosci. 2016, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Zhubi, A.; Veldic, M.; Puri, N.V.; Kadriu, B.; Caruncho, H.; Loza, I.; Sershen, H.; Lajtha, A.; Smith, R.C.; Guidotti, A.; et al. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr. Res. 2009, 111, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Day, J.J.; Sweatt, J.D. Epigenetic mechanisms in cognition. Neuron 2011, 70, 813–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, C.L.; Laniel, M.A. Histones and histone modifications. Curr. Biol. 2004, 14, R546–R551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopher, M.A.; Kyle, S.M.; Katz, D.J. Neuroepigenetic mechanisms in disease. Epigenet. Chromatin 2017, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F. A hypothesis of monoamine (5-HT)-Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery. Pharmacol. Ther. 2020, 208, 107494. [Google Scholar] [CrossRef]
- Serhan, C.N.; Savill, J. Resolution of inflammation: The beginning programs the end. Nat. Immunol. 2005, 6, 1191–1197. [Google Scholar] [CrossRef]
- Mattei, D.; Notter, T. Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Curr. Top. Behav. Neurosci. 2020, 44, 9–34. [Google Scholar] [PubMed]
- Caruso, G.; Fresta, C.G.; Grasso, M.; Santangelo, R.; Lazzarino, G.; Lunte, S.M.; Caraci, F. Inflammation as the Common Biological Link between Depression and Cardiovascular Diseases: Can Carnosine Exert a Protective Role? Curr. Chem. Med. 2020, 27, 1782–1800. [Google Scholar] [CrossRef]
- Song, R.; Xu, H.; Dintica, C.S.; Pan, K.Y.; Qi, X.; Buchman, A.S.; Bennett, D.A.; Xu, W. Associations between Cardiovascular Risk, Structural Brain Changes, and Cognitive Decline. J. Am. Coll. Cardiol. 2020, 75, 2525–2534. [Google Scholar] [CrossRef]
- Zeki Al Hazzouri, A.; Haan, M.N.; Neuhaus, J.M.; Pletcher, M.; Peralta, C.A.; López, L.; Pérez Stable, E.J. Cardiovascular risk score, cognitive decline, and dementia in older Mexican Americans: The role of sex and education. J. Am. Heart Assoc. 2013, 2, e004978. [Google Scholar]
- Wang, R.; Fratiglioni, L.; Kalpouzos, G.; Lövdén, M.; Laukka, E.J.; Bronge, L.; Wahlund, L.O.; Bäckman, L.; Qiu, C. Mixed brain lesions mediate the association between cardiovascular risk burden and cognitive decline in old age: A population-based study. Alzheimer Dement. 2017, 13, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Rabin, J.S.; Schultz, A.P.; Hedden, T.; Viswanathan, A.; Marshall, G.A.; Kilpatrick, E.; Klein, H.; Buckley, R.F.; Yang, H.S.; Properzi, M.; et al. Interactive Associations of Vascular Risk and β-Amyloid Burden with Cognitive Decline in Clinically Normal Elderly Individuals: Findings from the Harvard Aging Brain Study. JAMA Neurol. 2018, 75, 1124–1131. [Google Scholar] [CrossRef]
- Caruso, G.; Benatti, C.; Blom, J.; Caraci, F.; Tascedda, F. The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Front. Pharmacol. 2019, 10, 995. [Google Scholar] [CrossRef]
- Ni, P.; Chung, S. Mitochondrial Dysfunction in Schizophrenia. BioEssays 2020, 42, e1900202. [Google Scholar] [CrossRef]
- Swerdlow, R.H. Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease. J. Alzheimer Dis. 2018, 62, 1403–1416. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Gao, P.; Shi, L.; Chen, L.; Liu, J.; Long, J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer’s Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid. Redox Signal. 2020, 32, 1188–1236. [Google Scholar] [CrossRef] [PubMed]
- Ohi, K.; Sumiyoshi, C.; Fujino, H.; Yasuda, Y.; Yamamori, H.; Fujimoto, M.; Shiino, T.; Sumiyoshi, T.; Hashimoto, R. Genetic Overlap between General Cognitive Function and Schizophrenia: A Review of Cognitive GWASs. Int. J. Mol. Sci. 2018, 19, 3822. [Google Scholar] [CrossRef] [Green Version]
- Smeland, O.B.; Frei, O.; Kauppi, K.; Hill, W.D.; Li, W.; Wang, Y.; Krull, F.; Bettella, F.; Eriksen, J.A.; Witoelar, A.; et al. NeuroCHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Cognitive Working Group (2017). Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function. JAMA Psychiatry 2017, 74, 1065–1075. [Google Scholar] [CrossRef]
- Chen, L.; Selvendra, A.; Stewart, A.; Castle, D. Risk factors in early and late onset schizophrenia. Compr. Psychiatry 2018, 80, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Whitton, L.; Cosgrove, D.; Clarkson, C.; Harold, D.; Kendall, K.; Richards, A.; Mantripragada, K.; Owen, M.J.; O’Donovan, M.C.; Walters, J.; et al. Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016, 171, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Xiu, M.H.; Tian, L.; Chen, S.; Tan, Y.L.; Chen, D.C.; Chen, J.; Chen, N.; De Yang, F.; Licinio, J.; Kosten, T.R.; et al. Contribution of IL-10 and its -592 A/C polymorphism to cognitive functions in first-episode drug-naive schizophrenia. Brain Behav. Immun. 2016, 57, 116–124. [Google Scholar] [CrossRef]
- Gilbert, T.M.; Zürcher, N.R.; Wu, C.J.; Bhanot, A.; Hightower, B.G.; Kim, M.; Albrecht, D.S.; Wey, H.Y.; Schroeder, F.A.; Rodriguez-Thompson, A.; et al. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J. Clin. Investig. 2019, 129, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, F.A.; Gilbert, T.M.; Feng, N.; Taillon, B.D.; Volkow, N.D.; Innis, R.B.; Hooker, J.M.; Lipska, B.K. Expression of HDAC2 but Not HDAC1 Transcript Is Reduced in Dorsolateral Prefrontal Cortex of Patients with Schizophrenia. ACS Chem. Neurosci. 2017, 8, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.S.; Haggarty, S.J.; Giacometti, E.; Dannenberg, J.H.; Joseph, N.; Gao, J.; Nieland, T.J.; Zhou, Y.; Wang, X.; Mazitschek, R.; et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009, 459, 55–60. [Google Scholar] [CrossRef]
- Stadler, F.; Kolb, G.; Rubusch, L.; Baker, S.P.; Jones, E.G.; Akbarian, S. Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain. J. Neurochem. 2005, 94, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Alavian-Ghavanini, A.; Lin, P.I.; Lind, P.M.; Risén Rimfors, S.; Halin Lejonklou, M.; Dunder, L.; Tang, M.; Lindh, C.; Bornehag, C.G.; Rüegg, J. Prenatal Bisphenol A Exposure is Linked to Epigenetic Changes in Glutamate Receptor Subunit Gene Grin2b in Female Rats and Humans. Sci. Rep. 2018, 8, 11315. [Google Scholar] [CrossRef] [Green Version]
- Grove, T.B.; Burghardt, K.J.; Kraal, A.Z.; Dougherty, R.J.; Taylor, S.F.; Ellingrod, V.L. Oxytocin Receptor (OXTR) Methylation and Cognition in Psychotic Disorders. Mol. Neuropsychiatry 2016, 2, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.M.; Tsien, R.W.; Goff, D.C.; Halassa, M.M. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr. Res. 2015, 167, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Marek, G.J. Metabotropic glutamate2/3 (mGlu2/3) receptors, schizophrenia and cognition. Eur. J. Pharmacol. 2010, 639, 81–90. [Google Scholar] [CrossRef]
- Snyder, M.A.; Gao, W.J. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front. Cell. Neurosci. 2013, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Büki, A.; Horvath, G.; Benedek, G.; Ducza, E.; Kekesi, G. Impaired GAD1 expression in schizophrenia-related WISKET rat model with sex-dependent aggressive behavior and motivational deficit. Genes Brain Behav. 2019, 18, e12507. [Google Scholar] [CrossRef] [PubMed]
- Jacob, T.C. Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors. Front. Mol. Neurosci. 2019, 12, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rideau Batista Novais, A.; Crouzin, N.; Cavalier, M.; Boubal, M.; Guiramand, J.; Cohen-Solal, C.; de Jesus Ferreira, M.C.; Cambonie, G.; Vignes, M.; Barbanel, G. Tiagabine improves hippocampal long-term depression in rat pups subjected to prenatal inflammation. PLoS ONE 2014, 9, e106302. [Google Scholar] [CrossRef]
- Cardno, A.G.; Gottesman, I.I. Twin studies of schizophrenia: From bow-and-arrow concordances to star wars Mx and functional genomics. Am. J. Med. Genet. 2000, 97, 12–17. [Google Scholar] [CrossRef]
- Harrison, P.J.; Weinberger, D.R. Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence [published correction appears in Mol Psychiatry. 2005 Apr;10(4):420] [published correction appears in Mol Psychiatry. 2005 Aug;10(8):804]. Mol. Psychiatry 2005, 10, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bora, E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: A meta-analysis. Psychol. Med. 2019, 49, 1971–1979. [Google Scholar] [CrossRef]
- Penadés, R.; García-Rizo, C.; Bioque, M.; González-Rodríguez, A.; Cabrera, B.; Mezquida, G.; Bernardo, M. The search for new biomarkers for cognition in schizophrenia. Schizophr. Res. Cogn. 2015, 2, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Fourrier, C.; Singhal, G.; Baune, B.T. Neuroinflammation and cognition across psychiatric conditions. CNS Spectr. 2019, 24, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, L.; Danver, J.; Ji, K.; Miyauchi, J.T.; Chen, D.; Anderson, M.E.; West, B.L.; Robinson, J.K.; Tsirka, S.E. Dynamic microglial modulation of spatial learning and social behavior. Brain Behav. Immun. 2016, 55, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Marques, S.C.; Lemos, R.; Ferreiro, E.; Martins, M.; de Mendonça, A.; Santana, I.; Outeiro, T.F.; Pereira, C.M. Epigenetic regulation of BACE1 in Alzheimer’s disease patients and in transgenic mice. Neuroscience 2012, 220, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, F.; Rossetti, A.C.; Racagni, G.; Gass, P.; Riva, M.A.; Molteni, R. Brain-derived neurotrophic factor: A bridge between inflammation and neuroplasticity. Front. Cell. Neurosci. 2014, 8, 430. [Google Scholar] [CrossRef]
- André, C.; O’Connor, J.C.; Kelley, K.W.; Lestage, J.; Dantzer, R.; Castanon, N. Spatio-temporal differences in the profile of murine brain expression of proinflammatory cytokines and indoleamine 2,3-dioxygenase in response to peripheral lipopolysaccharide administration. J. Neuroimmunol. 2008, 200, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Linderholm, K.R.; Skogh, E.; Olsson, S.K.; Dahl, M.L.; Holtze, M.; Engberg, G.; Samuelsson, M.; Erhardt, S. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr. Bull. 2012, 38, 426–432. [Google Scholar] [CrossRef]
- Lipner, E.; Murphy, S.K.; Ellman, L.M. Prenatal maternal stress and the cascade of risk to schizophrenia spectrum disorders in offspring. Curr. Psychiatry Rep. 2019, 21, 99. [Google Scholar] [CrossRef] [PubMed]
- Misiak, B.; Stańczykiewicz, B.; Kotowicz, K.; Rybakowski, J.K.; Samochowiec, J.; Frydecka, D. Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: A systematic review. Schizophr. Res. 2018, 192, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Hope, S.; Hoseth, E.; Dieset, I.; Mørch, R.H.; Aas, M.; Aukrust, P.; Djurovic, S.; Melle, I.; Ueland, T.; Agartz, I.; et al. Inflammatory markers are associated with general cognitive abilities in schizophrenia and bipolar disorder patients and healthy controls. Schizophr. Res. 2015, 165, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Fillman, S.G.; Weickert, T.W.; Lenroot, R.K.; Catts, S.V.; Bruggemann, J.M.; Catts, V.S.; Weickert, C.S. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol. Psychiatry 2016, 21, 1090–1098. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; de Campos-Carli, S.M.; Ferretjans, R.; Teixeira-Carvalho, A.; Martins-Filho, O.A.; Teixeira, A.L.; Salgado, J.V. The association of cognitive performance and IL-6 levels in schizophrenia is influenced by age and antipsychotic treatment. Nord. J. Psychiatry 2020, 74, 187–193. [Google Scholar] [CrossRef]
- Meyer, U.; Schwarz, M.J.; Muller, N. Inflammatory processes in schizophrenia: A promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol. Ther. 2011, 132, 96–110. [Google Scholar] [CrossRef]
- Monji, A.; Kato, T.; Kanba, S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin. Neurosci. 2009, 63, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Laskaris, L.E.; Di Biase, M.A.; Everall, I.; Chana, G.; Christopoulos, A.; Skafidas, E.; Cropley, V.L.; Pantelis, C. Microglial activation and progressive brain changes in schizophrenia. Br. J. Pharmacol. 2016, 173, 666–680. [Google Scholar] [CrossRef]
- Pan, H.; Huang, X.; Li, F.; Ren, M.; Zhang, J.; Xu, M.; Wu, M. Association among plasma lactate, systemic inflammation, and mild cognitive impairment: A community-based study. Neurol. Sci. 2019, 40, 1667–1673. [Google Scholar] [CrossRef]
- Müller, N.; Riedel, M.; Schwarz, M.J.; Engel, R.R. Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2005, 255, 149–151. [Google Scholar] [CrossRef]
- Konkova, M.S.; Ershova, E.S.; Savinova, E.A.; Malinovskaya, E.M.; Shmarina, G.V.; Martynov, A.V.; Veiko, R.V.; Zakharova, N.V.; Umriukhin, P.; Kostyuk, G.P.; et al. 1Q12 Loci Movementin the Interphase Nucleus Under the Action of ROS Is an Important Component of the Mechanism That Determines Copy Number Variation of Satellite III (1q12) in Health and Schizophrenia. Front. Cell Dev. Biol. 2020, 8, 386. [Google Scholar] [CrossRef]
- Katsel, P.; Roussos, P.; Pletnikov, M.; Haroutunian, V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia-angiogenesis connection. Neurosci. Biobehav. Rev. 2017, 77, 327–339. [Google Scholar] [CrossRef]
- Udriştoiu, I.; Marinescu, I.; Pîrlog, M.C.; Militaru, F.; Udriştoiu, T.; Marinescu, D.; Mutică, M. The microvascular alterations in frontal cortex during treatment with antipsychotics: A post-mortem study. Rom. J. Morphol. Embryol. 2016, 57, 501–506. [Google Scholar] [PubMed]
- Rampino, A.; Annese, T.; Torretta, S.; Tamma, R.; Falcone, R.M.; Ribatti, D. Involvement of vascular endothelial growth factor in schizophrenia. Neurosci. Lett. 2021, 760, 136093. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xiao, W.; Chen, K.; Zhan, Q.; Ye, F.; Tang, X.; Zhang, X. Neurocognition and social cognition in remitted first-episode schizophrenia: Correlation with VEGF serum levels. BMC Psychiatry 2019, 19, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licht, T.; Goshen, I.; Avital, A.; Kreisel, T.; Zubedat, S.; Eavri, R.; Segal, M.; Yirmiya, R.; Keshet, E. Reversible modulations of neuronal plasticity by VEGF. Proc. Natl. Acad. Sci. USA 2011, 108, 5081–5086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blumberg, H.P.; Wang, F.; Chepenik, L.G.; Kalmar, J.H.; Edmiston, E.; Duman, R.S.; Gelernter, J. Influence of vascular endothelial growth factor variation on human hippocampus morphology. Biol. Psychiatry 2008, 64, 901–903. [Google Scholar] [CrossRef] [Green Version]
- Pillai, A.; Howell, K.R.; Ahmed, A.O.; Weinberg, D.; Allen, K.M.; Bruggemann, J.; Lenroot, R.; Liu, D.; Galletly, C.; Weickert, C.S.; et al. Association of serum VEGF levels with prefrontal cortex volume in schizophrenia. Mol. Psychiatry 2016, 21, 686–692. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Dev, S.I.; Chen, G.; Liou, S.C.; Martin, A.S.; Irwin, M.R.; Carroll, J.E.; Tu, X.; Jeste, D.V.; Eyler, L.T. Abnormal levels of vascular endothelial biomarkers in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Devaraju, P.; Yu, J.; Eddins, D.; Mellado-Lagarde, M.M.; Earls, L.R.; Westmoreland, J.J.; Quarato, G.; Green, D.R.; Zakharenko, S.S. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol. Psychiatry 2017, 22, 1313–1326. [Google Scholar] [CrossRef]
