The Versatility in the Applications of Dithiocarbamates
Abstract
:1. Introduction
2. Heavy Metals Concentration and Remediation
2.1. Heavy Metals’ Removal from the Environment through Dithiocarbamate Compounds
2.2. Trace Elements Concentration and Determination through Dithiocarbamate Compounds
3. Application of Dithiocarbamate Compounds as Stationary Phase in Chromatography
4. Application of Dithiocarbamate Compounds as Catalysts
4.1. Application of Dithiocarbamate Compounds as Catalyst in Organic Transformation
4.2. Application of Dithiocarbamate Compounds as RAFT Agent in Polymerization
5. Application of Dithiocarbamate in Synthesis
5.1. Application of Dithiocarbamate Compounds as Precursors in Material Synthesis
5.2. Application of Dithiocarbamate Compounds in the Synthesis of Organic Intermediates
6. Application of Dithiocarbamate Compounds in Agriculture
6.1. Application of Dithiocarbamate Compounds as Herbicides
6.2. Application of Dithiocarbamate Compounds as Pesticides
7. Medical Applications of Dithiocarbamate Compounds
7.1. Application of Dithiocarbamate Compounds as Enzyme Inhibitor
7.2. Application of Dithiocarbamate Compounds in HIV Treatment
7.3. Application of Dithiocarbamate Compounds in the Treatment of Other Diseases
7.4. Anti-Inflammatory Application of Dithiocarbamate Compounds
7.5. Anticancer Application of Dithiocarbamate Compounds
7.6. Antimicrobial Applications of Dithiocarbamate
7.6.1. Antibacterial Application of Dithiocarbamate Compounds
7.6.2. Antifungal Application of Dithiocarbamate Compounds
7.6.3. Antiviral Application of Dithiocarbamate Compounds
7.7. Application of Dithiocarbamate in Medical Imaging
8. Application of Dithiocarbamate Compounds in the Industries
8.1. Application of Dithiocarbamate Compounds as Vulcanization Accelerator
8.2. Application of Dithiocarbamate Compounds as Froth Flotation Collector
8.3. Application of Dithiocarbamate Compounds as Antifouling/Electroplating Agents
8.4. Application of Dithiocarbamate Compounds in Coatings
8.5. Application of Dithiocarbamate Compounds as Lubricant Additives
8.6. Application of Dithiocarbamate Compounds as Sensor
9. Challenges Associated with the Utilization of Dithiocarbamates
10. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Adeyemi, J.O.; Onwudiwe, D.C. Chemistry and Some Biological Potential of Bismuth and Antimony Dithiocarbamate Complexes. Molecules 2020, 25, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cvek, B.; Dvorak, Z. Targeting of nuclear factor-κB and proteasome by dithiocarbamate complexes with metals. Curr. Pharm. Des. 2007, 13, 3155–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinde, S.D.; Sakla, A.P.; Shankaraiah, N. An insight into medicinal attributes of dithiocarbamates: Bird’s eye view. Bioorganic Chem. 2020, 105, 104346. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhong, X.; Li, P.; Xu, J. A Mild Radical Method for the Dimerzation of Dithiocarbamates. Eur. J. Org. Chem. 2015, 2015, 802–809. [Google Scholar] [CrossRef]
- Tan, Y.S.; Yeo, C.I.; Tiekink, E.R.T.; Heard, P.J. Dithiocarbamate Complexes of Platinum Group Metals: Structural Aspects and Applications. Inorganics 2021, 9, 60. [Google Scholar] [CrossRef]
- Ejelonu, B.C.; Olagboye, S.A.; Oyeneyin, O.E.; Ebiesuwa, O.A.; Bada, O.E. Synthesis, characterization and antimicrobial activities of sulfadiazine Schiff base and phenyl dithiocarbamate mixed ligand metal complexes. Open J. Appl. Sci. 2018, 8, 346. [Google Scholar] [CrossRef] [Green Version]
- Kanchi, S.; Singh, P.; Bisetty, K. Dithiocarbamates as hazardous remediation agent: A critical review on progress in environmental chemistry for inorganic species studies of 20th century. Arab. J. Chem. 2014, 7, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Szolar, O.H.J. Environmental and pharmaceutical analysis of dithiocarbamates. Anal. Chim. Acta 2007, 582, 191–200. [Google Scholar] [CrossRef]
- Kaul, L.; Süss, R.; Zannettino, A.; Richter, K. The revival of dithiocarbamates: From pesticides to innovative medical treatments. iScience 2021, 24, 102092. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Photocatalytic removal of parabens and halogenated products in wastewater: A review. Environ. Chem. Lett. 2021, 19, 3789–3819. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. FlatChem 2021, 29, 100277. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere 2021, 262, 128379. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, T.O.; Kuvarega, A.T.; Onwudiwe, D.C. Recent strategies for environmental remediation of organochlorine pesticides. Appl. Sci. 2020, 10, 6286. [Google Scholar] [CrossRef]
- Kane, S.; Lazo, P.; Ylli, F.; Stafilov, T.; Qarri, F.; Marku, E. Separation of heavy metal from water samples—The study of the synthesis of complex compounds of heavy metal with dithiocarbamates. J. Environ. Sci. Health Part A 2016, 51, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Nabipour, H.; Ghammamy, S.; Ashuri, S.; Aghbolaghc, Z.S. Synthesis of a new dithiocarbamate compound and Study of Its biological properties. J. Org. Chem. 2010, 2, 75–80. [Google Scholar]
- Hogarth, G.; Rainford-Brent, E.-J.C.R.C.R.; Kabir, S.E.; Richards, I.; Wilton-Ely, J.D.E.T.; Zhang, Q. Functionalised dithiocarbamate complexes: Synthesis and molecular structures of 2-diethylaminoethyl and 3-dimethylaminopropyl dithiocarbamate complexes [M{S2CN(CH2CH2NEt2)2}n] and [M{S2CN(CH2CH2CH2NMe2)2}n] (n = 2, M = Ni, Cu, Zn, Pd; n = 3, M = Co). Inorg. Chim. Acta 2009, 362, 2020–2026. [Google Scholar] [CrossRef]
- Tarique, M.; Aslam, M. Bi and Trivalent transition metal complexes of dithiocarbamates derived from 2, 6-diacetyl pyridine. Orient. J. Chem. 2008, 24, 267. [Google Scholar]
- Abu-El-Halawa, R.; Zabin, S.A. Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands. J. Taibah Univ. Sci. 2017, 11, 57–65. [Google Scholar] [CrossRef]