- García-de la Cruz, D.D.; Juárez-Rojop, I.E.; Tovilla-Zárate, C.A.; Martínez-Magaña, J.J.; Genis-Mendoza, A.D.; Nicolini, H.; González-Castro, T.B.; Guzmán-Priego, C.G.; López-Martínez, N.A.; Hernández-Cisneros, J.A.; et al. Association between mitochondrial DNA and cognitive impairment in schizophrenia: Study protocol for a Mexican population. Neuropsychiatr. Dis. Treat. 2019, 15, 1717–1722. [Google Scholar] [CrossRef] [Green Version]
- Murrough, J.W.; Iacoviello, B.; Neumeister, A.; Charney, D.S.; Iosifescu, D.V. Cognitive dysfunction in depression: Neurocircuitry and new therapeutic strategies. Neurobiol. Learn. Mem. 2011, 96, 553–563. [Google Scholar] [CrossRef]
- Sarosi, A.; Gonda, X.; Balogh, G.; Domotor, E.; Szekely, A.; Hejjas, K.; Sasvari-Szekely, M.; Faludi, G. Association of the STin2 polymorphism of the serotonin transporter gene with a neurocognitive endophenotype in major depressive disorder. Prog. Neuropsychopharmacol. Biol. 2008, 32, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Hariri, A.R.; Goldberg, T.E.; Mattay, V.S.; Kolachana, V.S.; Callicott, J.H.; Egan, M.F.; Weinberger, D.R. Brain-derived neurotrophic factor val66met polymorphism affects human memory related hippocampal activity and predicts memory performance. J. Neurosci. 2003, 23, 6690–6694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripke, S.; Wray, N.R.; Lewis, C.M.; Hamilton, S.P.; Weissman, M.M.; Breen, G.; Byrne, E.M.; Blackwood, D.H.; Boomsma, D.I.; Cichon, S.; et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 2013, 18, 497–511. [Google Scholar] [CrossRef] [Green Version]
- Mullins, N.; Power, R.A.; Fisher, H.L.; Hanscombe, K.B.; Euesden, J.; Iniesta, R.; Levinson, D.F.; Weissman, M.M.; Potash, J.B.; Shi, J.; et al. Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychol. Med. 2016, 46, 759–770. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S. Neurological disorders: Telomeres and depression. Nat. Rev. Neurosci. 2014, 15, 632. [Google Scholar] [CrossRef]
- Steffens, D.C.; Garrett, M.E.; Soldano, K.L.; McQuoid, D.R.; Ashley-Koch, A.E.; Potter, G.G. Genome-wide screen to identify genetic loci associated with cognitive decline in late-life depression. Int. Psychogeriatr. 2020, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhu, Y.; Chen, W.; Tang, Y. Emerging role of microRNAs in major depressive disorder and its implication on diagnosis and therapeutic response. Affect. Disord. 2021, 286, 80–86. [Google Scholar] [CrossRef]
- Khani-Habibabadi, F.; Askari, S.; Zahiri, J.; Javan, M.; Behmanesh, M. Novel BDNF-regulatory microRNAs in neurodegenerative disorders pathogenesis: An in silico study. Comput. Biol. Chem. 2019, 83, 107153. [Google Scholar] [CrossRef]
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef]
- Dwivedi, Y. The Neurobiological Basis of Suicide; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Muratori, P.; Sutherland, S.E.; Muratori, L.; Granito, A.; Guidi, M.; Pappas, G.; Lenzi, M.; Bianchi, F.B.; Pandey, J.P. Immunoglobulin GM and KM allotypes and prevalence of anti-LKM1 autoantibodies in patients with hepatitis C virus infection. J. Virol. 2006, 80, 5097–5099. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Xiong, J.; Lim, Y.; Ruan, Y.; Huang, C.; Zhu, Y.; Zhong, J.H.; Xiao, Z.; Zhou, X.F. Upregulation of blood proBDNF and its receptors in major depression. J. Affect. Disord. 2013, 150, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Lin, P.Y.; Tu, K.Y.; Cheng, Y.S.; Wu, C.K.; Tseng, P.T. Significantly lower nerve growth factor levels in patients with major depressive disorder than in healthy subjects: A meta-analysis and systematic review. Neuropsychiatr. Dis. Treat. 2014, 11, 925–933. [Google Scholar]
- Lin, P.Y.; Tseng, P.T. Decreased glial cell line-derived neurotrophic factor levels in patients with depression: A meta-analytic study. J. Psychiatr. Res. 2015, 63, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Warner-Schmidt, J.L.; Duman, R.S. VEGF as a potential target for therapeutic intervention in depression. Curr. Opin. Pharmacol. 2008, 8, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.F.; Köhler, C.A.; McIntyre, R.S.; Knöchel, C.; Brunoni, A.R.; Thase, M.E.; Quevedo, J.; Fernandes, B.S.; Berk, M. Peripheral vascular endothelial growth factor as a novel depression biomarker: A meta-analysis. Psychoneuroendocrinology 2015, 62, 18–26. [Google Scholar] [CrossRef]
- Pu, J.; Liu, Y.; Gui, S.; Tian, L.; Xu, S.; Song, X.; Zhong, X.; Chen, Y.; Chen, X.; Yu, Y.; et al. Increased levels of vascular endothelial growth factor in patients with major depressive disorder: A meta-analysis. Eur. Neuropsychopharmacol. 2015, 25, 1622–1630. [Google Scholar]
- He, S.; Zhang, T.; Hong, B.; Peng, D.; Su, H.; Lin, Z.; Fang, Y.; Jiang, K.; Liu, X.; Li, H. Decreased serum fibroblast growth factor-2 levels in pre-and post-treatment patients with major depressive disorder. Neurosci. Lett. 2014, 579, 168–172. [Google Scholar] [CrossRef]
- Isung, J.; Mobarrez, F.; Nordström, P.; Åsberg, M.; Jokinen, J. Low plasma vascular endothelial growth factor (VEGF) associated with completed suicide. World J. Biol. Psychiatry 2012, 13, 468–473. [Google Scholar] [CrossRef]
- Zhang, Q.E.; Ling, S.; Li, P.; Zhang, S.; Ng, C.H.; Ungvari, G.S.; Wang, L.J.; Lee, S.Y.; Wang, G.; Xiang, Y.T. The association between urinary Alzheimer-associated neuronal thread protein and cognitive impairment in late-life depression: A controlled pilot study. Int. J. Biol. Sci. 2018, 14, 1497–1502. [Google Scholar] [CrossRef]
- Allison, D.J.; Ditor, D.S. The common inflammatory etiology of depression and cognitive impairment: A therapeutic target. J. Neuroinflamm. 2014, 11, 151. [Google Scholar] [CrossRef] [Green Version]
- Rosenblat, J.D.; Brietzke, E.; Mansur, R.B.; Maruschak, N.A.; Lee, Y.; McIntyre, R.S. Inflammation as a neurobiological substrate of cognitive impairment in bipolar disorder: Evidence, pathophysiology and treatment implications. J. Affect. Disord. 2015, 188, 149–159. [Google Scholar] [CrossRef]
- Haapakoski, R.; Mathieu, J.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. 2015, 49, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Krogh, J.; Benros, M.E.; Jorgensen, M.B.; Vesterager, L.; Elfving, B.; Nordentoft, M. The association between depressive symptoms, cognitive function, and inflammation in major depression. Brain Behav. Immun. 2014, 35, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Köhler-Forsberg, O.; Buttenschøn, H.N.; Tansey, K.E.; Maier, W.; Hauser, J.; Dernovsek, M.Z.; Henigsberg, N.; Souery, D.; Farmer, A.; Rietschel, M.; et al. Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav. Immun. 2017, 62, 344–350. [Google Scholar] [CrossRef]
- Gimeno, D.; Kivimäki, M.; Brunner, E.J.; Elovainio, M.; De Vogli, R.; Steptoe, A.; Kumari, M.; Lowe, G.D.; Rumley, A.; Marmot, M.G.; et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol. Med. 2009, 39, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.M.; Schröder, T.; Kirkby, K.C.; Sander, C.; Suslow, T.; Holdt, L.M.; Teupser, D.; Hegerl, U.; Himmerich, H. Pro- and anti-inflammatory cytokines, but not CRP, are inversely correlated with severity and symptoms of major depression. Psychiatry Res. 2016, 239, 85–91. [Google Scholar] [CrossRef]
- Tateishi, H.; Mizoguchi, Y.; Kawaguchi, A.; Imamura, Y.; Matsushima, J.; Kunitake, H.; Murakawa, T.; Haraguchi, Y.; Kunitake, Y.; Maekawa, T.; et al. Changes in interleukin-1 beta induced by rTMS are significantly correlated with partial improvement of cognitive dysfunction in treatment-resistant depression: A pilot study. Psychiatry Res. 2020, 289, 112995. [Google Scholar] [CrossRef] [PubMed]
- Fornaro, M.; Rocchi, G.; Escelsior, A.; Contini, P.; Martino, M. Might different cytokine trends in depressed patients receiving duloxetine indicate differential biological backgrounds. J. Affect. Disord. 2013, 145, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.E.; Mendieta, D.; Martínez-Fong, D.; Loría, F.; Moreno, J.; Estrada, I.; Bojalil, R.; Pavón, L. Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder. Eur. Neuropsychopharmacol. 2008, 18, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.D.; Aizenstein, H.J.; Alexopoulos, G.S. The vascular depression hypothesis: Mechanisms linking vascular disease with depression. Mol. Psychiatry 2013, 18, 963–974. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.F.; Miskowiak, K.K.; Hyphantis, T.N.; Kohler, C.A.; Alves, G.S.; Bortolato, B.; GSales, P.M.; Machado-Vieira, R.; Berk, M.; McIntyre, R.S. Cognitive dysfunction in depression-pathophysiology and novel targets. CNS Neurol. Disord. Drug Targets 2014, 13, 1819–1835. [Google Scholar] [CrossRef]
- Luca, M.; Luca, A.; Calandra, C. Accelerated aging in major depression: The role of nitro-oxidative stress. Oxid. Med. Cell. Longev. 2013, 2013, 230797. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.W.; Jaaro-Peled, H.; Shahani, N.; Sedlak, T.W.; Zoubovsky, S.; Burruss, D.; Emiliani, F.; Sawa, A.; Gallagher, M. Cognitive and motivational deficits together with prefrontal oxidative stress in a mouse model for neuropsychiatric illness. Proc. Natl. Acad. Sci. USA 2013, 110, 12462–12467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talarowska, M.; Bobińska, K.; Zajączkowska, M.; Su, K.P.; Maes, M.; Gałecki, P. Impact of oxidative/nitrosative stress and inflammation on cognitive functions in patients with recurrent depressive disorders. Med. Sci. Monit. 2014, 20, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Jaber, V.; Alexandrov, P.N.; Vergallo, A.; Lista, S.; Hampel, H.; Lukiw, W.J. microRNA-Based Biomarkers in Alzheimer’s Disease (AD). Front. Neurosci. 2020, 14, 585432. [Google Scholar] [CrossRef]
- Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K. Alzheimer’s Disease Neuroimaging Initiative. Association of Plasma Neurofilament Light with Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurol. 2017, 74, 557–566. [Google Scholar] [CrossRef]
- Liu, T.C.; Zheng, T.; Duan, R.; Zhu, L.; Zhang, Q.G. On the Biomarkers of Alzheimer’s Disease. Adv. Exp. Med. Biol. 2020, 1232, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Zetterberg, H.; Mattsson, N.; Palmqvist, S.; Vanderstichele, H.; Lindberg, O.; van Westen, D.; Stomrud, E.; Minthon, L.; Blennow, K.; et al. CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios: Better diagnostic markers of Alzheimer disease. Ann. Clin. Transl. Neurol. 2016, 3, 154–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcolea, D.; Martínez-Lage, P.; Sánchez-Juan, P.; Olazarán, J.; Antúnez, C.; Izagirre, A.; Ecay-Torres, M.; Estanga, A.; Clerigué, M.; Guisasola, M.C.; et al. Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology 2015, 85, 626–633. [Google Scholar] [CrossRef]
- Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020, 19, 422–433. [Google Scholar] [CrossRef]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Nam, E.; Lee, Y.B.; Moon, C.; Chang, K.A. Serum Tau Proteins as Potential Biomarkers for the Assessment of Alzheimer’s Disease Progression. Int. J. Mol. Sci. 2020, 21, 5007. [Google Scholar] [CrossRef]
- Karch, C.M.; Goate, A.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 2015, 77, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.H.; Fan, C.C.; Mormino, E.C.; Sugrue, L.P.; Broce, I.J.; Hess, C.P.; Brewer, J.B. Polygenic hazard score: An enrichment marker for Alzheimer’s associated amyloid and tau deposition. Acta Neuropathol. 2018, 135, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.H.; Bonham, L.W.; Fan, C.C.; Mormino, E.C.; Sugrue, L.P.; Broce, I.J.; Yaffe, K. Polygenic hazard score, amyloid deposition and Alzheimer’s neurodegeneration. Brain 2019, 142, 460–470. [Google Scholar] [CrossRef]
- Sims, R.; Hill, M.; Williams, J. The multiplex model of the genetics of Alzheimer’s disease. Nat. Neurosci. 2020, 23, 311–322. [Google Scholar] [CrossRef]
- Leonenko, G.; Sims, R.; Shoai, M.; Frizzati, A.; Bossù, P.; Spalletta, G.; Escott-Price, V. Polygenic risk and hazard scores for Alzheimer’s disease prediction. Ann. Clin. Transl. Neurol. 2019, 6, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Bellenguez, C. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridge, P.G.; Hoyt, K.B.; Boehme, K.; Mukherjee, S.; Crane, P.K.; Haines, J.L.; Kauwe, J.S. Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol. Aging 2016, 41, 200.e13–200.e20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, S.J.; Fulton-Howard, B.; Goate, A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 2020, 19, 326–335. [Google Scholar] [CrossRef]
- Felix RA 2nd Chavez, V.A.; Novicio, D.M.; Morley, B.J.; Portfors, C.V. Nicotinic acetylcholine receptor subunit α7-knockout mice exhibit degraded auditory temporal processing. J. Neurophysiol. 2019, 122, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Noetzli, M.; Guidi, M.; Ebbing, K.; Eyer, S.; Wilhelm, L.; Michon, A.; Thomazic, V.; Stancu, I.; Alnawaqil, A.M.; Bula, C.; et al. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance. Br. J. Clin. Pharmacol. 2014, 78, 135–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noetzli, M.; Guidi, M.; Ebbing, K.; Eyer, S.; Zumbach, S.; Giannakopoulos, P.; von Gunten, A.; Csajka, C.; Eap, C.B. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther. Drug Monit. 2013, 35, 270–275. [Google Scholar] [CrossRef]
- Coin, A.; Pamio, M.V.; Alexopoulos, C.; Granziera, S.; Groppa, F.; de Rosa, G.; Girardi, A.; Sergi, G.; Manzato, E.; Padrini, R. Donepezil plasma concentrations, CYP2D6 and CYP3A4 phenotypes, and cognitive outcome in Alzheimer’s disease. Eur. J. Clin. Pharmacol. 2016, 72, 711–717. [Google Scholar] [CrossRef]
- Albani, D.; Martinelli Boneschi, F.; Biella, G.; Giacalone, G.; Lupoli, S.; Clerici, F.; Benussi, L.; Ghidoni, R.; Galimberti, D.; Squitti, R.; et al. Replication study to confirm the role of CYP2D6 polymorphism rs1080985 on donepezil efficacy in Alzheimer’s disease patients. J. Alzheimers Dis. 2012, 30, 745–749. [Google Scholar] [CrossRef]
- Scacchi, R.; Gambina, G.; Broggio, E.; Corbo, R.M. Sex and ESR1 genotype may influence the response to treatment with donepezil and rivastigmine in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2014, 29, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Fu, J.; Zhong, Y.; Chen, P.; Yang, Q.; Zhao, Y.; Wan, L.; Guo, C. The roles of apolipoprotein E3 and CYP2D6 (rs1065852) gene polymorphisms in the predictability of responses to individualized therapy with donepezil in Han Chinese patients with Alzheimer’s disease. Neurosci. Lett. 2016, 614, 43–48. [Google Scholar] [CrossRef]
- Lu, J.; Fu, J.; Zhong, Y.; Yang, Q.; Huang, J.; Li, J.; Huo, Y.; Zhao, Y.; Wan, L.; Guo, C. Association between ABCA1 gene polymorphisms and the therapeutic response to donepezil therapy in Han Chinese patients with Alzheimer’s disease. Brain Res. Bull. 2018, 140, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sumirtanurdin, R.; Thalib, A.Y.; Cantona, K.; Abdulah, R. Effect of genetic polymorphisms on Alzheimer’s disease treatment outcomes: An update. Clin. Interv. Aging 2019, 14, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, S.; Brookes, K.J.; Patel, T.; Fallows, A.; Guetta-Baranes, T.; Turton, J.C.; Guerreiro, R.; Bras, J.; Hardy, J.; Francis, P.T.; et al. Alzheimer’s disease polygenic risk score as a predictor of conversion from mild-cognitive impairment. Transl. Psychiatry 2019, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Ramos, B.P.; Colgan, L.; Nou, E.; Ovadia, S.; Wilson, S.R.; Arnsten, A.F. The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol. Psychiatry 2005, 58, 894–900. [Google Scholar] [CrossRef]
- Mancera-Páez, O.; Estrada-Orozco, K.; Mahecha, M.F.; Cruz, F.; Bonilla-Vargas, K.; Sandoval, N.; Guerrero, E.; Salcedo-Tacuma, D.; Melgarejo, J.D.; Vega, E.; et al. Differential Methylation in APOE. (Chr19; Exon Four; from 44,909,188 to 44,909,373/hg38) and Increased Apolipoprotein E Plasma Levels in Subjects with Mild Cognitive Impairment. Int. J. Mol. Sci. 2019, 20, 1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chouliaras, L.; Kenis, G.; Visser, P.J.; Scheltens, P.; Tsolaki, M.; Jones, R.W.; Kehoe, P.G.; Graff, C.; Girtler, N.G.; Wallin, Å.K.; et al. DNMT3A moderates cognitive decline in subjects with mild cognitive impairment: Replicated evidence from two mild cognitive impairment cohorts. Epigenomics 2015, 7, 533–537. [Google Scholar] [CrossRef]
- Bey, K.; Wolfsgruber, S.; Karaca, I.; Wagner, H.; Lardenoije, R.; Becker, J.; Milz, E.; Kornhuber, J.; Peters, O.; Frölich, L.; et al. No association of the variant rs11887120 in DNMT3A with cognitive decline in individuals with mild cognitive impairment. Epigenomics 2016, 8, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Mingjiao, W.; Yang, X.; Sui, M.; Zhang, T.; Liang, J.; Gu, X.; Wang, X. Association between DNA methylation of SORL1 5’-flanking region and mild cognitive impairment in type 2 diabetes mellitus. Ann. Endocrinol. 2016, 77, 625–632. [Google Scholar] [CrossRef]
- Sung, H.Y.; Choi, B.O.; Jeong, J.H.; Kong, K.A.; Hwang, J.; Ahn, J.H. Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer’s Disease. PLoS ONE 2016, 11, e0153156. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Lin, X.; Zhang, H.; Zhao, N. ATP Binding Cassette Subfamily A Member 2 (ABCA2) Expression and Methylation are Associated with Alzheimer’s Disease. Med. Sci. Monit. 2017, 23, 5851–5861. [Google Scholar] [CrossRef] [Green Version]
- Mahady, L.; Nadeem, M.; Malek-Ahmadi, M.; Chen, K.; Perez, S.E.; Mufson, E.J. Frontal Cortex Epigenetic Dysregulation during the Progression of Alzheimer’s Disease. J. Alzheimers Dis. 2018, 62, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Pavlopoulos, E.; Jones, S.; Kosmidis, S.; Close, M.; Kim, C.; Kovalerchik, O.; Small, S.A.; Kandel, E.R. Molecular mechanism for age-related memory loss: The histone-binding protein RbAp48. Sci. Transl. Med. 2013, 5, 200ra115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swarbrick, S.; Wragg, N.; Ghosh, S. Stolzing A Systematic Review of miRNA as Biomarkers in Alzheimer’s Disease. Mol. Neurobiol. 2019, 56, 6156–6167. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, P.N.; Dua, P.; Hill, J.M.; Bhattacharjee, S.; Zhao, Y.; Lukiw, W.J. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int. J. Biochem. Mol. Biol. 2012, 3, 365–373. [Google Scholar] [PubMed]
- Brito, L.M.; Ribeiro-Dos-Santos, Â.; Vidal, A.F.; de Araújo, G.S. Differential Expression and miRNA-Gene Interactions in Early and Late Mild Cognitive Impairment. Biology 2020, 9, 251. [Google Scholar] [CrossRef] [PubMed]
- Mathlin, J.; Le Pera, L.; Colombo, T. A Census and Categorization Method of Epitranscriptomic Marks. Int. J. Mol. Sci. 2020, 21, 4684. [Google Scholar] [CrossRef] [PubMed]
- Piscopo, P.; Lacorte, E.; Feligioni, M.; Mayer, F.; Crestini, A.; Piccolo, L.; Bacigalupo, I.; Filareti, M.; Ficulle, E.; Confaloni, A.; et al. MicroRNAs and mild cognitive impairment: A systematic review. Ageing Res. Rev. 2019, 50, 131–141. [Google Scholar] [CrossRef]
- Qin, X.Y.; Cao, C.; Cawley, N.X.; Liu, T.T.; Yuan, J.; Loh, Y.P.; Cheng, Y. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: A meta-analysis study (N = 7277). Mol. Psychiatry 2017, 22, 312–320. [Google Scholar] [CrossRef]
- Borba, E.M.; Duarte, J.A.; Bristot, G.; Scotton, E.; Camozzato, A.L.; Chaves, M.L. Brain-Derived Neurotrophic Factor Serum Levels and Hippocampal Volume in Mild Cognitive Impairment and Dementia due to Alzheimer Disease. Dement. Geriatr. Cogn. Dis. Extra 2016, 6, 559–567. [Google Scholar] [CrossRef]
- Balietti, M.; Giuli, C.; Casoli, T.; Fabbietti, P.; Conti, F. Blood Brain-Derived Neurotrophic Factor a Useful Biomarker to Monitor Mild Cognitive Impairment Patients? Rejuvenation Res. 2020, 23, 411–419. [Google Scholar] [CrossRef]
- Xiao, L.; Ge, B.; Chen, X.; Chen, B.; Qin, L.; Hu, X.; Pan, H.; Chen, Y.; Tian, L.; Gao, Y.; et al. The Relationship Between Plasma DPP4 Activity to BDNF Ratio and Mild Cognitive Impairment in Elderly Population with Normal Glucose Tolerance. Front. Aging Neurosci. 2019, 11, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, M.C.; Gonçalves, G.S.; Rocha, N.P.; Moraes, E.N.; Bicalho, M.A.; Gualberto Cintra, M.T.; Jardim de Paula, J.; José Ravic de Miranda, L.F.; Clayton de Souza Ferreira, A.; Teixeira, A.L.; et al. Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. J. Psychiatr. Res. 2014, 53, 166–172. [Google Scholar] [CrossRef]
- Crispoltoni, L.; Stabile, A.M.; Pistilli, A.; Venturelli, M.; Cerulli, G.; Fonte, C.; Smania, N.; Schena, F.; Rende, M. Changes in Plasma β-NGF and Its Receptors Expression on Peripheral Blood Monocytes during Alzheimer’s Disease Progression. J. Alzheimer Dis. 2017, 55, 1005–1017. [Google Scholar] [CrossRef] [Green Version]
- Fahnestock, M.; Shekari, A. ProNGF and Neurodegeneration in Alzheimer’s Disease. Front. Neurosci. 2019, 13, 129. [Google Scholar] [CrossRef] [Green Version]
- Antonell, A.; Tort-Merino, A.; Ríos, J.; Balasa, M.; Borrego-Écija, S.; Auge, J.M.; Muñoz-García, C.; Bosch, B.; Falgàs, N.; Rami, L.; et al. Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimers Dement. 2020, 16, 262–272. [Google Scholar] [CrossRef]
- Gross, A.L.; Walker, K.A.; Moghekar, A.R.; Pettigrew, C.; Soldan, A.; Albert, M.S.; Walston, J.D. Plasma Markers of Inflammation Linked to Clinical Progression and Decline during Preclinical AD. Front. Aging Neurosci. 2019, 11, 229. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.N.; Niu, L.D.; Wang, Y.J.; Cao, X.P.; Liu, Q.; Tan, L.; Zhang, C.; Yu, J.T. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: A meta-analysis and systematic review of 170 studies. J. Neurol. Neurosurg. Psychiatry 2019, 90, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Trollor, J.N.; Smith, E.; Baune, B.T.; Kochan, N.A.; Campbell, L.; Samaras, K.; Crawford, J.; Brodaty, H.; Sachdev, P. Systemic inflammation is associated with MCI and its subtypes: The Sydney Memory and Aging Study. Dement. Geriatr. Cogn. Disord. 2010, 30, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Magaki, S.; Yellon, S.M.; Mueller, C.; Kirsch, W.M. Immunophenotypes in the circulation of patients with mild cognitive impairment. J. Psychiatr. Res. 2008, 42, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Italiani, P.; Puxeddu, I.; Napoletano, S.; Scala, E.; Melillo, D.; Manocchio, S.; Angiolillo, A.; Migliorini, P.; Boraschi, D.; Vitale, E.; et al. Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: New markers of disease progression? J. Neuroinflamm. 2018, 15, 342. [Google Scholar] [CrossRef]
- Magalhães, C.A.; Ferreira, C.N.; Loures, C.; Fraga, V.G.; Chaves, A.C.; Oliveira, A.; de Souza, L.C.; Resende, E.; Carmona, K.C.; Guimarães, H.C.; et al. Leptin, hsCRP, TNF-α and IL-6 levels from normal aging to dementia: Relationship with cognitive and functional status. J. Clin. Neurosci. 2018, 56, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Boccardi, V.; Westman, E.; Pelini, L.; Lindberg, O.; Muehlboeck, J.S.; Simmons, A.; Tarducci, R.; Floridi, P.; Chiarini, P.; Soininen, H.; et al. Differential Associations of IL-4 with Hippocampal Subfields in Mild Cognitive Impairment and Alzheimer’s Disease. Front. Aging Neurosci. 2019, 10, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, E.; O’Brien, J.T.; Donaghy, P.; Morris, C.; Barnett, N.; Olsen, K.; Martin-Ruiz, C.; Taylor, J.P.; Thomas, A.J. Peripheral inflammation in mild cognitive impairment with possible and probable Lewy body disease and Alzheimer’s disease. Int. Psychogeriatr. 2019, 31, 551–560. [Google Scholar] [CrossRef]
- Shen, X.N.; Lu, Y.; Tan, C.; Liu, L.Y.; Yu, J.T.; Feng, L.; Larbi, A. Identification of inflammatory and vascular markers associated with mild cognitive impairment. Aging 2019, 11, 2403–2419. [Google Scholar] [CrossRef]
- Iulita, M.F.; Ganesh, A.; Pentz, R.; Flores Aguilar, L.; Gubert, P.; Ducatenzeiler, A.; Christie, S.; Wilcock, G.K.; Cuello, A.C. Identification and Preliminary Validation of a Plasma Profile Associated with Cognitive Decline in Dementia and At-Risk Individuals: A Retrospective Cohort Analysis. J. Alzheimers Dis. 2019, 67, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Cervellati, C.; Trentini, A.; Bosi, C.; Valacchi, G.; Morieri, M.L.; Zurlo, A.; Brombo, G.; Passaro, A.; Zuliani, G. Low-grade systemic inflammation is associated with functional disability in elderly people affected by dementia. GeroScience 2018, 40, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Oberlin, L.E.; Erickson, K.I.; Mackey, R.; Klunk, W.E.; Aizenstein, H.; Lopresti, B.J.; Kuller, L.H.; Lopez, O.L.; Snitz, B.E. Peripheral inflammatory biomarkers predict the deposition and progression of amyloid-β in cognitively unimpaired older adults. Brain Behav. Immun. 2021, 95, 178–189. [Google Scholar] [CrossRef]
- Kopschina Feltes, P.; Doorduin, J.; Klein, H.C.; Juárez-Orozco, L.E.; Dierckx, R.A.; Moriguchi-Jeckel, C.M.; de Vries, E.F. Anti-inflammatory treatment for major depressive disorder: Implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J. Psychopharmacol. 2017, 31, 1149–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordengen, K.; Kirsebom, B.E.; Henjum, K.; Selnes, P.; Gísladóttir, B.; Wettergreen, M.; Torsetnes, S.B.; Grøntvedt, G.R.; Waterloo, K.K.; Aarsland, D.; et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J. Neuroinflamm. 2019, 16, 46. [Google Scholar] [CrossRef]
- Olsson, B.; Hertze, J.; Lautner, R.; Zetterberg, H.; Nägga, K.; Höglund, K.; Basun, H.; Annas, P.; Lannfelt, L.; Andreasen, N.; et al. Microglial markers are elevated in the prodromal phase of Alzheimer’s disease and vascular dementia. J. Alzheimers Dis. 2013, 33, 45–53. [Google Scholar] [CrossRef]
- Llorens, F.; Thüne, K.; Tahir, W.; Kanata, E.; Diaz-Lucena, D.; Xanthopoulos, K.; Kovatsi, E.; Pleschka, C.; Garcia-Esparcia, P.; Schmitz, M.; et al. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol. Neurodegener. 2017, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Muszyński, P.; Groblewska, M.; Kulczyńska-Przybik, A.; Kułakowska, A.; Mroczko, B. YKL-40 as a Potential Biomarker and a Possible Target in Therapeutic Strategies of Alzheimer’s Disease. Curr. Neuropharmacol. 2017, 15, 906–917. [Google Scholar] [CrossRef] [Green Version]
- Gispert, J.D.; Monté, G.C.; Suárez-Calvet, M.; Falcon, C.; Tucholka, A.; Rojas, S.; Rami, L.; Sánchez-Valle, R.; Lladó, A.; Kleinberger, G.; et al. The APOE ε4 genotype modulates CSF YKL-40 levels and their structural brain correlates in the continuum of Alzheimer’s disease but not those of sTREM2. Alzheimers Dement. 2016, 6, 50–59. [Google Scholar] [CrossRef]
- Muszyński, P.; Kulczyńska-Przybik, A.; Borawska, R.; Litman-Zawadzka, A.; Słowik, A.; Klimkowicz-Mrowiec, A.; Pera, J.; Dziedzic, T.; Mroczko, B. The Relationship between Markers of Inflammation and Degeneration in the Central Nervous System and the Blood-Brain Barrier Impairment in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 59, 903–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kester, M.I.; Teunissen, C.E.; Sutphen, C.; Herries, E.M.; Ladenson, J.H.; Xiong, C.; Scheltens, P.; van der Flier, W.M.; Morris, J.C.; Holtzman, D.M.; et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimers Res. Ther. 2015, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Morgan, A.R.; Touchard, S.; Leckey, C.; O’Hagan, C.; Nevado-Holgado, A.J.; NIMA Consortium; Barkhof, F.; Bertram, L.; Blin, O.; Bos, I.; et al. Inflammatory biomarkers in Alzheimer’s disease plasma. Alzheimers Dement. 2019, 15, 776–787. [Google Scholar] [CrossRef]
- Toledo, J.B.; Korff, A.; Shaw, L.M.; Trojanowski, J.Q.; Zhang, J. Low levels of cerebrospinal fluid complement 3 and factor H predict faster cognitive decline in mild cognitive impairment. Alzheimers Res. Ther. 2014, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.Y.; Bawa, K.K.; Ouk, M.; Leung, N.; Yu, D.; Lanctôt, K.L.; Herrmann, N.; Pakosh, M.; Swardfager, W. Neutrophil activation in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis of protein markers in blood and cerebrospinal fluid. Ageing Res. Rev. 2020, 62, 101130. [Google Scholar] [CrossRef]
- Oikonomidi, A.; Tautvydaitė, D.; Gholamrezaee, M.M.; Henry, H.; Bacher, M.; Popp, J. Macrophage Migration Inhibitory Factor is Associated with Biomarkers of Alzheimer’s Disease Pathology and Predicts Cognitive Decline in Mild Cognitive Impairment and Mild Dementia. J. Alzheimers Dis. 2017, 60, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Liao, Y.C.; Wang, Y.F.; Lin, I.F.; Wang, S.J.; Fuh, J.L. Plasma MCP-1 and Cognitive Decline in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: A Two-year Follow-up Study. Sci. Rep. 2018, 8, 1280. [Google Scholar] [CrossRef]
- Fuchs, T.; Trollor, J.N.; Crawford, J.; Brown, D.A.; Baune, B.T.; Samaras, K.; Campbell, L.; Breit, S.N.; Brodaty, H.; Sachdev, P.; et al. Macrophage inhibitory cytokine-1 is associated with cognitive impairment and predicts cognitive decline-the Sydney Memory and Aging Study. Aging Cell 2013, 12, 882–889. [Google Scholar] [CrossRef]
- Fu, J.; Duan, J.; Mo, J.; Xiao, H.; Huang, Y.; Chen, W.; Xiang, S.; Yang, F.; Chen, Y.; Xu, S. Mild Cognitive Impairment Patients Have Higher Regulatory T-Cell Proportions Compared with Alzheimer’s Disease-Related Dementia Patients. Front. Aging Neurosci. 2021, 12, 624304. [Google Scholar] [CrossRef] [PubMed]