- Ayalew, Z.M.; Zhang, X.; Guo, X.; Ullah, S.; Leng, S.; Luo, X.; Ma, N. Removal of Cu, Ni and Zn directly from acidic electroplating wastewater by Oligo-Ethyleneamine dithiocarbamate (OEDTC). Sep. Purif. Technol. 2020, 248, 117114. [Google Scholar] [CrossRef]
- Morita, F.; Nakakubo, K.; Yunoshita, K.; Endo, M.; Biswas, F.B.; Nishimura, T.; Mashio, A.S.; Hasegawa, H.; Taniguchi, T.; Maeda, K. Dithiocarbamate-modified cellulose-based sorbents with high storage stability for selective removal of arsenite and hazardous heavy metals. RSC Adv. 2020, 10, 30238–30244. [Google Scholar] [CrossRef]
- Li, B.; Guo, J.Z.; Liu, J.L.; Fang, L.; Lv, J.Q.; Lv, K. Removal of aqueous-phase lead ions by dithiocarbamate-modified hydrochar. Sci. Total Environ. 2020, 714, 136897. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Hu, S.; Zheng, W.; He, Z.; Zhou, L.; Huang, Y. Spongy Crosslinked Branched Polyethylenimine-Grafted Dithiocarbamate: Highly Efficient Heavy Metal Ion-Adsorbing Material. J. Environ. Eng. 2020, 146, 04019105. [Google Scholar] [CrossRef]
- Fu, W.; Huang, Z. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere 2018, 209, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Han, X.; Ho, C.H.; Fan, A. Adsorption of Ni2+ from aqueous solution by functionalized coal particles with dithiocarbamate. J. Hazard. Toxic Radioact. Waste 2018, 22, 04018027. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, P.; Yu, Y.; Yu, B.; Wang, Y.; Ye, S.; Chen, Y. Preparation and characterization of a novel hybrid chelating material for effective adsorption of Cu(II) and Pb(II). J. Environ. Sci. 2018, 67, 224–236. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.; Yang, Q.; Yan, Q. Preparation of poly-ammonium/sodium dithiocarbamate for the efficient removal of chelated heavy metal ions from aqueous environments. J. Environ. Chem. Eng. 2018, 6, 2344–2354. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, B.; Li, F.; Jin, L. Sediment washing by EDTA and its reclamation by sodium polyamidoamine-multi dithiocarbamate. Chemosphere 2017, 168, 450–456. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, B.; Deng, T.; Li, F. Reclamation of EDTA by sodium tetraethylenepentamine-multi dithiocarbamate after soil washing process with EDTA. Environ. Earth Sci. 2017, 76, 311. [Google Scholar] [CrossRef]
- Srinivasan, V.; Subbaiyan, M. Electroflotation Studies on Cu, Ni, Zn, and Cd with Ammonium Dodecyl Dithiocarbamate. Sep. Sci. Technol. 1989, 24, 145–150. [Google Scholar] [CrossRef]
- Soylak, M.; Elci, L. Preconcentration and separation of trace metal ions from sea water samples by sorption on amberlite XAD-16 after complexation with sodium diethyl dithiocarbamate. Int. J. Environ. Anal. Chem. 1997, 66, 51–59. [Google Scholar] [CrossRef]
- Imyim, A.; Daorattanachai, P.; Unob, F. Determination of Cadmium, Nickel, Lead, and Zinc in Fish Tissue by Flame and Graphite Furnace Atomic Absorption after Extraction with Pyrrolidine Dithiocarbamate and Activated Carbon. Anal. Lett. 2013, 46, 2101–2110. [Google Scholar] [CrossRef]
- Cesur, H. Determination of manganese, copper, cadmium and lead by FAAS after solid-phase extraction of their phenylpiperazine dithiocarbamate complexes on activated carbon. Turk. J. Chem. 2003, 27, 307–314. [Google Scholar]
- Lazaridou, E.; Kabir, A.; Furton, K.G.; Anthemidis, A. A Novel Glass Fiber Coated with Sol-Gel Poly-Diphenylsiloxane Sorbent for the On-Line Determination of Toxic Metals Using Flow Injection Column Preconcentration Platform Coupled with Flame Atomic Absorption Spectrometry. Molecules 2020, 26, 9. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M.; Butt, A.M.; Thakur, A. Determination of lead, mercury and cadmium by liquid chromatography using on-column derivatisation with dithiocarbamates. Analyst 1985, 110, 35–37. [Google Scholar] [CrossRef]
- Losev, V.N.; Parfenova, V.V.; Elsuf’ev, E.V.; Borodina, E.V.; Metelitsa, S.I.; Trofimchuk, A.K. Separation and preconcentration followed by ICP-OES and ICP-MS determination of precious metals using silica gel chemically modified with dithiocarbamate groups. Sep. Sci. Technol. 2020, 55, 2659–2669. [Google Scholar] [CrossRef] [Green Version]
- Laosuwan, M.; Mukdasai, S.; Srijaranai, S. A simple in syringe low density solvent-dispersive liquid liquid microextraction for enrichment of some metal ions prior to their determination by high performance liquid chromatography in food samples. Molecules 2020, 25, 552. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Gao, X.; Chen, C.T.A. Separation and determination of colloidal trace metals in seawater by cross-flow ultrafiltration, liquid-liquid extraction and ICP-MS. Mar. Chem. 2019, 215, 103685. [Google Scholar] [CrossRef]
- Santos, L.B.; de Oliveira, D.M.; de Souza, A.O.; Lemos, V.A. A new method for the speciation of arsenic species in water, seafood and cigarette samples using an eggshell membrane. J. Iran. Chem. Soc. 2019, 16, 1879–1889. [Google Scholar] [CrossRef]
- Kazantzi, V.; Drosaki, E.; Skok, A.; Vishnikin, A.B.; Anthemidis, A. Evaluation of polypropylene and polyethylene as sorbent packing materials in on-line preconcentration columns for trace Pb(II)and Cd(II)determination by FAAS. Microchem. J. 2019, 148, 514–520. [Google Scholar] [CrossRef]
- Tavares, D.S.; Vale, C.; Lopes, C.B.; Trindade, T.; Pereira, E. Reliable quantification of mercury in natural waters using surface modified magnetite nanoparticles. Chemosphere 2019, 220, 565–573. [Google Scholar] [CrossRef]
- de la Calle, I.; Ruibal, T.; Lavilla, I.; Bendicho, C. Direct immersion thin-film microextraction method based on the sorption of pyrrolidine dithiocarbamate metal chelates onto graphene membranes followed by total reflection X-ray fluorescence analysis. Spectrochim. Acta-Part B At. Spectrosc. 2019, 152, 14–24. [Google Scholar] [CrossRef]
- Yeh, C.F.; Chyueh, S.-D.; Chen, W.-S.; Fang, J.-D.; Liu, C.-Y. Application of dithiocarbamate resin-metal complexes as stationary phases in gas chromatography. J. Chromatogr. A 1993, 630, 275–285. [Google Scholar]