- Iyalomhe, O.; Swierczek, S.; Enwerem, N.; Chen, Y.; Adedeji, M.O.; Allard, J.; Ntekim, O.; Johnson, S.; Hughes, K.; Kurian, P.; et al. The Role of Hypoxia-Inducible Factor 1 in Mild Cognitive Impairment. Cell. Mol. Neurobiol. 2017, 37, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.L.; Diniz, B.S.; Campos, A.C.; Miranda, A.S.; Rocha, N.P.; Talib, L.L.; Gattaz, W.F.; Forlenza, O.V. Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. Neuromol. Med. 2013, 15, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Scarabino, D.; Peconi, M.; Broggio, E.; Gambina, G.; Maggi, E.; Armeli, F.; Mantuano, E.; Morello, M.; Corbo, R.M.; Businaro, R. Relationship between proinflammatory cytokines (Il-1beta, Il-18) and leukocyte telomere length in mild cognitive impairment and Alzheimer’s disease. Exp. Gerontol. 2020, 136, 110945. [Google Scholar] [CrossRef] [PubMed]
- Horvath, I.; Jia, X.; Johansson, P.; Wang, C.; Moskalenko, R.; Steinau, A.; Forsgren, L.; Wågberg, T.; Svensson, J.; Zetterberg, H.; et al. Pro-inflammatory S100A9 Protein as a Robust Biomarker Differentiating Early Stages of Cognitive Impairment in Alzheimer’s Disease. ACS Chem. Neurosci. 2016, 7, 34–39. [Google Scholar] [CrossRef]
- Moreno-Rodriguez, M.; Perez, S.E.; Nadeem, M.; Malek-Ahmadi, M.; Mufson, E.J. Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer’s disease. J. Neuroinflamm. 2020, 17, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossù, P.; Salani, F.; Ciaramella, A.; Sacchinelli, E.; Mosca, A.; Banaj, N.; Assogna, F.; Orfei, M.D.; Caltagirone, C.; Gianni, W.; et al. Anti-inflammatory Effects of Homotaurine in Patients with Amnestic Mild Cognitive Impairment. Front. Aging Neurosci. 2018, 10, 285. [Google Scholar] [CrossRef] [PubMed]
- Whelan, C.D.; Mattsson, N.; Nagle, M.W.; Vijayaraghavan, S.; Hyde, C.; Janelidze, S.; Stomrud, E.; Lee, J.; Fitz, L.; Samad, T.A.; et al. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol. Commun. 2019, 7, 169. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.; Perrotte, M.; Khedher, M.; Demongin, C.; Lepage, A.; Fülöp, T.; Ramassamy, C. Methylglyoxal and Glyoxal as Potential Peripheral Markers for MCI Diagnosis and Their Effects on the Expression of Neurotrophic, Inflammatory and Neurodegenerative Factors in Neurons and in Neuronal Derived-Extracellular Vesicles. Int. J. Mol. Sci. 2019, 20, 4906. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Yamashita, T.; Fukui, Y.; Song, D.; Li, X.; Zhai, Y.; Nakano, Y.; Morihara, R.; Hishikawa, N.; Ohta, Y.; et al. Different Associations of Plasma Biomarkers in Alzheimer’s Disease, Mild Cognitive Impairment, Vascular Dementia, and Ischemic Stroke. J. Clin. Neurol. 2018, 14, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehiman, S.H.; Lim, S.M.; Neoh, C.F.; Majeed, A.; Chin, A.V.; Tan, M.P.; Kamaruzzaman, S.B.; Ramasamy, K. Proteomics as a reliable approach for discovery of blood-based Alzheimer’s disease biomarkers: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 60, 101066. [Google Scholar] [CrossRef]
- Lin, C.H.; Yang, H.T.; Chiu, C.C.; Lane, H.Y. Blood levels of D-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. Sci. Rep. 2017, 7, 14849. [Google Scholar] [CrossRef]
- Busse, S.; Brix, B.; Kunschmann, R.; Bogerts, B.; Stoecker, W.; Busse, M. N-methyl-d-aspartate glutamate receptor (NMDA-R) antibodies in mild cognitive impairment and dementias. Neurosci. Res. 2014, 85, 58–64. [Google Scholar] [CrossRef]
- Busse, M.; Kunschmann, R.; Dobrowolny, H.; Hoffmann, J.; Bogerts, B.; Steiner, J.; Frodl, T.; Busse, S. Dysfunction of the blood-cerebrospinal fluid-barrier and N-methyl-D-aspartate glutamate receptor antibodies in dementias. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Kosoku, Y.; Sano, Y.; Yoshida, H.; Kudoh, C.; Tabira, T. Homocysteic Acid in Blood Can Detect Mild Cognitive Impairment: A Preliminary Study. J. Alzheimers Dis. 2020, 77, 773–780. [Google Scholar] [CrossRef]
- Peña-Bautista, C.; Roca, M.; Hervás, D.; Cuevas, A.; López-Cuevas, R.; Vento, M.; Baquero, M.; García-Blanco, A.; Cháfer-Pericás, C. Plasma metabolomics in early Alzheimer’s disease patients diagnosed with amyloid biomarker. J. Proteom. 2019, 200, 144–152. [Google Scholar] [CrossRef]
- Whiley, L.; Chappell, K.E.; D’Hondt, E.; Lewis, M.R.; Jiménez, B.; Snowden, S.G.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; et al. AddNeuroMed consortium. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease. Alzheimers Res. Ther. 2021, 13, 20. [Google Scholar] [CrossRef]
- Huan, T.; Tran, T.; Zheng, J.; Sapkota, S.; MacDonald, S.W.; Camicioli, R.; Dixon, R.A.; Li, L. Metabolomics Analyses of Saliva Detect Novel Biomarkers of Alzheimer’s Disease. J. Alzheimers Dis. 2018, 65, 1401–1416. [Google Scholar] [CrossRef] [PubMed]
- Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 2019, 25, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Volgman, A.S.; Bairey Merz, C.N.; Aggarwal, N.T.; Bittner, V.; Bunch, T.J.; Gorelick, P.B.; Maki, P.; Patel, H.N.; Poppas, A.; Ruskin, J.; et al. Sex Differences in Cardiovascular Disease and Cognitive Impairment: Another Health Disparity for Women? J. Am. Heart Assoc. 2019, 8, e013154. [Google Scholar] [CrossRef]
- Miralbell, J.; López-Cancio, E.; López-Oloriz, J.; Arenillas, J.F.; Barrios, M.; Soriano-Raya, J.J.; Galán, A.; Cáceres, C.; Alzamora, M.; Pera, G.; et al. Cognitive patterns in relation to biomarkers of cerebrovascular disease and vascular risk factors. Cerebrovasc. Dis. 2013, 36, 98–105. [Google Scholar] [CrossRef]
- Selley, M.L. Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with Alzheimer’s disease. Neurobiol. Aging 2003, 24, 903–907. [Google Scholar] [CrossRef]
- Cipollini, V.; Troili, F.; Giubilei, F. Emerging Biomarkers in Vascular Cognitive Impairment and Dementia: From Pathophysiological Pathways to Clinical Application. Int. J. Mol. Sci. 2019, 20, 2812. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.M.; Barnes, K.; De Marco, M.; Shaw, P.J.; Ferraiuolo, L.; Blackburn, D.J.; Venneri, A.; Mortiboys, H. Mitochondrial Dysfunction in Alzheimer’s Disease: A Biomarker of the Future? Biomedicines 2021, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.L.; Shenoy, D.V.; Thomas, N.; Choudhary, P.K.; LaFerla, F.M.; Goodman, S.R.; Breen, G.A. Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer’s disease. J. Proteom. 2011, 74, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Hamilton, R.T.; Cadenas, E.; Brinton, R.D. Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochim. Biophys. Acta 2010, 1800, 1121–1126. [Google Scholar] [CrossRef] [Green Version]
- Pfleger, J.; He, M.; Abdellatif, M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 2015, 6, e1835. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Li, J.; Huang, L.; Chen, X.; Li, D.; Wang, T.; Hu, C.; Xu, J.; Zhang, C.; Zen, K.; et al. Serum MicroRNA Profiles Serve as Novel Biomarkers for the Diagnosis of Alzheimer’s Disease. Dis. Markers 2015, 2015, 625659. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, S.; Maj, M.; Kirkpatrick, B.; Piccardi, P.; Mucci, A.; Invernizzi, G.; Rossi, A.; Pini, S.; Vita, A.; Cassano, P.; et al. Catechol-O-methyltransferase Val158Met polymorphism in schizophrenia: Associations with cognitive and motor impairment. Neuropsychobiology 2005, 52, 83–89. [Google Scholar] [CrossRef]
- Bilder, R.M.; Volavka, J.; Czobor, P.; Malhotra, A.K.; Kennedy, J.L.; Ni, X.; Goldman, R.S.; Hoptman, M.J.; Sheitman, B.; Lindenmayer, J.P.; et al. Neurocognitive correlates of the COMT Val 158 Met polymorphism in chronic schizophrenia. Biol. Psychiatry 2002, 52, 701–707. [Google Scholar] [CrossRef]
- Pandey, J.P.; Namboodiri, A.M.; Nietert, P.J.; Yoshimura, R.; Hori, H. Immunoglobulin genotypes and cognitive functions in schizophrenia. Immunogenetics 2018, 70, 67–72. [Google Scholar] [CrossRef]
- Lu, B.; Nagappan, G.; Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 2014, 220, 223–250. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, G.; Hei, G.; Wang, X.; Li, R.; Li, L.; Wu, R.; Zhao, J. Brain-derived neurotrophic factor is associated with cognitive impairments in first-episode and chronic schizophrenia. Psychiatry Res. 2019, 273, 528–536. [Google Scholar] [CrossRef]
- Chao, X.L.; Jiang, S.Z.; Xiong, J.W.; Zhan, J.Q.; Yan, K.; Yang, Y.J.; Jiang, L.P. The association between serum insulin-like growth factor 1 and cognitive impairments in patients with schizophrenia. Psychiatry Res. 2020, 285, 112731. [Google Scholar] [CrossRef]
- Dorofeikova, M.; Neznanov, N.; Petrova, N. Cognitive deficit in patients with paranoid schizophrenia: Its clinical and laboratory correlates. Psychiatry Res. 2018, 262, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Keshri, N.; Nandeesha, H.; Rajappa, M.; Menon, V. Matrix metalloproteinase-9 increases the risk of cognitive impairment in schizophrenia. Nord. J. Psychiatry 2021, 75, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Azuma, K.; Sakai, F.; Tazaki, Y. Increase in cerebrospinal fluid and plasma levels of 3-methoxy-4-hydroxyphenylglycol in acute stroke. Stroke 1991, 22, 1525–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bora, E.; Akdede, B.B.; Alptekin, K. The relationship between cognitive impairment in schizophrenia and metabolic syndrome: A systematic review and meta-analysis. Psychol. Med. 2017, 47, 1030–1040. [Google Scholar] [CrossRef]
- De La Monte, S.M.; Wands, J.R. The AD7c-NTP neuronal thread protein biomarker for detecting Alzheimer’s disease. J. Alzheimers Dis. 2001, 3, 345–353. [Google Scholar] [CrossRef]
- Ritchie, C.; Smailagic, N.; Noel-Storr, A.H.; Ukoumunne, O.; Ladds, E.C.; Martin, S. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2017, 3, CD010803. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, C.; Smailagic, N.; Noel-Storr, A.H.; Takwoingi, Y.; Flicker, L.; Mason, S.E.; McShane, R. Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2014, 2014, CD008782. [Google Scholar] [CrossRef]
- Eshkoor, S.A.; Hamid, T.A.; Mun, C.Y.; Ng, C.K. Mild cognitive impairment and its management in older people. Clin. Interv. Aging 2015, 10, 687–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lashley, T.; Schott, J.M.; Weston, P.; Murray, C.E.; Wellington, H.; Keshavan, A.; Foti, S.C.; Foiani, M.; Toombs, J.; Rohrer, J.D.; et al. Molecular biomarkers of Alzheimer’s disease: Progress and prospects. Dis. Model. Mech. 2018, 11, dmm031781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovod, V.; Ramsey, K.N.; Mawuenyega, K.G.; Bollinger, J.G.; Hicks, T.; Schneider, T.; Sullivan, M.; Paumier, K.; Holtzman, D.M.; Morris, J.C.; et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017, 13, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Dorey, A.; Perret-Liaudet, A.; Tholance, Y.; Fourier, A.; Quadrio, I. Cerebrospinal Fluid Aβ40 Improves the Interpretation of Aβ42 Concentration for Diagnosing Alzheimer’s Disease. Front. Neurol. 2015, 6, 247. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Poljak, A.; Smythe, G.A.; Sachdev, P. Plasma biomarkers for mild cognitive impairment and Alzheimer’s disease. Brain Res. Rev. 2009, 61, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef]
- Qian, J.; Wolters, F.J.; Beiser, A.; Haan, M.; Ikram, M.A.; Karlawish, J.; Langbaum, J.B.; Neuhaus, J.M.; Reiman, E.M.; Roberts, J.S.; et al. APOE-related risk of mild cognitive impairment and dementia for prevention trials: An analysis of four cohorts. PLoS Med. 2017, 14, e1002254. [Google Scholar] [CrossRef] [Green Version]
- Sutton, T.A.; Sohrabi, H.R.; Rainey-Smith, S.R.; Bird, S.M.; Weinborn, M.; Martins, R.N. The role of APOE-ɛ4 and beta amyloid in the differential rate of recovery from ECT: A review. Transl. Psychiatry 2015, 5, e539. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.A. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019, 57, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Rosa-Neto, P.; Hsiung, G.Y.; Sadovnick, A.D.; Masellis, M.; Black, S.E.; Jia, J.; Gauthier, S. Early-onset familial Alzheimer’s disease (EOFAD). Can. J. Neurol. Sci. 2012, 39, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Koelsch, G. BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer’s Disease Pathology. Molecules 2017, 22, 1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zetterberg, H.; Blennow, K. Biological CSF markers of Alzheimer’s disease. Handb. Clin. Neurol. 2008, 89, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Ewers, M.; Teipel, S.; Bürger, K.; Wallin, A.; Blennow, K.; He, P.; McAllister, C.; Hampel, H.; Shen, Y. Levels of beta-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch. Gen. Psychiatry 2007, 64, 718–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervellati, C.; Trentini, A.; Rosta, V.; Passaro, A.; Bosi, C.; Sanz, J.M.; Bonazzi, S.; Pacifico, S.; Seripa, D.; Valacchi, G.; et al. Serum beta-secretase 1 (BACE1) activity as candidate biomarker for late-onset Alzheimer’s disease. Geroscience 2020, 42, 159–167. [Google Scholar] [CrossRef]
- Duivis, H.E.; Kupper, N.; Vermunt, J.K.; Penninx, B.W.; Bosch, N.M.; Riese, H.; Oldehinkel, A.J.; de Jonge, P. Depression trajectories, inflammation, and lifestyle factors in adolescence: The TRacking Adolescents’ Individual Lives Survey. Health Psychol. 2015, 34, 1047–1057. [Google Scholar] [CrossRef]
- Milton, D.C.; Ward, J.; Ward, E.; Lyall, D.M.; Strawbridge, R.J.; Smith, D.J.; Cullen, B. The association between C-reactive protein, mood disorder, and cognitive function in UK Biobank. Eur. Psychiatry 2021, 64, e14. [Google Scholar] [CrossRef] [PubMed]
- De Strooper, B. Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep. 2007, 8, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Giau, V.V.; Senanarong, V.; Bagyinszky, E.; An, S.; Kim, S. Analysis of 50 Neurodegenerative Genes in Clinically Diagnosed Early-Onset Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 1514. [Google Scholar] [CrossRef] [Green Version]
- Reitz, C.; Mayeux, R. Use of genetic variation as biomarkers for mild cognitive impairment and progression of mild cognitive impairment to dementia. J. Alzheimers Dis. 2010, 19, 229–251. [Google Scholar] [CrossRef] [Green Version]
- Campion, D.; Charbonnier, C.; Nicolas, G. SORL1 genetic variants and Alzheimer disease risk: A literature review and meta-analysis of sequencing data. Acta Neuropathol. 2019, 138, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Babić Leko, M.; Borovečki, F.; Dejanović, N.; Hof, P.R.; Šimić, G. Predictive Value of Cerebrospinal Fluid Visinin-Like Protein-1 Levels for Alzheimer’s Disease Early Detection and Differential Diagnosis in Patients with Mild Cognitive Impairment. J. Alzheimers Dis. 2016, 50, 765–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groblewska, M.; Muszyński, P.; Wojtulewska-Supron, A.; Kulczyńska-Przybik, A.; Mroczko, B. The Role of Visinin-Like Protein-1 in the Pathophysiology of Alzheimer’s Disease. J. Alzheimers Dis. 2015, 47, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Mengel-From, J.; Thinggaard, M.; Lindahl-Jacobsen, R.; McGue, M.; Christensen, K.; Christiansen, L. CLU genetic variants and cognitive decline among elderly and oldest old. PLoS ONE 2013, 8, e79105. [Google Scholar] [CrossRef] [Green Version]
- Mullan, G.M.; McEneny, J.; Fuchs, M.; McMaster, C.; Todd, S.; McGuinness, B.; Henry, M.; Passmore, A.P.; Young, I.S.; Johnston, J.A. Plasma clusterin levels and the rs11136000 genotype in individuals with mild cognitive impairment and Alzheimer’s disease. Curr. Alzheimer Res. 2013, 10, 973–978. [Google Scholar] [CrossRef]
- Yu, J.T.; Tan, L. The role of clusterin in Alzheimer’s disease: Pathways, pathogenesis, and therapy. Mol. Neurobiol. 2012, 45, 314–326. [Google Scholar] [CrossRef]
- Van Giau, V.; An, S.S.A. Optimization of specific multiplex DNA primers to detect variable CLU. genomic lesions in patients with Alzheimer’s disease. BioChip J. 2015, 9, 278–284. [Google Scholar] [CrossRef]
- Jay, T.R.; von Saucken, V.E.; Landreth, G.E. TREM2 in Neurodegenerative Diseases. Mol. Neurodegener. 2017, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, M.; Elcoroaristizabal Martín, X.; Blanco Martín, E.; Galdos Alcelay, L.; Ugarriza Serrano, I.; Gómez Busto, F.; Alvarez-Álvarez, M.; Molano Salazar, A.; Bereincua Gandarias, R.; Inglés Borda, S.; et al. Oestrogen receptor polymorphisms are an associated risk factor for mild cognitive impairment and Alzheimer disease in women APOE {varepsilon}4 carriers: A case-control study. BMJ Open 2013, 3, e003200. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Jia, J.P.; Ji, X.J.; Tian, T. Estrogen associated gene polymorphisms and their interactions in the progress of Alzheimer’s disease. Prog. Neurobiol. 2013, 111, 53–74. [Google Scholar] [CrossRef]
- Chiba-Falek, O.; Gottschalk, W.K.; Lutz, M.W. The effects of the TOMM40 poly-T alleles on Alzheimer’s disease phenotypes. Alzheimers Dement. 2018, 14, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Cruchaga, C.; Karch, C.M.; Jin, S.C.; Benitez, B.A.; Cai, Y.; Guerreiro, R.; Harari, O.; Norton, J.; Budde, J.; Bertelsen, S.; et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 2014, 505, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Jun, G.R.; Chung, J.; Mez, J.; Barber, R.; Beecham, G.W.; Bennett, D.A.; Buxbaum, J.D.; Byrd, G.S.; Carrasquillo, M.M.; Crane, P.K.; et al. Transethnic genome-wide scan identifies novel Alzheimer’s disease loci. Alzheimers Dement. 2017, 13, 727–738. [Google Scholar] [CrossRef]
- Allen, M.; Kachadoorian, M.; Carrasquillo, M.M.; Karhade, A.; Manly, L.; Burgess, J.D.; Wang, C.; Serie, D.; Wang, X.; Siuda, J.; et al. Late-onset Alzheimer disease risk variants mark brain regulatory loci. Neurol. Genet. 2015, 1, e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, S.L.; Benayoun, L.; Tilton, K.; Chavez, O.R.; Himali, J.J.; Blusztajn, J.K.; Seshadri, S.; Delalle, I. Methionine Sulfoxide Reductase-B3 (MsrB3) Protein Associates with Synaptic Vesicles and its Expression Changes in the Hippocampi of Alzheimer’s Disease Patients. J. Alzheimers Dis. 2017, 60, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.S.; Tonarelli, S.; Luo, X.; Wang, L.; Su, B.; Zuo, L.; Mao, C.; Rubin, L.; Briones, D.; Xu, C. Polymorphisms within ASTN2 gene are associated with age at onset of Alzheimer’s disease. J. Neural Transm. 2015, 122, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Sheinerman, K.S.; Tsivinsky, V.G.; Abdullah, L.; Crawford, F.; Umansky, S.R. Plasma microRNA biomarkers for detection of mild cognitive impairment: Biomarker validation study. Aging Albany NY 2013, 5, 925–938. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Liu, C.; Zhou, Y.; Qi, J.; Zhang, C.; Sun, B.; Wang, J.; Guan, Y. Progress of RAGE Molecular Imaging in Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 227. [Google Scholar] [CrossRef]
- Aloe, L.; Rocco, M.L.; Balzamino, B.O.; Micera, A. Nerve Growth Factor: A Focus on Neuroscience and Therapy. Curr. Neuropharmacol. 2015, 13, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Landqvist Waldö, M.; Frizell Santillo, A.; Passant, U.; Zetterberg, H.; Rosengren, L.; Nilsson, C.; Englund, E. Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol. 2013, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Kvartsberg, H.; Duits, F.H.; Ingelsson, M.; Andreasen, N.; Öhrfelt, A.; Andersson, K.; Brinkmalm, G.; Lannfelt, L.; Minthon, L.; Hansson, O.; et al. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimers Dement. 2015, 11, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Portelius, E.; Zetterberg, H.; Skillbäck, T.; Törnqvist, U.; Andreasson, U.; Trojanowski, J.Q.; Weiner, M.W.; Shaw, L.M.; Mattsson, N.; Blennow, K.; et al. Neuroimaging Initiative. Cerebrospinal fluid neurogranin: Relation to cognition and neurodegeneration in Alzheimer’s disease. Brain 2015, 138, 3373–3385. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F.M.; Mergl, R.; Stach, B.; Jahn, I.; Gertz, H.J.; Schönknecht, P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer’s disease. Neurosci. Lett. 2014, 570, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Brinkmalm, A.; Brinkmalm, G.; Honer, W.G.; Frölich, L.; Hausner, L.; Minthon, L.; Hansson, O.; Wallin, A.; Zetterberg, H.; Blennow, K.; et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. Mol. Neurodegener. 2014, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Zhang, L.; Li, Y.; Gordon, M.L.; Cai, L.; Wang, Y.; Xing, M.; Cheng, Y. Urine AD7c-NTP Predicts Amyloid Deposition and Symptom of Agitation in Patients with Alzheimer’s Disease and Mild Cognitive Impairment. J. Alzheimers Dis. 2017, 60, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, H.; Ghanbari, K.; Beheshti, I.; Munzar, M.; Vasauskas, A.; Averback, P. Biochemical assay for AD7C-NTP in urine as an Alzheimer’s disease marker. J. Clin. Lab. Anal. 1998, 12, 285–288. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.H.; Li, R.J.; Lin, X.L.; Chen, Y.D.; Gao, H.Q.; Shi, S.L. Accuracy of urinary AD7c-NTP for diagnosing Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis. 2014, 40, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Wennberg, A.; Hagen, C.E.; Machulda, M.M.; Knopman, D.S.; Petersen, R.C.; Mielke, M.M. The Cross-sectional and Longitudinal Associations between IL-6, IL-10, and TNFα and Cognitive Outcomes in the Mayo Clinic Study of Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1289–1295. [Google Scholar] [CrossRef]
- Xiao, L.; Du, Y.; Shen, Y.; He, Y.; Zhao, H.; Li, Z. TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front. Biosci. Landmark Ed. 2012, 17, 2667–2674. [Google Scholar] [CrossRef] [Green Version]
- Parente, R.; Clark, S.J.; Inforzato, A.; Day, A.J. Complement factor H in host defense and immune evasion. Cell. Mol. Life Sci. 2017, 74, 1605–1624. [Google Scholar] [CrossRef] [PubMed]
- Elgueta, R.; Benson, M.J.; de Vries, V.C.; Wasiuk, A.; Guo, Y.; Noelle, R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 2009, 229, 152–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masjedi, A.; Hajizadeh, F.; Beigi Dargani, F.; Beyzai, B.; Aksoun, M.; Hojjat-Farsangi, M.; Zekiy, A.; Jadidi-Niaragh, F. Oncostatin M: A mysterious cytokine in cancers. Int. Immunopharmacol. 2021, 90, 107158. [Google Scholar] [CrossRef] [PubMed]
- McMahan, R.S.; Birkland, T.P.; Smigiel, K.S.; Vandivort, T.C.; Rohani, M.G.; Manicone, A.M.; McGuire, J.K.; Gharib, S.A.; Parks, W.C. Stromelysin-2 (MMP10) Moderates Inflammation by Controlling Macrophage Activation. J. Immunol. 2016, 197, 899–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go, G.W.; Mani, A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J. Biol. Med. 2012, 85, 19–28. [Google Scholar]
- Qin, X.; Jiang, B.; Zhang, Y. 4E-BP1, a multifactor regulated multifunctional protein. Cell Cycle 2016, 15, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Craig-Schapiro, R.; Perrin, R.J.; Roe, C.M.; Xiong, C.; Carter, D.; Cairns, N.J.; Mintun, M.A.; Peskind, E.R.; Li, G.; Galasko, D.R.; et al. YKL-40: A novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol. Psychiatry 2010, 68, 903–912. [Google Scholar] [CrossRef] [Green Version]
- Öhrfelt, A.; Brinkmalm, A.; Dumurgier, J.; Brinkmalm, G.; Hansson, O.; Zetterberg, H.; Bouaziz-Amar, E.; Hugon, J.; Paquet, C.; Blennow, K. The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. Alzheimers Res. Ther. 2016, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Goetzl, E.J.; Kapogiannis, D.; Schwartz, J.B.; Lobach, I.V.; Goetzl, L.; Abner, E.L.; Jicha, G.A.; Karydas, A.M.; Boxer, A.; Miller, B.L. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J. 2016, 30, 4141–4148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cater, J.H.; Wilson, M.R.; Wyatt, A.R. Alpha-2-Macroglobulin, a Hypochlorite-Regulated Chaperone and Immune System Modulator. Oxid. Med. Cell. Longev. 2019, 5410657. [Google Scholar] [CrossRef] [Green Version]
- Eckhardt, D.; Li-Blatter, X.; Schönfeld, H.J.; Heerklotz, H.; Seelig, J. Cooperative unfolding of apolipoprotein A-1 induced by chemical denaturation. Biophys. Chem. 2018, 240, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Manka, S.W.; Bihan, D.; Farndale, R.W. Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling. Sci. Rep. 2019, 9, 18785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar]
- Stanga, S.; Lanni, C.; Sinforiani, E.; Mazzini, G.; Racchi, M. Searching for predictive blood biomarkers: Misfolded p53 in mild cognitive impairment. Curr. Alzheimer Res. 2012, 9, 1191–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vousden, K.H.; Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 2007, 8, 275–283. [Google Scholar] [CrossRef]
- Ludvigsson, J. C-peptide in diabetes diagnosis and therapy. Front. Biosci. Elite Ed. 2013, 5, 214–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crippa, M.P. Urokinase-type plasminogen activator. Int. J. Biochem. Cell Biol. 2007, 39, 690–694. [Google Scholar] [CrossRef]
- Mazzoni, S.M.; Fearon, E.R. AXIN1 and AXIN2 variants in gastrointestinal cancers. Cancer Lett. 2014, 355, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeMarshall, C.A.; Nagele, E.P.; Sarkar, A.; Acharya, N.K.; Godsey, G.; Goldwaser, E.L.; Kosciuk, M.; Thayasivam, U.; Han, M.; Belinka, B.; et al. Alzheimer’s Disease Neuroimaging Initiative Detection of Alzheimer’s disease at mild cognitive impairment and disease progression using autoantibodies as blood-based biomarkers. Alzheimers Dement. 2016, 3, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Li, L. Autoantibodies in Alzheimer’s disease: Potential biomarkers, pathogenic roles, and therapeutic implications. J. Biomed. Res. 2016, 30, 361–372. [Google Scholar] [CrossRef]
- Zheng, T.; Qin, L.; Chen, B.; Hu, X.; Zhang, X.; Liu, Y.; Liu, H.; Qin, S.; Li, G.; Li, Q. Association of Plasma DPP4 Activity with Mild Cognitive Impairment in Elderly Patients with Type 2 Diabetes: Results from the GDMD Study in China. Diabetes Care 2016, 39, 1594–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Biomarker | Biomarker Group | Bodily Fluid | Effect in Organism | Change in Disease | Reference |
---|---|---|---|---|---|
Schizophrenia | |||||
Transcription Factor 20 (TCF20) | Genetic | - | TCF20 encodes a widely expressed transcriptional coregulatory. | TCF20 mutations are associated with autism and intellectual disability. A shared genetic effects between SZ and cognitive traits. | [75] |
Cytochrome P450 Family 2 Subfamily D Member 6 (CYP2D6) | Genetic | - | CYP2D6 encodes a cytochrome P450 enzyme that metabolizes a broad range of drugs, including antipsychotics, and may also be involved in the metabolism of neurotransmitters, including serotonin and dopamine. | A shared genetic effects between SZ and cognitive traits. | [75] |
Alpha-N-Acetylgalactosaminidase (NAGA) | Genetic | - | NAGA encodes a lysosomal enzyme that modifies glycoconjugates. | A shared genetic effects between SZ and cognitive traits. | [75] |
Protein interacting with C kinase 1 alpha (PICK1) | Genetic | - | PICK1 colocalizes with AMPA receptors at excitatory synapses, induces AMPA receptor synaptic activity with its internalization and down-regulation. Phosphorylation of AMPA receptors by PKCα bound to PICK1 causes the activation of NMDA receptor. | PICK1 polymorphisms may associate with cognitive functions in SZ patients. The rs2076369 G/T genotype showed better performance than T/T homozygotes, and A/A homozygotes of rs3952 performed better than G/G in the cognitive scores. | [75] |
Encoding chromodomain helicase DNA binding protein 7 (CHD7) | Genetic | - | ATP-dependent chromatin remodeler. | Strongest associations SNP rs6984242 with IQ and episodic memory in SZ. | [77] |
E1A Binding Protein P300 (EP300) | Genetic | - | EP300 encodes the histone acetyltransferase. | The associations SNP rs9607782 with episodic memory in SZ. | [77] |
GATA Zinc Finger Domain Containing 2A (GATAD2A) | Genetic | - | A transcriptional repressor and subunit of the nucleosome remodeling and deacetylase (NuRD) complex. | The associations SNP rs2905426 with IQ in SZ. | [77] |
Lysine Demethylase 3B (KDM3B) | Genetic | - | Gene necessary for normal spermatogenesis and sexual behaviors in males and encodes an enzyme that removes a key transcriptional repressive modification from chromatin. | The associations SNP rs10043984 with attention in SZ. | [77] |
Arginine-Glutamic Acid Dipeptide Repeats (RERE) | Genetic | - | A transcriptional co-repressor that binds chromatin and is involved in cerebellar development. | The associations SNP rs34269918 with attention in SZ. | [77] |
Solute Carrier Family 1 Member 2 (SLC1A2) | Genetic | - | Gene encodes a member of a family of solute transporter proteins, which clears the excitatory neurotransmitter glutamate from the extracellular space at synapses. | SNP rs4354668 and its haplotypes may be involved in impaired executive function in SZ. | [260] |
Catechol-O-methyltransferase (COMT) | Genetic | - | An enzyme that plays an important role in the degrade of catecholamines. | The associations between the COMT genotype (COMT Val(158)Met) and indices of attention/executive functions in patients with SZ. | [261,262] |
Cell-free mitochondrial DNA (cf-mtDNA) | Genetic | Blood | Circulating cf-mtDNA fragments in blood plasma. | Circulating cf-mtDNA levels may serve as a potential biomarker to determine the cognitive status of patients with SZ. | [121] |
Immunoglobulin GM (γ marker) and KM (κ marker) | Genetic Inflammatory | - | GM and KM allotypes—genetic markers of immunoglobulin γ and κ chains, which are associated with humoral immunity. | Particular KM and GM genotypes associate with verbal memory and attention and processing speed scores. Epistatic effects of GM and KM genotypes on attention and processing speed, verbal fluency, and motor speed. | [134,263] |
IL-10 | Genetic Inflammatory | - | The anti-inflammatory cytokine. | SZ patients with the AA allele of the IL10-592 A/C polymorphism perform worse in attention. | [78] |