- Bond, A.M.; Wallace, G.G. Preparation of metal dithiocarbamate complexes for chromatographic separation and multi-element determinations. Anal. Chim. Acta 1984, 164, 223–232. [Google Scholar] [CrossRef]
- Aghbash, K.O.; Alamgholiloo, H.; Pesyan, N.N.; Khaksar, S.; Rostamnia, S. Gold nanoparticle stabilized dithiocarbamate functionalized magnetite carbon as promise clean nanocatalyst for A3-coupling organic transformation. Mol. Catal. 2021, 499, 111252. [Google Scholar] [CrossRef]
- Pitchaimani, P.; Lo, K.M.; Elango, K.P. Synthesis, crystal structures, luminescence properties and catalytic application of lanthanide(III) piperidine dithiocarbamate complexes. Polyhedron 2015, 93, 8–16. [Google Scholar] [CrossRef]
- Vale, J.A.; Faustino, W.M.; Menezes, P.H.; de Sá, G.F. Eu(iii) dithiocarbamate complex and N-p-tolylsulfonylphenylalanine as a novel chiral catalyst for the asymmetric synthesis of cyanohydrins. Chem. Commun. 2006, 31, 3340–3342. [Google Scholar] [CrossRef]
- Guan, S.; Zhong, Z.; Li, J.; Xu, Y.; Ding, L.; Huang, Y.; Liu, L. Preparation of in-situ grown carbon nanotubes via dithiocarbamate in composites with excellent microstructure and mechanical performance. Compos. Sci. Technol. 2021, 203, 108569. [Google Scholar] [CrossRef]
- Uchiyama, M.; Satoh, K.; Kamigaito, M. Stereospecific cationic RAFT polymerization of bulky vinyl ethers and stereoblock poly(vinyl alcohol) via mechanistic transformation to radical RAFT polymerization of vinyl acetate. Giant 2021, 5, 100047. [Google Scholar] [CrossRef]
- Uchiyama, M.; Satoh, K.; Kamigaito, M. Thioether-Mediated Degenerative Chain-Transfer Cationic Polymerization: A Simple Metal-Free System for Living Cationic Polymerization. Macromolecules 2015, 48, 5533–5542. [Google Scholar] [CrossRef]
- Uchiyama, M.; Satoh, K.; Kamigaito, M. Cationic RAFT Polymerization Using ppm Concentrations of Organic Acid. Angew. Chem. Int. Ed. 2015, 54, 1924–1928. [Google Scholar] [CrossRef]
- Huang, Q.; Liao, H.; Hu, X.; Cheng, C. A cardanol-based surface-active dithiocarbamate and its application in emulsion polymerization. IOP Conf. Ser. Mater. Sci. Eng. 2019, 490, 022009. [Google Scholar] [CrossRef]
- Olatunde, O.C.; Onwudiwe, D.C. Temperature Controlled Evolution of Pure Phase Cu9S5 Nanoparticles by Solvothermal Process. Front. Mater. 2021, 8, 211. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. The performance of bismuth-based compounds in photocatalytic applications. Surf. Interfaces 2021, 23, 100927. [Google Scholar] [CrossRef]
- Srinivasan, N. Fabrication and photocatalytic properties of Multi–Morphological CdS NSs prepared by the thermolysis of heterocyclic dithiocarbamate Cadmium(II) complexes as precursors. Dyes Pigments 2019, 162, 786–796. [Google Scholar] [CrossRef]
- Sarker, J.C.; Hogarth, G. Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides. Chem. Rev. 2021, 121, 6057–6123. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Liz-Marzán, L.M. Oleylamine in Nanoparticle Synthesis. Chem. Mater. 2013, 25, 1465–1476. [Google Scholar] [CrossRef]
- Paca, A.M.; Ajibade, P.A. Bis-(N-ethylphenyldithiocarbamato)palladium(II) as molecular precursor for palladium sulfide nanoparticles. J. Mol. Struct. 2021, 1243, 130777. [Google Scholar] [CrossRef]
- Eswari, S.; Selvaganapathi, P.; Thirumaran, S.; Ciattini, S. Effect of solvent used for crystallization on structure: Synthesis and characterization of bis(N,N-di(4-fluorobenzyl)dithiocarbamato-S,S′)M(II) (M = Cd, Hg) and usage as precursor for CdS nanophotocatalyst. Polyhedron 2021, 206, 115330. [Google Scholar] [CrossRef]
- Galiyeva, P.; Rinnert, H.; Balan, L.; Alem, H.; Medjahdi, G.; Uralbekov, B.; Schneider, R. Single-source precursor synthesis of quinary AgInGaZnS QDs with tunable photoluminescence emission. Appl. Surf. Sci. 2021, 562, 150143. [Google Scholar] [CrossRef]
- Tanabe, T.; Osaki, J.; Miyajima, M.; Kitamura, K.; Oyama, Y. Raman and TEM characterization of 2D layered MoS2 crystals grown on non-metal surfaces by friction-induced synthesis. Appl. Surf. Sci. 2021, 561, 150016. [Google Scholar] [CrossRef]
- Duran-García, E.I.; Martínez-Santana, J.; Torres-Gómez, N.; Vilchis-Nestor, A.R.; García-Orozco, I. Copper sulfide nanoparticles produced by the reaction of N-alkyldithiocarbamatecopper(II) complexes with sodium borohydride. Mater. Chem. Phys. 2021, 269, 124743. [Google Scholar] [CrossRef]
- Mann, P.B.; McGregor, I.J.; Bourke, S.; Burkitt-Gray, M.; Fairclough, S.; Ma, M.T.; Hogarth, G.; Thanou, M.; Long, N.; Green, M. An atom efficient, single-source precursor route to plasmonic CuS nanocrystals. Nanoscale Adv. 2019, 1, 522–526. [Google Scholar] [CrossRef] [Green Version]
- Murtaza, G.; Venkateswaran, S.P.; Thomas, A.G.; O’Brien, P.; Lewis, D.J. Chemical vapour deposition of chromium-doped tungsten disulphide thin films on glass and steel substrates from molecular precursors. J. Mater. Chem. C 2018, 6, 9537–9544. [Google Scholar] [CrossRef] [Green Version]
- Zeng, N.; Hopkinson, D.G.; Spencer, B.F.; McAdams, S.G.; Tedstone, A.A.; Haigh, S.J.; Lewis, D.J. Direct synthesis of MoS2 or MoO3 via thermolysis of a dialkyl dithiocarbamato molybdenum(iv) complex. Chem. Commun. 2019, 55, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Fomenko, I.S.; Gushchin, A.L.; Nadolinny, V.A.; Efimov, N.N.; Laricheva, Y.A.; Sokolov, M.N. Dinuclear Vanadium Sulfide Clusters: Synthesis, Redox Behavior, and Magnetic Properties. Eur. J. Inorg. Chem. 2018, 2018, 2965–2971. [Google Scholar] [CrossRef]
- Peng, L.; Shen, S.; Zhang, Y.; Xu, H.; Wang, Q. Controllable synthesis of MnS nanocrystals from a single-source precursor. J. Colloid Interface Sci. 2012, 377, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Mlowe, S.; Lewis, D.J.; Malik, M.A.; Raftery, J.; Mubofu, E.B.; O’Brien, P.; Revaprasadu, N. Heterocyclic dithiocarbamato-iron(iii) complexes: Single-source precursors for aerosol-assisted chemical vapour deposition (AACVD) of iron sulfide thin films. Dalton Trans. 2016, 45, 2647–2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Jiang, T.; Xu, B.; Li, Q.; Zhong, H.; Yang, Y. Selective flotation of galena using a novel collector S-benzyl-N-ethoxycarbonyl thiocarbamate: An experimental and theoretical investigation. J. Mol. Liq. 2021, 330, 115643. [Google Scholar] [CrossRef]