IL-1β mRNA | Epigenetic Inflammatory | Blood | The anti-inflammatory cytokine. | The elevated IL-1β mRNA levels are associated with both impairments in verbal fluency and brain volume reduction in patients with SZ. | [104] |
Histone deacetylases (HDAC) | Epigenetic | - | HDACs modify histones and change chromatin conformation and play an important role in the regulation of gene expression. HDAC regulate cognitive circuitry. | Relative HDAC expression is lower in the dorsolateral PFC of patients with SZ compared with controls, and HDAC expression positively correlated with cognitive performance scores. | [79] |
BDNF | Neuroplasticity | Blood | BDNF is a neurotrophin in the brain, whose functions are to control neuronal and glial development, neuroprotection, and modulation of synaptic interactions. | Cognitive impairment in SZ is associated with decreased levels of BDNF. | [93,263,264,265] |
Insulin-like growth factors—1 (IGF-1) | Neuroplasticity | Blood | IGFs are members of the insulin superfamily and play a key regulatory role in the development of the brain. IGFs promote the proliferation, differentiation, and maturation of neural cells. | IGF-1 levels correlate positively with executive function and attention scores in SZ patients. IGF-1 is an independent contributor to deficits in executive function and attention among SZ patients. | [266] |
Neuron-specific enolase (NSE) | Neuroplasticity | Blood | NSE is the biomarker of all differentiated neurons. The determination of the concentration of NSE in the serum and CSF provides information on the severity of neuronal damage and the integrity of the BBB. | Thought disorders are more pronounced in patients with higher NSE levels. | [267] |
CRP | Inflammatory | Blood | Acute inflammation protein that is overexpressed in inflammatory conditions. | Cognitive impairment in SZ is associated with elevated levels of CRP. Thought disorders are more pronounced in patients with higher CRP levels. | [93,102,103,106,267,268] |
TNF-α | Inflammatory | Blood | Pro-inflammatory cytokine. | A better cognitive functioning of SZ patients with higher levels of TNF-α. | [102,103] |
IL-6 | Inflammatory | Blood | The anti-inflammatory cytokine. | A positive association between IL-6 levels and worse cognitive performance. | [103,105,106] |
IL-1 receptor antagonist (IL-1Ra) | Inflammatory | Blood | IL-1RA is a protein that regulates the activity of IL-1. | General cognitive abilities is associated with IL-1Ra in SZ patients. | [103] |
Matrix metalloprotease-9 (MMP-9) | Inflammatory | Blood | MMPs are secreted by glial and neuronal cells in the brain and are involved in neuroinflammation and neurotoxicity, which play a role in hippocampal-dependent learning. | MMP-9 is associated with fluency and language component of cognition and increases the risk of cognitive impairment in SZ. | [269] |
Asymmetric dimethylarginine (ADMA) | Other | Blood | Endogenous inhibitor of the nitric oxide synthase | ADMA associate negatively with attention, working memory and executive function in SZ. | [181] |
Hydrogen sulfide (H2S) | Other | Blood | H2S is an endogenous gasotransmitter, that regulates NMDAR function. | A positive association between H2S levels and working memory, visual memory, or executive function in SZ patients. | [181] |
3-methoxy-4-hydroxyphenylglycol (MHPG) | Other | Blood | Plasma catecholamine metabolite (norepinephrine degradation). | MHPG levels associate with working memory, verbal fluency, executive function, attention, and processing speed in SZ | [263,270] |
Metabolic syndrome (MetS) | Other | - | MetS is defined as a clustering of at least three interrelated cardiovascular risk-factor abnormalities, including abdominal obesity, hyperglycemia, hypertension, high triglycerides, or low high-density lipoprotein (HDL) cholesterol levels. | A relationship between each of the components of MetS and cognitive impairment in SZ. | [271] |
Depression | |||||
Solute Carrier Family 27 Member 1 (SLC27A1) | Genetic | - | SLC27A1 encodes the fatty acid transport protein 1, which has DHA as a substrate. DHA is an endogenous neuroprotective compound in the brain. | Each additional copy of the G allele of SNP rs11666579 is associated with an average decrease of baseline cognitive scores (CERAD-TS) in late-life depression patients. | [129] |
Glutaredoxin And Cysteine Rich Domain Containing 1 (GRXCR1) | Genetic | - | A gene previously linked with deafness. | SNP rs73240021 is the most significant SNP associated with cognitive scores (CERAD-TS) decline over time in late-life depression patients. | [129] |
SNP rs1766259 | Genetic | - | Intergenic SNP on chromosome 6. | For each additional G allele of SNP rs17662598, average baseline cognitive scores (CERAD-TS) decrease in late-life depression patients. | [129] |
STin2 polymorphism | Genetic | - | The STin2 polymorphism is a tandem repeat located in intron 2 in the serotonin transporter gene. STin2 polymorphism has an effect on the quantity of the serotonin transporter. | The frequencies of STin2 genotypes differ in depressed and controlled patients. STin2 genotypes influence on results of cognitive interference tasks, working memory tasks, and recall tasks in depressed patients. | [123] |
Neuronal thread protein (AD7c-NTP) | Neuroplasticity | Urine | A transmembran phosphoprotein that causes apoptosis and neuritic sprouting in transfected neuronal cells. | Urinary levels of AD7c-NTP in the late-life depression with cognitive impairment patients are higher than in both the late-life depression without cognitive impairment patients, and healthy control, but lower than in the AD patients. | [143,272] |
CRP | Inflammatory | Blood | Acute inflammation protein that is overexpressed in inflammatory conditions. | Persistent depressive symptoms (including cognitive) are associated with subsequent higher levels of CRP. Among women, higher CRP is associated with increased severity of cognitive symptoms. Baseline CRP predicts cognitive symptoms of depression at follow-up. The highest CRP quintile is associated with both negative and positive differences in cognitive performance. The lower CRP levels are associated with improved performance in psychomotor speed tasks. | [147,148,149,273,274] |
Interferon gamma (IFN-γ) | Inflammatory | Blood | Cytokine | IFN-γ negatively correlated with the score cognitive factor. | [150] |
TNFα | Inflammatory | Blood | Pro-inflammatory cytokine. | TNF-α negatively correlated with the score cognitive factor. | [150] |
IL-1β | Inflammatory | Blood | Cytokine | Partial changes in cognitive function and changes in IL-1β are correlated in treatment-resistant depression patients. | [151] |
IL-4 | Inflammatory | Blood | Cytokine | IL-4 negatively correlated with the score cognitive factor. | [150] |
IL-5 | Inflammatory | Blood | Cytokine | IL-5 negatively correlated with the score cognitive factor. | [150] |
IL-6 | Inflammatory | Blood | Cytokine | Baseline IL-6 predicted cognitive symptoms of depression at follow-up. The lower IL-6 levels are associated with improved performance of the Stroop, incongruent test. Poorer verbal fluency performance is associated with reduced IL-6 levels. | [147,149] |
IL-12 | Inflammatory | Blood | Cytokine | IL-12 negatively correlated with the score cognitive factor. | [150] |
IL-13 | Inflammatory | Blood | Cytokine | IL-13 negatively correlated with the score cognitive factor. | [150] |
MCI/Alzheimer’s disease | |||||
Aβ40, Aβ42, Aβ42/Aβ40, Aβ42/Aβ38 ratios | Neurodegenerative | CSF | Amyloid-beta (Aβ)—peptides that are the main component of amyloid plaques in the brain of patients with neurodegenerative diseases. The Aβ42 is a major component of senile plaques and contributes to cerebral amyloid angiopathy in AD. | The lower CSF Aβ42 concentrations indicating higher levels of brain Aβ42. Reduced levels of Aβ42 can be detected in MCI, in the pre-clinical stages of AD, and in AD. The Aβ level is lower in MCI than in AD. The CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios are better than CSF Aβ42 to detect brain amyloid deposition in prodromal AD and to differentiate AD dementia from non-AD dementias. Aβ40 levels are higher in AD patients. | [39,162,273,274,275,276,277,278] |
Aβ40, Aβ42 and Aβ40/Aβ42 ratio | Blood | Low plasma Aβ levels, including Aβ40, Aβ42, and Aβ42/Aβ40 ratio may indicate a cognitive decline in MCI. Lower Aβ40 and Aβ42 are associated with greater cognitive decline in individuals with cognitive deterioration and/or progression to MCI/probably AD. | [216,275,279] | ||
Aβ42 | - | The brain amyloid accumulation in MCI and AD (neuroimaging). | [39,276] | ||
Total tau (T-tau) and phosphorylated tau (P-tau) | Neurodegenerative | CSF | The normal function of tau protein is to bind to and stabilise microtubules in neuronal axons, a process that is inhibited when tau becomes phosphorylated. Abnormally phosphorylated and truncated tau proteins are the major component of neurofibrillary tangles in AD. | The elevated CSF concentrations of T-tau and P-tau indicate a neuronal injury and predict progression from MCI to AD-related dementia. The tau level is lower in MCI than in AD. However, increased levels of CSF T-tau are not specific to AD. | [39,273,274,275,276,280] |
Blood | In AD, plasma T-tau levels are increased, but less so than in the CSF, and there is no detectable increase in the MCI stage of the disease. | [162,276,280] | |||
APOE4 | Genetic | - | Apolipoproteins such as ApoE bind to low-density lipoprotein receptors thereby mediating transport of cholesterol and other lipoproteins. ApoE is encoded by the APOE gene, located on chromosome 19, which has three major alleles: ε2, ε3 and ε4. | APOE4 confers risk for MCI, as it does for AD. The 1 or 2 ε4 alleles in the APOE gene increases confidence in the diagnosis of MCI due to AD. | [39,281,282] |
Epigenetic | Blood | Elevated plasma ApoE and APOE methylation of CpGs 165, 190, and 198 are risk factors for MCI. Higher CpG-227 methylation correlates with a lower risk for MCI. CpG-227 is correlated with plasma ApoE levels. | [186] | ||
Amyloid Beta Precursor Protein (APP) | Neurodegenerative Genetic | - | A transmembrane neuronal protein. Sequential cleavage of APP by β-secretase and then by γ-secretase produces Aβ peptides. | The APP mutations affect a common pathogenic pathway in APP synthesis and proteolysis, which leads to excessive production of Aβ. | [167,283,284] |
Beta-Secretase 1 (BACE1) | Genetic Neurodegenerative | - | BACE1 gene encodes a member of the peptidase A1 family of aspartic proteases. BACE1 catalyzes the initial cleavage of the APP to generate Aβ. | GG genotype and G allele of SNP rs638405 probably increase the risk of AD. SNP rs638405 decreased the risk of APOE4 positive AD patients. | [75,189] |
Epigenetic Neurodegenerative | Blood | BACE1 mRNA levels are increased in peripheral blood mononuclear cells from AD patients along with an increase in promoter accessibility and histone H3 acetylation. | [97,285] | ||
Neurodegenerative | CSF | Patients with AD and MCI have higher CSF BACE1. | [286,287] | ||
Blood | The increased BACE1 activity in serum may represent a potential biomarker for late-onset AD. | [288] | |||
Presenilin 1 (PSEN1), Presenilin 2 (PSEN2) | Neurodegenerative Genetic | - | PSEN1 and PSEN2 are critical components of the γ-secretase complex (APP cleavage) | Gene associated with AD risk. | [167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291] |
Sortilin related receptor L (SORL1) | Genetic | - | SORL1 is involved in vesicle trafficking from the cell surface to the Golgi-endoplasmic reticulum. SORL1 encodes a key protein involved in the processing of the APP and the secretion of the Aβ peptide. | Gene associated with AD risk. SORL1 expression has been reduced in the brain of MCI patients and may affect the severity of the disease. | [167,292,293,294] |
Epigenetic | Blood | DNA methylation of the SORL1 5’-flanking region may influence the manifestation of MCI in type 2 diabetes mellitus, and might be associated with its neurocognitive presentation. | [189] | ||
Visinin-like protein 1 (VILIP-1) | Neurodegenerative | CSF | VILIP-1 influences the intracellular neuronal signaling pathways involved in synaptic plasticity. | VILIP-1 is involved in calcium-mediated neuronal injury, which leads to increased levels of VILIP-1 in CSF. VILIP-1 can be used as a predictor of cognitive decline in the early stages of AD. Levels of VILIP-1 in MCI predicted progression. | [208,226,292,295,296] |
Clusterin (CLU) | Genetic | - | CLU is a stress-activated chaperone protein (apolipoprotein J) that functions in apoptosis, complement regulation, lipid transport, membrane protection, and cell-cell interactions. CLU likely influences Aβ clearance, amyloid deposition, and neuritic toxicity. | CLU genetic variants can affect cognitive function by altering amyloid and lipid (cholesterol) metabolism. CLU gene variants can affect plasma clusterin levels and possibly predict the progression of MCI in AD. | [167,292,297,298,299] |
Epigenetic | - | The expression of CLU is clearly increased after neuronal injuries and degeneration as well as during aging and neurodegenerative diseases. | [299] | ||
Other | CSF | CLU levels are increased in the brain and CSF of patients with AD. | [299] | ||
Blood | Plasma CLU levels may change during neurodegeneration. CLU is a risk factor for AD. Patients with MCI with higher CLU levels may have a higher risk of AD progression. CLU plasma levels are positively associated with brain atrophy, disease severity, and disease progression. | [167,292,299,300] | |||
Complement receptor 1 (CR1) | Genetic Inflammatory | - | CR1 is a component of the complement response. CR1 expression on phagocytic cells, such as erythrocytes, results in the ingestion and removal of complement activated particles. | Gene associated with AD risk. Expression of complement factors are reportedly upregulated in affected regions of AD brains. The elevated complement cascade activity could exacerbate AD pathology. | [167] |
Inflammatory | Blood | Soluble CR1 optimally differentiated AD and elderly control, AD and MCI. | [227] | ||
Toll-like receptor 4 (TLR4) | Genetic Inflammatory | - | TLRs belong to the family of pathogen-sensing receptors and contribute to innate immune defense against infection. TLR4 signaling plays a role in amyloid peptide clearance and protects nerve cells against neurodegeneration. TLR4 promotes binding of fibrillar amyloid and its phagocytosis by microglia in AD. | TLR4 can affect the early stages of neurodegeneration and MCI through disruption of microglia activation. The minor allele of the SNP rs4986790 (G) is associated with a reduced risk of developing AD and higher visuospatial and constructional abilities. | [266,292,301,302,303] |
Triggering Receptor Expressed On Myeloid Cells 2 (TREM2) | Genetic | - | TREM2 is a receptor expressed on microglia that stimulates phagocytosis and suppresses inflammation. TREM2 may play an important role in neurodegeneration, possibly in clearance of protein aggregates or in neuroinflammatory mechanisms. | Gene associated with AD risk. | [167,294,301] |
Inflammatory | CSF | The increased levels of soluble TREM2 in AD patients. | [208] | ||
Erythropoietin-Producing Hepatoma Receptor A1 (EPHA1) | Genetic | - | EPHA1 is a member of the ephrins family of tyrosine kinase receptors, which plays roles in cell and axonal guidance and synaptic plasticity. | Gene associated with AD risk. | [167] |
Bridging integrator 1 (BIN1) | Genetic | - | BIN1 is involved in regulating endocytosis and trafficking, immune response, calcium homeostasis and apoptosis. | Gene associated with AD risk. | [167] |
Adaptor Related Protein Complex 2 Subunit Alpha 2 (AP2A2) | Genetic | - | A subunit of the AP-2 adaptor protein complex, which is involved in linking lipid and protein membrane components with the clathrin lattice. | AP2A2 is associated with inferior language function (repetition) in probable amnestic MCI patients. | [47] |
Heparan Sulfate-Glucosamine 3-Sulfotransferase 1 (HS3ST1) | Genetic | - | A key component in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biologic activities. | The association between HS3ST1 and working memory for the amnestic MCI patients. | [47] |
ATP-binding cassette transporter A7 (ABCA7) | Genetic | - | A member of the ABC transporter superfamily, where it functions to transport substrates across cell membranes. | Gene associated with AD risk. ABCA7 may influence AD risk via cholesterol transfer to ApoE or by clearing Aβ aggregates. | [167,294] |
Angiotensin converting esterase (ACE) | Genetic | - | ACE gene encodes an enzyme involved in blood pressure regulation and electrolyte balance. | The D-allele in ACE may serve as potential risk factor for MCI. | [75,292] |
Blood | The elevated ACE levels in serum may serve as potential risk factor for MCI. | ||||
ESR1 and ESR2 | Genetic | - | Estrogen receptors genes. | The combination of some genetic variants of ESR genes with APOE4 may increase the risk of amnestic MCI and AD, especially in women. | [292,302,303] |
LDL Receptor Related Protein 6 (LRP6) | Genetic | - | LRP6 is a coreceptor in WNT signaling and plays an important role in brain function by supporting synaptic structure and function. | LRP6 gene deficiency can cause memory impairment by affecting learning and memory. LRP6 may be involved in the onset of neurodegeneration due to dysfunctions of long-term potential and immune activation. Abnormal LRP6 can also lead to amyloid production and aggregation. | [143,292] |
Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) | Genetic | - | Tom40 protein is a translocase of the outer mitochondrial membrane, which is adjacent to and in linkage disequilibrium with APOE. | TOMM40 polymorphisms have been described as a risk factor for the progression of MCI-AD. TOMM40 may also affect age-related memory functions. | [47,292,304] |
CD33 | Genetic | - | CD33 protein is a member of the sialic acid-binding Ig-like lectin family of receptors and is expressed on myeloid cells and microglia. | Gene associated with AD risk. CD33 may play an important role in Aβ clearance and other neuroinflammatory pathways mediated by microglia in the brain. | [167] |
MS4A locus | Genetic | - | MS4A is a locus that contains several genes associated with the inflammatory response. | Genes associated with AD risk. | [167] |
Phospholipase D3 (PLD3) | Genetic | - | A member of the Phospholipase D protein family, that catalyze the hydrolysis of phophatidylcholine to generate phosphatidic acid. | Gene associated with AD risk. Over-expression of PLD3 leads to a decrease in intracellular APP and extracellular Aβ42 and Aβ40, while knock-down of PLD3 leads to a increase in extracellular Aβ42 and Aβ40. | [167,305] |
Phosphatidylinositol binding clathrin assembly protein (PICALM) | Genetic | - | A protein involved in clathrin assembly. | Gene associated with AD risk. PICALM-mediated Aβ generation and clearance may influence accumulation of Aβ in AD brains. | [167] |
CD2 associated protein (CD2AP) | Genetic | - | A scaffolding protein that is involved in cytoskeletal reorganization and intracellular trafficking. | Gene associated with AD risk. | [167] |
Benzodiazepine-associated protein 1 (BZRAP1-AS1, TSPOAP1) | Genetic | - | A subunit of the benzodiazepine receptor complex in mitochondria and a marker of neuroinflammation. | GWAS AD with SNPs in BZRAP1-AS1. | [306] |
Solute carrier family 24 member 4 (SLC24A4) | Genetic | - | This gene encodes a member of the potassium-dependent sodium/calcium exchanger protein family (NCKX), that is bidirectional membrane transporters. | SLC24A4 cis-SNPs associate with late-onset AD risk. SNP rs10498633 is revealed to be closely related to the risk of late-onset AD in a large GWAS. | [181,307] |
Methionine sulfoxide reductase B3 (MSRB3) | Genetic | - | ROS oxidize protein methionine residues. The resulting methionine sulfoxides can be repaired by reductases such as MSRB3. | The MSRB3 locus is linked to increased risk for late onset AD. Presumably, patterns of neuronal and vascular MSRB3 protein expression reflect or underlie pathology associated with AD. | [308] |
Astrotactin 2 (ASTN2) | Genetic | - | The ASTN2 gene to play an important role in the developing mammalian brain by forming a complex with its paralog, astrotactin 1 (ASTN1). | The association of ASTN2 genetic variants with age at onset of AD. | [309] |
Enoyl-CoA hydratase domain containing 3 (ECHDC3). | Genetic | - | Involved in fatty acid biosynthesis in mitochondria. | GWAS AD with SNPs in USP6NL/ECHDC3. | [306] |
DNA Methyltransferase 3 Alpha (DNMT3A) | Genetic Epigenetic | - | DNMT3A gene encodes a DNA methyltransferase that is functions in DNA methylation. | An association between the rs1187120 SNP in DNMT3A and the annual decline in cognitive functioning. Presumably, DNMT3A moderates cognitive decline in subjects with MCI. | [187] |
Micro RNAs | Epigenetic | Blood CSF | Micro RNAs (miRNAs) are short, non-coding RNAs that regulate gene expression, play an important role in the development of the brain and neurons, and can modulate synaptic plasticity, inflammation, or lipid metabolism. | Altered expression of miRNAs can predict the onset of cognitive dysfunctions. Extracellular circulating miRNAs may reflect early neurodegenerative changes and may predict the onset of MCI/AD at the presymptomatic stage. Serum miR-93 and miR-146a levels are increased in MCI, miR-143 levels are decreased, all these markers are suppressed in AD. MiR-206 and miR-132 upregulate in MCI, and their serum levels also correlate to the degree of cognitive decline. MiR-613 suppresses BDNF expression and levels are elevated in both serum and CSF of AD and MCI patients. | [159,198,260,292,310] |
Heme Oxygenase 1 (HMOX1) | Epigenetic | Blood | HMOX1 is a heat shock protein that exists in the endoplasmic reticulum. HMOX1 binds with NADPH cytochrome p450 reductase to convert the pro-oxidant heme to CO, Fe2+, and biliverdin. | The methylation status of HMOX1 at a specific promoter CpG site is related to AD progression. The lower methylation of HMOX1 at the -374 promoter CpG site in AD patients compared to MCI and control, and a correlation between neuropsychological score and demethylation level. | [190] |
ATP Binding Cassette Subfamily A Member 2 (ABCA2) | Epigenetic | Blood | ABCA2 is transporters are located throughout the brain, with a focus at the BBB, facilitate the strictly regulated influx/efflux of various substances and protect the brain from toxic and harmful compounds. | ABCA2 mRNA expression is upregulated in AD compared with controls. Methylation of 2 of 36 CpG islands in the ABCA2 gene negatively associated with AD risk. ACBA2 mRNA expression could be used to diagnose MCI and Huntington’s disease (HD) and to distinguish HD from AD, but not AD from MCI. | [191] |
Receptor for advanced glycation end products (RAGE/AGER) | Epigenetic Inflammatory | - | RAGE is a receptor of the immunoglobulin super family. A critical role of RAGE in AD includes Aβ production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. | Increased expression of RAGE on the membrane of neurons and microglia is relevant to the pathogenesis of neuronal dysfunction and death of AD (neuroimaging). | [292,311] |
Beta-nerve growth factor (β-NGF) | Neuroplasticity | Blood | A neurotrophic factor, that plays a protective role in the development and survival of certain target neurons. | The β-NGF concentration is increased from patients with MCI and mild AD and is decreased in patients with severe AD. | [204,312] |
CSF | The increased levels of NGF in AD patients. | [208] | |||
BDNF | Neuroplasticity | Blood | BDNF is a neurotrophin in the brain. | AD or MCI is accompanied by reduced BDNF levels. The increase in BDNF might reflect a compensatory mechanism against early neurodegeneration and seems to be related to inflammation. | [199,200,203] |
DBR | Neuroplasticity | Blood | Dipeptidyl peptidase-4 (DPP4) activity to BDNF ratio | The DBR was positively associated with MCI and may be used as a risk biomarker for MCI in an elderly population with normal glucose tolerance. | [202] |
Tropomyosin receptor kinase A (TrKA) | Neuroplasticity | Blood | β-NGF receptor. | The TrKA expression is decreased in monocytes from patients with severe AD and is increased in monocytes from patients with MCI and mild AD. | [204] |
p75 neurotrophin receptor (p75NTR) | Neuroplasticity | Blood | β-NGF receptor. | The p75NTR expression is increased in monocytes from patients with severe AD. | [204] |
Neurofilament light (NF-L) | Neuroplasticity | CSF Blood | A structural protein present in long axons. The biomarker for axonal degeneration. | The concentration of NF-L is increased in the CSF of AD, especially so in those with rapid disease progression. However, increased NF-L in the CSF is not specific to AD, and is detected in other dementias. Serum and plasma NF-L concentrations correlate with their concentrations in the CSF. | [160,206,276,280,313] |
Neurogranin (Ng) | Neuroplasticity | CSF | Ng is a dendritic protein enriched in neurons that is involved in long-term potentiation of synapses, particularly so in the hippocampus and the basal forebrain. | CSF Ng is the best-established biomarker for synapse loss or dysfunction associated with AD. MCI showed a trend towards increased levels of Ng. Elevated Ng levels may predict progression from MCI to AD. | [206,276,292,314,315] |
Neuron-specific enolase (NSE) | Neuroplasticity | CSF | NSE is the only currently known common biomarker of all differentiated neurons. The determination of the concentration of NSE in the serum and CSF provides information on the severity of neuronal damage and the integrity of the BBB. | A candidate biomarker for neuronal loss in AD. NSE is elevated in AD. | [276,280,316] |
Synaptosomal-associated protein-25 (SNAP-25) | Neuroplasticity | CSF | A marker of functional synapses. Component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) complex. These proteins mediate synaptic communication by initiating the fusion of synaptic vesicles. | Higher levels SNAP-25 fragments in AD. | [292,317] |
Neuronal thread protein (AD7c-NTP) | Neuroplasticity | Urine | A transmembrane phosphoprotein that causes apoptosis and neuritic sprouting in transfected neuronal cells. | Aβ positive subjects showed elevated urine AD7c-NTP level. UrinaryAD7C-NTP in the AD patients is higher than in the non-AD groups. | [272,318,319,320] |
TNFα | Inflammatory | Blood | Pro-inflammatory cytokine. | Increased in MCI, that may reflect neuronal dysfunction/loss. The expression of TNF-α can be induced by the amyloid peptide, and its expression can increase during the progression of the disease. | [212,215,292] |
Soluble Tumor Necrosis Factor receptors 1 (sTNFR1) | Inflammatory | Blood | The membrane receptor that binds TNFα. | Increased in AD when compared to controls and MCI. Higher levels are associated with a greater risk of progression from normal cognition to MCI. | [203,207,208,209] |
Soluble Tumor Necrosis Factor receptors 2 (sTNFr2) | Inflammatory | Blood | The membrane receptor that binds TNFα. | Higher concentrations are associated with a greater global Aβ burden in those with lower hippocampal volume. | [218] |
IL-1 | Inflammatory | Blood | Cytokine | The IL-1α and IL-1β, their antagonist IL-1Ra, and their soluble receptor sIL-1R1 are increased in AD. The increased levels of IL-1β and IL-1 receptor sIL-1R2 in MCI patients. The lower IL-1β is associated with increasing duration of memory symptoms in the probable-AD patients. | [208,211,214,236] |
IL-2 | Inflammatory | Blood | Cytokine | Increased in MCI. The lower IL-2 is associated with increasing duration of memory symptoms in the probable-AD group patients. | [214] |
IL-4 | Inflammatory | Blood | Cytokine | Increased in MCI. The lower IL-4 were associated with increasing duration of memory symptoms in the probable-AD group patients. Plasma IL-4 associate with hippocampal sub-regions volume in MCI ana AD. | [213,214] |
IL-6 | Inflammatory | Blood | Cytokine | Increased in AD. The higher IL-6 levels is associated with greater odds of an MCI diagnosis. Higher concentrations of IL-6 is associated with greater global Aβ burden in those with lower hippocampal volume. | [208,218,321] |
IL-8 | Inflammatory | Blood | Chemokine | Decreased in AD. Higher IL-8 is associated with greater cognitive decline in individuals with cognitive deterioration and/or progression to MCI/probably AD. | [208,216] |
IL-10 | Inflammatory | CSF | Cytokine | Increased in AD. | [208] |
Blood | The increased levels of IL-10 in MCI patients. The higher IL-10 levels are associated with greater odds of an MCI diagnosis. Higher IL-10 is associated with greater cognitive decline in individuals with cognitive deterioration and/or progression to MCI/probably AD. | [214,216,321] | |||
IL-18 | Inflammatory | Blood | Cytokine | The IL-18 levels in MCI and AD patients is higher than in the controls, in MCI higher than in AD. | [236] |
Alpha1-antichymotrypsin (α1-ACT) | Inflammatory | CSF | The α1-ACT protein is a member of the serpin family of proteins, a group of proteins that inhibit serine proteases. | Increased in AD. | [208] |
Complement 3 (C3) | Inflammatory | CSF | Component of the complement system. | A lower level of C3 is associated with faster cognitive decline in MCI. | [228] |
Macrophage migration inhibitory factor (MIF) | Inflammatory | CSF | Pro-inflammatory cytokine. | MIF-related inflammation is related to amyloid pathology, tau hyperphosphorylation, and neuronal injury at the early clinical stages of AD. Higher MIF levels are associated with accelerated cognitive decline in MCI and mild dementia. | [230] |