- Grainger, R.S.; Innocenti, P. New applications of dithiocarbamates in organic synthesis. Heteroat. Chem. 2007, 18, 568–571. [Google Scholar] [CrossRef]
- Ahmed, S.; Baker, L.A.; Grainger, R.S.; Innocenti, P.; Quevedo, C.E. Thermal Elimination of Diethyldithiocarbamates and Application in the Synthesis of (±)-Ferrugine. J. Org. Chem. 2008, 73, 8116–8119. [Google Scholar] [CrossRef]
- Jamir, L.; Sinha, U.B.; Nath, J.; Patel, B.K. Environmentally Benign One-Pot Synthesis of Cyanamides from Dithiocarbamates Using I2 and H2O2. Synth. Commun. 2012, 42, 951–958. [Google Scholar] [CrossRef]
- Yin, B.; Liu, Z.; Yi, M.; Zhang, J. An efficient method for the synthesis of disubstituted thioureas via the reaction of N,N′-di-Boc-substituted thiourea with alkyl and aryl amines under mild conditions. Tetrahedron Lett. 2008, 49, 3687–3690. [Google Scholar] [CrossRef]
- Halimehjani, A.Z.; Pourshojaei, Y.; Saidi, M.R. Highly efficient and catalyst-free synthesis of unsymmetrical thioureas under solvent-free conditions. Tetrahedron Lett. 2009, 50, 32–34. [Google Scholar] [CrossRef]
- Ziyaei-Halimehjani, A.; Marjani, K.; Ashouri, A. A one-pot, three-component synthesis of thiazolidine-2-thiones. Tetrahedron Lett. 2012, 53, 3490–3492. [Google Scholar] [CrossRef]
- Ziyaei Halimehjani, A.; Ranjbari, M.A.; Pasha Zanussi, H. Synthesis of a new series of dithiocarbamate-linked peptidomimetics and their application in Ugi reactions. RSC Adv. 2013, 3, 22904–22908. [Google Scholar] [CrossRef]
- Aryanasab, F.; Halimehjani, A.Z.; Saidi, M.R. Dithiocarbamate as an efficient intermediate for the synthesis of 2-amino-1,3,4-thiadiazoles in water. Tetrahedron Lett. 2010, 51, 790–792. [Google Scholar] [CrossRef]
- Raina-Fulton, R. A Review of Methods for the Analysis of Orphan and Difficult Pesticides: Glyphosate, Glufosinate, Quaternary Ammonium and Phenoxy Acid Herbicides, and Dithiocarbamate and Phthalimide Fungicides. J. AOAC Int. 2019, 97, 965–977. [Google Scholar] [CrossRef]
- Kaufman, D.D. Degradation of carbamate herbicides in soil. J. Agric. Food Chem. 1967, 15, 582–591. [Google Scholar] [CrossRef]
- Rogachev, I.; Kampel, V.; Gusis, V.; Cohen, N.; Gressel, J.; Warshawsky, A. Synthesis, Properties, and Use of Copper-Chelating Amphiphilic Dithiocarbamates as Synergists of Oxidant-Generating Herbicides. Pestic. Biochem. Physiol. 1998, 60, 133–145. [Google Scholar] [CrossRef]
- Abulnaja, K.O.; Harwood, J.L. Thiocarbamate herbicides inhibit fatty acid elongation in a variety of monocotyledons. Phytochemistry 1991, 30, 1445–1447. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L.; Ye, X.; Huang, C.; Yang, W.; Zhang, L.; Wu, Z.; Fu, F. Multicolor visual screening of total dithiocarbamate pesticides in foods based on sulfydryl-mediated growth of gold nanobipyramids. Anal. Chim. Acta 2020, 1139, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Eng, G.; Song, X.; Duong, Q.; Strickman, D.; Glass, J.; May, L. Synthesis, structure characterization and insecticidal activity of some triorganotin dithiocarbamates. Appl. Organomet. Chem. 2003, 17, 218–225. [Google Scholar] [CrossRef]
- Fan, Z.; Qin, Y.; Liu, S.; Xing, R.; Yu, H.; Chen, X.; Li, K.; Li, R.; Wang, X.; Li, P. The bioactivity of new chitin oligosaccharide dithiocarbamate derivatives evaluated against nematode disease (Meloidogyne incognita). Carbohydr. Polym. 2019, 224, 115155. [Google Scholar] [CrossRef]
- Hussain, A.; Pu, H.; Hu, B.; Sun, D.-W. Au@Ag-TGANPs based SERS for facile screening of thiabendazole and ferbam in liquid milk. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 245, 118908. [Google Scholar] [CrossRef] [PubMed]
- Runkle, J.; Flocks, J.; Economos, J.; Dunlop, A.L. A systematic review of Mancozeb as a reproductive and developmental hazard. Environ. Int. 2017, 99, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Boran, H.; Altinok, I.; Capkin, E. Histopathological changes induced by maneb and carbaryl on some tissues of rainbow trout, Oncorhynchus mykiss. Tissue Cell 2010, 42, 158–164. [Google Scholar] [CrossRef]
- Roede, J.R.; Jones, D.P. Thiol-reactivity of the fungicide maneb. Redox Biol. 2014, 2, 651–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, R.G.; Beall, M.L., Jr. Fate of maneb and zineb fungicides in microagroecosystem chambers. J. Agric. Food Chem. 1980, 28, 322–330. [Google Scholar] [CrossRef]
- Triky-Dotan, S.; Ofek, M.; Austerweil, M.; Steiner, B.; Minz, D.; Katan, J.; Gamliel, A. Microbial aspects of accelerated degradation of metam sodium in soil. Phytopathology 2010, 100, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhao, Z.; Lan, X.; Chen, Y.; Zhang, L.; Ji, R.; Wang, L. Determination of carbendazim and metiram pesticides residues in reapeseed and peanut oils by fluorescence spectrophotometry. Measurement 2015, 73, 313–317. [Google Scholar] [CrossRef]
- Charles, J.M.; Tobia, A.; van Ravenzwaay, B. Subchronic and Chronic Toxicological Investigations on Metiram: The Lack of a Carcinogenic Response in Rodents. Toxicol. Sci. 2000, 54, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.S.; Wang, J.S. Determination of an ethylene bisdithiocarbamate based pesticide (Nabam) by cobalt phthalocyanine modified carbon ink electrode. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2004, 16, 904–909. [Google Scholar] [CrossRef]
- Zhang, H.; Mehmood, K.; Jiang, X.; Yao, W.; Iqbal, M.; Waqas, M.; Rehman, M.U.; Li, A.; Shen, Y.; Li, J. Effect of tetramethyl thiuram disulfide (thiram) in relation to tibial dyschondroplasia in chickens. Environ. Sci. Pollut. Res. 2018, 25, 28264–28274. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhao, H.; Huang, L.; Xi, H.; Zhou, D.; Cheng, J. Efficacy of propineb for controlling leaf blotch caused by Marssonina coronaria and its effect on zinc content in apple leaves. Acta Phytophylacica Sin. 2008, 35, 519–524. [Google Scholar]
- Cummings, J.L.; Mason, J.R.; Otis, D.L.; Davis, J.E., Jr.; Ohashi, T.J. Evaluation of methiocarb, ziram, and methyl anthranilate as bird repellents applied to dendrobium orchids. Wildl. Soc. Bull. 1994, 22, 633–638. [Google Scholar]
- Berry, D.J.; Torres Martin de Rosales, R.; Charoenphun, P.; Blower, P.J. Dithiocarbamate complexes as radiopharmaceuticals for medical imaging. Mini Rev. Med. Chem. 2012, 12, 1174–1183. [Google Scholar] [CrossRef]
- El-Aarag, B.Y.A.; Kasai, T.; Zahran, M.A.H.; Zakhary, N.I.; Shigehiro, T.; Sekhar, S.C.; Agwa, H.S.; Mizutani, A.; Murakami, H.; Kakuta, H.; et al. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int. Immunopharmacol. 2014, 21, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Adokoh, C.K. Therapeutic potential of dithiocarbamate supported gold compounds. RSC Adv. 2020, 10, 2975–2988. [Google Scholar] [CrossRef] [Green Version]
- Morrison, B.W.; Doudican, N.A.; Patel, K.R.; Orlow, S.J. Disulfiram induces copper-dependent stimulation of reactive oxygen species and activation of the extrinsic apoptotic pathway in melanoma. Melanoma Res. 2010, 20, 11–20. [Google Scholar] [CrossRef]
- Elahabaadi, E.; Salarian, A.A.; Nassireslami, E. Design, Synthesis, and Molecular Docking of Novel Hybrids of Coumarin-Dithiocarbamate Alpha-Glucosidase Inhibitors Targeting Type 2 Diabetes Mellitus. Polycycl. Aromat. Compd. 2021, 1–11. [Google Scholar] [CrossRef]
- Mollazadeh, M.; Mohammadi-Khanaposhtani, M.; Valizadeh, Y.; Zonouzi, A.; Faramarzi, M.A.; Kiani, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Mahdavi, M.; et al. Novel Coumarin Containing Dithiocarbamate Derivatives as Potent alpha-Glucosidase Inhibitors for Management of Type 2 Diabetes. Med. Chem. 2021, 17, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, L.; Liu, Y.; Li, W.; Wang, Z.; Shou, S.; Chai, Y. Effect of semaphorin-3A on the cellular stability of CD4+CD25+ regulatory T cells induced by lipopolysaccharide. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2020, 32, 1454–1460. [Google Scholar] [PubMed]
- Sağlık, B.N.; Osmaniye, D.; Çevik, U.A.; Levent, S.; Çavuşoğlu, B.K.; Büyükemir, O.; Nezir, D.; Karaduman, A.B.; Özkay, Y.; Koparal, A.S.; et al. Synthesis, characterization and carbonic anhydrase I and II inhibitory evaluation of new sulfonamide derivatives bearing dithiocarbamate. Eur. J. Med. Chem. 2020, 198, 112392. [Google Scholar] [CrossRef] [PubMed]
- Aspatwar, A.; Parvathaneni, N.K.; Barker, H.; Anduran, E.; Supuran, C.T.; Dubois, L.; Lambin, P.; Parkkila, S.; Winum, J.-Y. Design, synthesis, in vitro inhibition and toxicological evaluation of human carbonic anhydrases I, II and IX inhibitors in 5-nitroimidazole series. J. Enzym. Inhib. Med. Chem. 2020, 35, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Y.; Xu, L.W.; Liu, Y.; Sun, L.Y.; Gao, H.; Li, J.Q.; Yang, K. Dithiocarbamate as a valuable scaffold for the inhibition of metallo-β-lactmases. Biomolecules 2019, 9, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadi, M.; Ebrahimi, M.; Mohammadi-Khanaposhtani, M.; Azizian, H.; Sepehri, S.; Nadri, H.; Biglar, M.; Amanlou, M.; Larijani, B.; Mirzazadeh, R.; et al. Design, Synthesis, Molecular Docking, and Cholinesterase Inhibitory Potential of Phthalimide-Dithiocarbamate Hybrids as New Agents for Treatment of Alzheimer’s Disease. Chem. Biodivers. 2019, 16, e1900370. [Google Scholar] [CrossRef] [PubMed]
- Cihlar, T.; Fordyce, M. Current status and prospects of HIV treatment. Curr. Opin. Virol. 2016, 18, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Takamune, N.; Misumi, S.; Shoji, S. Cyclic Zinc-Dithiocarbamate-S,S′-Dioxide Blocks CXCR4-Mediated HIV-1 Infection1. Biochem. Biophys. Res. Commun. 2000, 272, 351–356. [Google Scholar] [CrossRef]
- Pang, H.; Chen, D.; Cui, Q.C.; Ping Dou, Q. Sodium diethyldithiocarbamate, an AIDS progression inhibitor and a copper-binding compound, has proteasome-inhibitory and apoptosis-inducing activities in cancer cells. Int. J. Mol. Med. 2007, 19, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Kazakova, I.; Furniss, M.; Miller, S.C. Dual activity of pyrrolidine dithiocarbamate on κB-dependent gene expression in U937 cells: I. Regulation by the phorbol ester TPA. Cell. Signal. 1999, 11, 479–489. [Google Scholar] [CrossRef]
- Schreck, R.; Meier, B.; Männel, D.N.; Dröge, W.; Baeuerle, P.A. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med. 1992, 175, 1181–1194. [Google Scholar] [CrossRef]
- Ahlenstiel, C.L.; Suzuki, K.; Marks, K.; Symonds, G.P.; Kelleher, A.D. Controlling HIV-1: Non-Coding RNA Gene Therapy Approaches to a Functional Cure. Front. Immunol. 2015, 6, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, J.-M.; Trepo, C.; Kirstetter, M.; Herviou, L.; Retornaz, G.; Renoux, G.; Musset, M.; Touraine, J.-L.; Choutet, P.; Falkenrodt, A.; et al. The Aids-Imuthiol French Study, G. Randomised, double-blind, placebo-controlled trial of ditiocarb sodium (’Imuthiol’) in human immunodeficiency virus infection. Lancet 1988, 332, 702–706. [Google Scholar] [CrossRef]
- Sunderman, F.W.S. Therapeutic properties of sodium diethyldithiocarbamate: Its role as an inhibitor in the progression of AIDS. Ann. Clin. Lab. Sci. 1991, 21, 70–81. [Google Scholar] [PubMed]
- Hersh, E.M.; Brewton, G.; Abrams, D.; Bartlett, J.; Galpin, J.; Gill, P.; Gorter, R.; Gottlieb, M.; Jonikas, J.J.; Landesman, S.; et al. Ditiocarb Sodium (Diethyldithiocarbamate) Therapy in Patients With Symptomatic HIV Infection and AIDS: A Randomized, Double-blind, Placebo-Controlled, Multicenter Study. JAMA 1991, 265, 1538–1544. [Google Scholar] [CrossRef] [PubMed]