S100 Calcium Binding Protein A9 (S100A9) | Inflammatory | CSF | Pro-inflammatory protein | The S100A9 and Aβ(1-42) levels correlate with each other. | [237] |
Monocyte chemoattractant protein-1 (MCP-1) | Inflammatory | CSF | Chemokine | Increased in AD patients. | [208] |
Blood | AD patients have higher plasma MCP-1 levels compared with MCI patients and controls, and severe AD patients have the highest levels. A higher plasma MCP-1 level is associated with greater severity and faster cognitive decline. MCP-1 optimally differentiates AD and elderly control, AD, and MCI. | [227,231] | |||
Transforming growth factor-beta (TGF-β) | Inflammatory | CSF | Cytokine | Increased in AD. | [208,322] |
Blood | The level of TGF-β in patients with MCI is increased compared with patients with AD-related dementia. | [233] | |||
Factor H (FH) | Inflammatory | Blood | A major soluble inhibitor of complement. | FH optimally differentiated AD and elderly control. | [227,323] |
CSF | A lower level of FH is associated with faster cognitive decline in MCI. | [228] | |||
Factor B (FB) | Inflammatory | Blood | A component of the alternative pathway of complement activation. | FB optimally differentiated AD and elderly control. | [227] |
CRP | Inflammatory | Blood | Acute inflammation protein that is overexpressed in inflammatory conditions. | Increased in AD. | [208,217] |
Soluble CD40 ligand (sCD40L) | Inflammatory | Blood | CD40 is a receptor is expressed by B cells, professional antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L. | Increased in AD. | [208,324] |
Serum amyloid A (SAA) | Inflammatory | Blood | A highly conserved, acute-phase protein synthesized predominantly by the liver. | SAA level is associated with MCI and AD. The increased levels in MCI patients. | [209,238] |
Eotaxin-1 | Inflammatory | Blood | Chemokine | Eotaxin-1 optimally differentiated AD and elderly control, AD and MCI. | [227] |
Myeloperoxidase (MPO) | Inflammatory | Blood | The MPO protein, released from neutrophils azurophilic granules, contributes to formation of cytotoxic ROS. | Concentrations is higher in AD. | [229] |
Neutrophil gelatinase associated lipocalin (NGAL) | Inflammatory | Blood | NGAL protein is released on neutrophils degranulation to kill bacterial pathogens. | Concentrations is higher in AD and MCI. | [229] |
Macrophage inhibitory cytokine-1, (MIC-1/GDF15) | Inflammatory | Blood | A stress response cytokine and a member of the TGF-β superfamily. | MIC-1/GDF15 levels are associated with cognitive performance and cognitive decline. | [232] |
Regulatory T-cells (Tregs) | Inflammatory | Blood | Tregs play an important role in modulating inflammation. | Patients with MCI have stronger Treg-related immunosuppression status compared with patients with probable AD-related dementia. | [233] |
Adiponectin | Inflammatory | Blood | Adiponectin is released by the adipose tissue and regulates energy homeostasis and has anti-atherogenic and anti-inflammatory effects. | The levels of adiponectin are lower in MCI and AD as compared to controls. Lower levels are associated with cognitive dysfunction. | [235] |
Leukocyte telomere length (LTL) | Inflammatory | Blood | Telomeres are repeated nucleotide sequences located at the ends of each chromosome, that shorten as cells divide. | LTL reduction in MCI and AD patients, with AD patients having a stronger reduction than MCI patients. | [236] |
Lactate | Inflammatory | Blood | Plasma lactate is associated with systemic inflammation and may be an indicator of mitochondrial dysfunction. | Higher plasma lactate levels may lead to a higher prevalence of MCI. | [109,292] |
Oncostatin M (OSM) | Other | Blood | A member of the IL-6 family cytokines, plays a role in inflammation, autoimmunity, and cancers. | Increased in Aβ+ MCI patients and Aβ- MCI patients compared to Aβ- cognitively normal individuals. | [240,325] |
Chitinase 1 (CHIT1) | Other | CSF | Putative marker of microglial activation. | CHIT1 levels are up-regulated in Aβ+ MCI patients, Aβ- MCI patients, and Aβ+ cognitively normal individuals compared to Aβ- cognitively normal individuals. | [240] |
SPARC Related Modular Calcium Binding 2 (SMOC2) | Other | CSF | A member of the SPARC protein family, which is involved in microgliosis and functional recovery after cortical ischemia. | SMOC2 levels is increased in Aβ+ MCI patients and Aβ+ cognitively normal individuals compared to Aβ- cognitively normal individuals. | [240] |
Matrix Metallopeptidase 10 (MMP-10/Stromelysin-2) | Other | CSF | Proteins of the matrix metalloproteinase family. MMP10 is expressed by macrophages in numerous tissues after injury. | Compared to Aβ- cognitively normal individuals, Aβ+ MCI patients showed increased levels of MMP-1. | [240,326] |
Low Density Lipoprotein Receptor (LDLR) | Other | CSF | The LDLR family of proteins is involved in lipoproteins trafficking. | Modestly decreased in Aβ+ MCI patients and Aβ+ cognitively normal individuals. | [240,327] |
Eukaryotic Translation Initiation Factor 4E Binding Protein 1 (EIF4EBP1) | Other | CSF | A member of a family of translation repressor proteins. mTOR and Wnt/β-catenin signaling. | Compared to Aβ- cognitively normal individuals, Aβ+ MCI patients showed increased CSF levels of EIF4EBP1. | [240,328] |
Roundabout Guidance Receptor 2(ROBO2) | Other | CSF | ROBO2 have been implicated in CNS development, axonal growth, and recovery after nerve injury. | Decreased in the Aβ- MCI patients, compared to controls. | [240] |
Repulsive Guidance Molecule BMP Co-Receptor B (RGMB) | Other | CSF | RGMB have been implicated in CNS development, axonal growth, and recovery after nerve injury. | Decreased in the CSF of Aβ- MCI patients, compared to controls. | [240] |
Tissue plasminogen activator (tPA) | Other | CSF | A blood-clotting enzyme that co-localizes with amyloid-rich regions and phosphorylated tau in post-mortem AD brains. | Decrease in Aβ+ MCI patients. | [240] |
STAM-binding protein (STAMBP) | Other | CSF | Zinc metalloprotease. | Increase in Aβ+ MCI patients. | [240] |
Chitinase-3-like protein 1 (YKL-40) | Other | CSF | A chitin-binding lectin which belongs to the glycosyl hydrolase family. | Increased concentrations are observed in the early stages of AD, in fully developed AD, and in MCI. Elevated levels predicted progression from MCI to symptomatic AD and other types of dementia. Interaction in the association between YKL-40 levels and gray-matter volume according to ε4 status. Levels of YKL-40 in MCI predicted progression to AD. | [206,208,221,224,225,226,240,280,292,329] |
Synaptotagmin-1 | Other | CSF | Pre-synaptic vesicle protein. | Increased in patients with dementia due to AD and in patients with MCI due to AD. | [330] |
Blood | Lower in patients with frontotemporal dementia and AD than in controls. Correlated with cognition assessed. | [331] | |||
OX-2 Membrane Glycoprotein (CD200) | Other | CSF | A glycoprotein previously associated with enhanced in-vivo and in-vitro amyloid phagocytosis. | Modestly decreased in Aβ+ MCI patients and Aβ- MCI patients. | [240] |
Blood | Increased in Aβ+ cognitively normal individuals compared to Aβ- cognitively normal individuals. | ||||
Alpha-2-macroglobulin (α2M) | Other | Blood | Inhibitor a broad spectrum of proteases. | Upregulated in AD. | [243,332] |
Apolipoprotein A-1 (ApoA-1) | Other | Blood | The principal protein fraction of high-density lipoprotein (HDL), that plays an important role in lipid transfer. | Involved in Aβ formation. Downregulated in AD. | [243,333] |
Metallo-proteinases (MMP-3) | Other | Blood | MMP-3 participates in normal extracellular matrix turnover during embryonic development, organ morphogenesis and wound healing. | Higher in subjective memory impairment, MCI, and probable AD patients than asymptomatic patients. | [216,334] |
Vascular endothelial growth factors A (VEGF-A) | Other | Blood | A growth factor with pro-angiogenic activity, having a mitogenic and an anti-apoptotic effect on endothelial cells, increasing the vascular permeability, promoting cell migration. | Decrease levels in MCI. | [208,335] |
Plasminogen activator inhibitor 1 (PAI-1) | Other | Blood | A serine protease inhibitor (Serpin), that confers a high risk of vascular diseases. A primary factor in regulating the balance between thrombosis and fibrinolysis. | An effect on reducing brain Aβ clearance. The decreased levels in MCI patients. Levels are higher in cognitively normal and non-amnestic multiple domain MCI than in amnestic multiple domains MCI. | [208,209] |
p53 | Other | Blood | A transcription factor that both positively and negatively regulates the expression of a large and disparate group of responsive genes. | Misfolded p53 is considered a strong risk factor for MCI progression in AD. Elevated levels of unfolded p53 have been found in both AD and MCI compared to healthy controls. High levels of unfolded p53 in the blood may be a prognostic marker of conversion of MCI to AD. | [292,336,337] |
C-peptide | Other | Blood | C-peptide is released together with insulin from the pancreatic beta cells. | The increased levels in MCI patients. | [215,338] |
D-amino acid oxidase (DAO) | Other | Blood | A flavoenzyme that degrades D-amino acids, mainly D-serine. Regulatory function on NMDA receptor. | Higher in patients with cognitive decline. | [244] |
N-Methyl-D-aspartate glutamate receptor antibodies (NMDAR Abs) | Other | Blood | NMDAR plays a central role in learning and memory and has a potential role in the pathophysiology of neuropsychiatric disorders. | NMDAR Abs are present in different types of dementia and elderly healthy individuals. In combination with disturbed blood-CSF-barrier integrity, they seem to promote their pathological potential on cognitive decline. | [245,246] |
Homocysteic acid (HCA) | Other | Blood | HCA is produced from homocysteine by oxidation. HCA exhibits very high brain toxicity at low concentrations and over activated the NMDAR. | HCA is a good candidate of a biomarker of MCI and a good target for treatment of AD. | [247] |
Matrix metallopeptidase 9 (MMP-9) | Other | Blood | MMPs are secreted by glial and neuronal cells in the brain and are involved in neuroinflammation and neurotoxicity, which play a role in hippocampal-dependent learning. | Increased in Aβ+ MCI patients and Aβ- MCI patients compared to Aβ- cognitively normal individuals. | [240] |
Hydroxyacylglutathione Hydrolase (HAGH) | Other | Blood | Glucose metabolism. | Increased in Aβ+ cognitively normal individuals compared to Aβ- cognitively normal individuals. | [240] |
Urokinase-type plasminogen activator (uPA) | Other | Blood | A serine protease involved in tissue remodeling and cell migration. | Decreased in Aβ+ MCI patients, Aβ- MCI patients, and Aβ+ cognitively normal individuals compared to Aβ- cognitively normal individuals. | [240,339] |
AXIN1 | Other | Blood | The AXIN1 protein function in the canonical Wnt pathway. | Decreased in Aβ+ MCI patients, Aβ- MCI patients, and Aβ+ cognitively normal individuals compared to Aβ- cognitively normal individuals. | [244,340] |
Autoantibodies to Aβ and tau protein | Other | Blood | Autoantibodies either exert a protective effect against AD pathology, causing tissue damage through autoimmune reactions, or enhance neuroprotection by inhibiting toxic aggregation and promoting amyloid clearance. | Autoantibodies could be a marker in the differential diagnosis of neurodegenerative diseases that could distinguish people with MCI from those who have developed early AD. | [292,341,342] |
Methylglyoxal (MG) and glyoxal (GO) | Other | Blood | MG and GO are the precursors of many advanced glycation end products. | MG and GO levels are higher in MCI. Levels of MG have higher sensitivity to differentiate MCI from controls but not from AD. GO levels differentiate MCI from control and AD groups. | [241] |
Eicosapentaenoic acid (EPA) | Other | Blood | Omega-3 polyunsaturated fatty acid. | Lower EPA levels is associated with AD. | [242] |
Docosahexaenoic acid (DHA) | Other | Blood | Omega-3 polyunsaturated fatty acid. | Lower DHA levels is associated with AD. | [242] |
Reptin | Other | Blood | Reptin is involved in the regulation of gene transcription, remodeling of chromatin, DNA damage sensing and repair, and tumor biology. | Higher reptin levels is associated with AD. | [242] |
Low-density lipoprotein (LDL) | Other | Blood | Group of blood lipoprotein. High levels lead to atherosclerosis, which increases the risks of heart attack. | Higher LDL levels is associated with AD. | [242] |
Dipeptidyl peptidase-4 (DPP4) | Other | Blood | A serine protease, that expressed on the membranes of many cells like endothelial cells, Stem cells, T and B-lymphocytes and also as soluble form in plasma. | Patients in the highest quartile of DPP4 activity have lower cognitive scores compared with subjects in the lowest quartile. In the highest DPP4 quartile, MCI risk was higher than in the lowest quartile. The risk for MCI increased more with higher levels of DPP4 activity. | [343] |
Tryptophan pathway metabolites. | Other | Blood Urine | Tryptophan is the precursor of the monoaminergic neurotransmitter serotonin which exerts both central and peripheral control on numerous physiological functions. | Lower metabolite concentrations of tryptophan pathway metabolites in the AD group: serotonin (urine, serum), 5-hydroxyindoleacetic acid (urine), kynurenine (serum), kynurenic acid (urine), tryptophan (urine, serum), xanthurenic acid (urine, serum), and kynurenine/tryptophan ratio (urine). A decreasing trend in concentrations is observed: control > MCI > AD. | [249] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, A.; Zorkina, Y.; Abramova, O.; Pavlova, O.; Pavlov, K.; Soloveva, K.; Volkova, M.; Alekseeva, P.; Andryshchenko, A.; Kostyuk, G.; et al. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 1217. https://doi.org/10.3390/ijms23031217
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, et al. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. International Journal of Molecular Sciences. 2022; 23(3):1217. https://doi.org/10.3390/ijms23031217
Chicago/Turabian StyleMorozova, Anna, Yana Zorkina, Olga Abramova, Olga Pavlova, Konstantin Pavlov, Kristina Soloveva, Maria Volkova, Polina Alekseeva, Alisa Andryshchenko, Georgiy Kostyuk, and et al. 2022. "Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders" International Journal of Molecular Sciences 23, no. 3: 1217. https://doi.org/10.3390/ijms23031217
APA StyleMorozova, A., Zorkina, Y., Abramova, O., Pavlova, O., Pavlov, K., Soloveva, K., Volkova, M., Alekseeva, P., Andryshchenko, A., Kostyuk, G., Gurina, O., & Chekhonin, V. (2022). Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. International Journal of Molecular Sciences, 23(3), 1217. https://doi.org/10.3390/ijms23031217