- Bozdag, M.; Carta, F.; Vullo, D.; Akdemir, A.; Isik, S.; Lanzi, C.; Scozzafava, A.; Masini, E.; Supuran, C.T. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitory activity and antiglaucoma action. Bioorganic Med. Chem. 2015, 23, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T. Emerging role of carbonic anhydrase inhibitors. Clin. Sci. 2021, 135, 1233–1249. [Google Scholar] [CrossRef] [PubMed]
- Francioli, C.; Wang, X.; Parapanov, R.; Abdelnour, E.; Lugrin, J.; Gronchi, F.; Perentes, J.; Eckert, P.; Ris, H.-B.; Piquilloud, L. Pyrrolidine dithiocarbamate administered during ex-vivo lung perfusion promotes rehabilitation of injured donor rat lungs obtained after prolonged warm ischemia. PLoS ONE 2017, 12, e0173916. [Google Scholar] [CrossRef] [Green Version]
- Soerensen, J.; Pekcec, A.; Fuest, C.; Nickel, A.; Potschka, H. Pyrrolidine dithiocarbamate protects the piriform cortex in the pilocarpine status epilepticus model. Epilepsy Res. 2009, 87, 177–183. [Google Scholar] [CrossRef]
- Ebenezer, P.J.; Mariappan, N.; Elks, C.M.; Haque, M.; Soltani, Z.; Reisin, E.; Francis, J. Effects of pyrrolidine dithiocarbamate on high-fat diet-induced metabolic and renal alterations in rats. Life Sci. 2009, 85, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Pal, D.S.; Mondal, D.K.; Datta, R. Identification of Metal Dithiocarbamates as a Novel Class of Antileishmanial Agents. Antimicrob. Agents Chemother. 2015, 59, 2144–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; Team, W.L.C. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Pandey, K.; Pun, S.B.; Pandey, B.D. Relapse of kala-azar after use of multiple drugs: A case report and brief review of literature. Indian J. Med. Microbiol. 2012, 30, 227–229. [Google Scholar] [CrossRef]
- Massai, L.; Messori, L.; Micale, N.; Schirmeister, T.; Maes, L.; Fregona, D.; Cinellu, M.A.; Gabbiani, C. Gold compounds as cysteine protease inhibitors: Perspectives for pharmaceutical application as antiparasitic agents. BioMetals 2017, 30, 313–320. [Google Scholar] [CrossRef]
- Oliveira, J.W.d.F.; Rocha, H.A.O.; de Medeiros, W.M.T.Q.; Silva, M.S. Application of Dithiocarbamates as Potential New Antitrypanosomatids-Drugs: Approach Chemistry, Functional and Biological. Molecules 2019, 24, 2806. [Google Scholar] [CrossRef] [Green Version]
- Mezencev, R.; Galizzi, M.; Kutschy, P.; Docampo, R. Trypanosoma cruzi: Antiproliferative effect of indole phytoalexins on intracellular amastigotes in vitro. Exp. Parasitol. 2009, 122, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, C.; Perez, E.; Roland, P.; Suarez, M.; Ochoab, E.; Rodriguez, H.; Barrio, A.G.; Susana, M.; Nogal, J.J.; Martinez, R.A. Synthesis and antiprotozoan properties of new 3,5-disubstituted-tetrahydro-2H-1,3,5-thiadiazine-2-thione derivatives. Arzneimittelforschung 1999, 49, 764–769. [Google Scholar]
- Alam, U.; Asghar, O.; Azmi, S.; Malik, R.A. General aspects of diabetes mellitus. Handb. Clin. Neurol. 2014, 126, 211–222. [Google Scholar]
- Chu, G.; Lei1, C.; Qiu, P.; Hu, Y.; Meng, X. Pyrrolidine dithiocarbamate alleviated anxiety in diabetic mice. Indian J. Pharm. Sci. 2017, 79, 149–154. [Google Scholar]
- Uchide, N.; Ohyama, K.; Bessho, T.; Yuan, B.; Yamakawa, T. Effect of antioxidants on apoptosis induced by influenza virus infection: Inhibition of viral gene replication and transcription with pyrrolidine dithiocarbamate. Antivir. Res. 2002, 56, 207–217. [Google Scholar] [CrossRef]
- Dighe, S.U.; Yadav, V.D.; Srivastava, R.; Mishra, A.; Gautam, S.; Srivastava, A.K.; Balaramnavar, V.M.; Saxena, A.K.; Batra, S. Reinvestigations into synthesis of allyldithiocarbamates and their intramolecular cyclization: Synthesis and antihyperglycemic activity of 2-thioxothiazolidine-4-alkanoates. Tetrahedron 2014, 70, 6841–6850. [Google Scholar] [CrossRef]
- Maresca, A.; Carta, F.; Vullo, D.; Supuran, C.T. Dithiocarbamates strongly inhibit the β-class carbonic anhydrases from Mycobacterium tuberculosis. J. Enzym. Inhib. Med. Chem. 2013, 28, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Li, Q.; Li, Q.; Xie, S.-S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2018, 146, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Vullo, D.; Del Prete, S.; Nocentini, A.; Osman, S.M.; AlOthman, Z.; Capasso, C.; Bozdag, M.; Carta, F.; Gratteri, P.; Supuran, C.T. Dithiocarbamates effectively inhibit the β-carbonic anhydrase from the dandruff-producing fungus Malassezia globosa. Bioorganic Med. Chem. 2017, 25, 1260–1265. [Google Scholar] [CrossRef]
- Mohsen, U.; Kaplancikli, Z.; Özkay, Y.; Yurttaş, L. Synthesis and evaluation of anti-acetylcholinesterase activity of some benzothiazole based new piperazine-dithiocarbamate derivatives. Drug Res. 2015, 65, 176–183. [Google Scholar] [CrossRef]
- Brewer, C. Recent developments in disulfiram treatment. Alcohol Alcohol. 1993, 28, 383–395. [Google Scholar] [PubMed]
- O’Farrell, T.J.; Allen, J.P.; Litten, R.Z. Disulfiram (antabuse) contracts in treatment of alcoholism. NIDA Res. Monogr. 1995, 150, 65–91. [Google Scholar]
- Abdelkader, N.F.; Arafa, N.M.; Attia, A.S.; Ain-Shoka, A.A.; Abdallah, D.M. Pyrrolidine dithiocarbamate ameliorates rotenone-induced Parkinson’s disease in rats. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Lei, Z.; Tian, E.; Wang, Y.; Zhong, Y.; Ge, R.S. Inhibition of human sperm motility and capacitation by ziram is mediated by decreasing tyrosine protein kinase. Ecotoxicol. Environ. Saf. 2021, 218, 112281. [Google Scholar] [CrossRef]
- Ferraz, C.R.; Manchope, M.F.; Andrade, K.C.; Saraiva-Santos, T.; Franciosi, A.; Zaninelli, T.H.; Bagatim-Souza, J.; Borghi, S.M.; Cândido, D.M.; Knysak, I.; et al. Peripheral mechanisms involved in Tityus bahiensis venom-induced pain. Toxicon 2021, 200, 3–12. [Google Scholar] [CrossRef]
- Vane, J.R.; Botting, R.M. The mechanism of action of aspirin. Thromb. Res. 2003, 110, 255–258. [Google Scholar] [CrossRef]
- Dinarello, C.A. Anti-inflammatory Agents: Present and Future. Cell 2010, 140, 935–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.; Zhou, Y.; Zhang, W.; Zhan, L.; Yu, Y.; Chen, Y.; Jia, W.; Liu, Z.; Qian, J.; Zhang, Y.; et al. Base promoted synthesis of novel indole-dithiocarbamate compounds as potential anti-inflammatory therapeutic agents for treatment of acute lung injury. Eur. J. Med. Chem. 2019, 171, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Lamkanfi, M. Emerging inflammasome effector mechanisms. Nat. Rev. Immunol. 2011, 11, 213–220. [Google Scholar] [CrossRef]
- Li, C.-W.; Chen, Z.-W.; Wu, X.-L.; Ning, Z.-X.; Su, Z.-Q.; Li, Y.-C.; Su, Z.-R.; Lai, X.-P. A Standardized Traditional Chinese Medicine Preparation Named Yejuhua Capsule Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice via Downregulating Toll-Like Receptor 4/Nuclear Factor-kB. Evid.-Based Complementary Altern. Med. 2015, 2015, 264612. [Google Scholar] [CrossRef] [Green Version]
- Topping, R.J.; Jones, M.M. Optimal dithiocarbamate structure for immunomodulator action. Med. Hypotheses 1988, 27, 55–57. [Google Scholar] [CrossRef]
- Cuzzocrea, S.; Chatterjee, P.K.; Mazzon, E.; Dugo, L.; Serraino, I.; Britti, D.; Mazzullo, G.; Caputi, A.P.; Thiemermann, C. Pyrrolidine dithiocarbamate attenuates the development of acute and chronic inflammation. Br. J. Pharmacol. 2020, 135, 496–510. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, Y.; Gupta, V.K.; Jaitak, V. Anticancer activity of essential oils: A review. J. Sci. Food Agric. 2013, 93, 3643–3653. [Google Scholar] [CrossRef]
- Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther. 2003, 99, 1–13. [Google Scholar] [CrossRef]
- Fu, D.J.; Li, J.H.; Yang, J.J.; Li, P.; Zhang, Y.B.; Liu, S.; Li, Z.R.; Zhang, S.Y. Discovery of novel chalcone-dithiocarbamates as ROS-mediated apoptosis inducers by inhibiting catalase. Bioorganic Chem. 2019, 86, 375–385. [Google Scholar] [CrossRef]
- Milacic, V.; Chen, D.; Giovagnini, L.; Diez, A.; Fregona, D.; Dou, Q.P. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity. Toxicol. Appl. Pharmacol. 2008, 231, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawal, M.M.; Lawal, I.A.; Klink, M.J.; Tolufashe, G.F.; Ndagi, U.; Kumalo, H.M. Density functional theory study of gold(III)-dithiocarbamate complexes with characteristic anticancer potentials. J. Inorg. Biochem. 2020, 206, 111044. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.M.M.E.; AboulWafa, O.M.; El-Shoukrofy, M.S.; Amr, M.E. Benzoxazole derivatives as new generation of anti-breast cancer agents. Bioorganic Chem. 2020, 96, 103593. [Google Scholar] [CrossRef] [PubMed]
- Bakthavatsalam, S.; Wiangnak, P.; George, D.J.; Zhang, T.; Franz, K.J. Dithiocarbamate prodrugs activated by prostate specific antigen to target prostate cancer. Bioorganic Med. Chem. Lett. 2020, 30, 127148. [Google Scholar] [CrossRef]
- Wang, H.; Wei, J.; Jiang, H.; Zhang, Y.; Jiang, C.; Ma, X. Design, synthesis and pharmacological evaluation of three novel dehydroabietyl piperazine dithiocarbamate ruthenium (II) polypyridyl complexes as potential antitumor agents: DNA damage, cell cycle arrest and apoptosis induction. Molecules 2021, 26, 1453. [Google Scholar] [CrossRef]
- Syed Annuar, S.N.; Kamaludin, N.F.; Awang, N.; Chan, K.M. Cellular Basis of Organotin(IV) Derivatives as Anticancer Metallodrugs: A Review. Front. Chem. 2021, 9, 657599. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Onwudiwe, D.C. The mechanisms of action involving dithiocarbamate complexes in biological systems. Inorg. Chim. Acta 2020, 511, 119809. [Google Scholar] [CrossRef]
- Manoussakis, G.; Bolos, C.; Ecateriniadou, L.; Sarris, C. Synthesis, characterization and anti-bacterial studies of mixed-ligand complexes of dithiocarbamato—thiocyanato and iron(III), nickel(II), copper(II) and zinc(II). Eur. J. Med. Chem. 1987, 22, 421–425. [Google Scholar] [CrossRef]
- Oladipo, S.D.; Tolufashe, G.F.; Mocktar, C.; Omondi, B. Ag(I) symmetrical N,N′-diarylformamidine dithiocarbamate PPh3 complexes: Synthesis, structural characterization, quantum chemical calculations and in vitro biological studies. Inorg. Chim. Acta 2021, 520, 120316. [Google Scholar] [CrossRef]
- Chen, Q.M.; Li, Z.; Tian, G.X.; Chen, Y.; Wu, X.H. 1,2,3-triazole-dithiocarbamate-naphthalimides: Synthesis, characterization, and biological evaluation. J. Chem. Res. 2021, 45, 258–264. [Google Scholar] [CrossRef]
- Mohammed, M.H.; Leelon, A.A. Synthesis, characterization of isatin dithiocarbamate derivatives with expected biological activities. Int. J. Drug Deliv. Technol. 2021, 11, 209–212. [Google Scholar]
- Ndukwe, G.I.; Nzeneri, J.U.; Abayeh, O.J. Antibacterial assay of two synthesized dithiocarbamate ligands. Am. J. Chem. Appl. 2018, 5, 51–57. [Google Scholar]
- Ariza-Roldán, A.O.; López-Cardoso, E.M.; Rosas-Valdez, M.E.; Roman-Bravo, P.P.; Vargas-Pineda, D.G.; Cea-Olivares, R.; Acevedo-Quiroz, M.; Razo-Hernández, R.S.; Alvarez-Fitz, P.; Jancik, V. Synthesis, characterization, antimicrobial and theoretical studies of the first main group tris(ephedrinedithiocarbamate) complexes of As(III), Sb(III), Bi(III), Ga(III) and In(III). Polyhedron 2017, 134, 221–229. [Google Scholar] [CrossRef]
- Onwudiwe, D.C.; Ekennia, A.C. Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition metal dithiocarbamates. Res. Chem. Intermed. 2017, 43, 1465–1485. [Google Scholar] [CrossRef]
- Pastrana-Dávila, A.; Amaya-Flórez, A.; Aranaga, C.; Ellena, J.; Macías, M.; Flórez-López, E.; D’Vries, R.F. Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds. J. Mol. Struct. 2021, 1245, 131109. [Google Scholar] [CrossRef]
- Mansouri, G.; Ghobadi, M.; Notash, B. Synthesis, spectroscopic, structural, DFT and antibacterial studies of cyclometalated rhodium(III) complex based on morpholinedithiocarbamate ligand. Inorg. Chem. Commun. 2021, 130, 108707. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oluwarinde, B.O.; Montso, P.K.; Ateba, C.N.; Onwudiwe, D.C. Antimicrobial activities of Cu(II), In(III), and Sb(III) complexes of N-methyl-N–phenyl dithiocarbamate complexes. Results Chem. 2021, 3, 100241. [Google Scholar] [CrossRef]
- Menezes, D.C.; Vieira, F.T.; de Lima, G.M.; Wardell, J.L.; Cortés, M.E.; Ferreira, M.P.; Soares, M.A.; Vilas Boas, A. The in vitro antifungal activity of some dithiocarbamate organotin(IV) compounds on Candida albicans—A model for biological interaction of organotin complexes. Appl. Organomet. Chem. 2008, 22, 221–226. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, S.; Xing, R.; Yu, H.; Li, K.; Meng, X.; Li, R.; Li, P. Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity. Carbohydr. Polym. 2012, 89, 388–393. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Rabea, E.I. Chapter 7-Chitosan and Its Derivatives as Active Ingredients Against Plant Pests and Diseases. In Chitosan in the Preservation of Agricultural Commodities; Bautista-Baños, S., Romanazzi, G., Jiménez-Aparicio, A., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 179–219. [Google Scholar]
- Ferreira, I.P.; de Lima, G.M.; Paniago, E.B.; Takahashi, J.A.; Pinheiro, C.B. Synthesis, characterization and antifungal activity of new dithiocarbamate-based complexes of Ni(II), Pd(II) and Pt(II). Inorg. Chim. Acta 2014, 423, 443–449. [Google Scholar] [CrossRef]
- Fargasova, A.; Reinprecht, L.; Kizlink, J. Efficiency of organotin dithiocarbamate derivatives against wood destroying fungi. Biologia 1997, 52, 451–455. [Google Scholar]
- Duran, A.; Valero, N.; Mosquera, J.; Fuenmayor, E.; Alvarez-Mon, M. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures. Life Sci. 2017, 191, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Qin, Y.; Wu, H.; Chen, Y.; Wu, S.; Si, X.; Wang, H.; Wang, T.; Zhong, X.; Zhai, X.; et al. Pyrrolidine dithiocarbamate inhibits enterovirus 71 replication by down-regulating ubiquitin–proteasome system. Virus Res. 2015, 195, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Mallia, M.B.; Subramanian, S.; Banerjee, S.; Kothari, K.; Dhotare, B.; Sarma, H.D.; Venkatesh, M. 99mTcN complexes of tert-butyl dithiocarbamate and methoxyisobutyl dithiocarbamate as myocardial and brain imaging agents. Nucl. Med. Commun. 2005, 26, 1013–1019. [Google Scholar] [CrossRef]
- Torres Martin de Rosales, R.; Tavaré, R.; Paul, R.L.; Jauregui-Osoro, M.; Protti, A.; Glaria, A.; Varma, G.; Szanda, I.; Blower, P.J. Synthesis of 64CuII–bis (dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: In vivo evaluation as dual-modality PET–MRI agent. Angew. Chem. 2011, 123, 5623–5627. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, H.; Zhang, S.; Lin, Y.; Wang, X. Synthesis and biodistribution of a novel 99mTcN complex of ciprofloxacin dithiocarbamate as a potential agent for infection imaging. Bioorganic Med. Chem. Lett. 2008, 18, 5168–5170. [Google Scholar] [CrossRef]
- Lin, X.; Jin, Z.; Ren, J.; Pang, Y.; Zhang, W.; Huo, J.; Wang, X.; Zhang, J.; Zhang, Y. Synthesis and Biodistribution of a New 99mTc-oxo Complex with Deoxyglucose Dithiocarbamate for Tumor Imaging. Chem. Biol. Drug Des. 2012, 79, 239–245. [Google Scholar] [CrossRef]
- Hait, S.; Valentín, J.L.; Jiménez, A.G.; Ortega, P.B.; Ghosh, A.K.; Stöckelhuber, K.W.; Wießner, S.; Heinrich, G.; Das, A. Poly(acrylonitrile-co-butadiene) as polymeric crosslinking accelerator for sulphur network formation. Heliyon 2020, 6, e04659. [Google Scholar] [CrossRef]
- Oenslager, G. Organic Accelerators. Ind. Eng. Chem. 1933, 25, 232–237. [Google Scholar] [CrossRef]
- Wang, Y.; Lü, Y.; Hu, S.; Hu, T.; Wen, S.; Liu, L. Application of Lanthanum Diethyldithiocarbamate as Rubber Accelerator Used in Nitrile Butadiene Rubber. J. Chin. Rare Earth Soc. 2019, 37, 609–616. [Google Scholar]
- Palaty, S.; Joseph, R. Synergism of Xanthate/Dithiocarbamate Accelerator in Carbon Black Filled NR Compounds. Iran. Polym. J. 2004, 13, 85–91. [Google Scholar]
- Zou, Y.; He, J.; Tang, Z.; Zhu, L.; Luo, Y.; Liu, F. Effect of multifunctional samarium lysine dithiocarbamate on curing properties, static and dynamic mechanical properties of SBR/silica composites. RSC Adv. 2015, 6, 269–280. [Google Scholar] [CrossRef]
- Alam, M.N.; Mandal, S.K.; Roy, K.; Debnath, S.C. Safe amine based zinc dithiocarbamates for the vulcanization of carbon black reinforced natural rubber. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Guo, A.J.; Pan, H.H.; Zheng, W.L.; Jiao, S.H.; Wang, F.; Jin, Z.Z.; Liu, H.; Chen, K.; Wang, Z.X. Synthesis of dispersed molybdenum disulfide nano-catalysts and their performance in the hydrogenation of simulated oil slurry. J. Fuel Chem. Technol. 2019, 47, 629–640. [Google Scholar]
- Yang, S.; Liu, L.; Jia, Z.; Jia, D.; Luo, Y. Study on the curing properties of SBR/La-GDTC/SiO2 composites. J. Rare Earths 2011, 29, 444–453. [Google Scholar] [CrossRef]
- Pudovik, A.N.; Khairullin, V.K.; Il’yasov, A.V.; Vasyanina, M.A.; Aleksandrova, I.A.; Ismayev, I.E.; Ovcharov, V.I. Mechanism of action of phosphorylated dithiocarbamates on the vulcanization of rubbers. Polym. Sci. USSR 1988, 30, 475–480. [Google Scholar] [CrossRef]
- Nieuwenhuizen, P.J.; Ehlers, A.W.; Haasnoot, J.G.; Janse, S.R.; Reedijk, J.; Baerends, E.J. The Mechanism of Zinc(II)-Dithiocarbamate-Accelerated Vulcanization Uncovered; Theoretical and Experimental Evidence. J. Am. Chem. Soc. 1999, 121, 163–168. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Xie, L.; Liu, G.; Zhong, H.; Zeng, H. Uncovering the hydrophobic mechanism of a novel dithiocarbamate-hydroxamate surfactant towards galena. Chem. Eng. Sci. 2021, 245, 116765. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Du, H.; Liu, J.; Zheng, S.; Zhang, Y.; Miller, J.D. The surface features of lead activation in amyl xanthate flotation of quartz. Int. J. Miner. Processing 2016, 151, 33–39. [Google Scholar] [CrossRef]
- Feng, Q.-C.; Wen, S.-M.; Zhao, W.-J.; Cao, Q.-B.; Lü, C. A novel method for improving cerussite sulfidization. Int. J. Miner. Metall. Mater. 2016, 23, 609–617. [Google Scholar] [CrossRef]
- Elizondo-Álvarez, M.A.; Uribe-Salas, A.; Nava-Alonso, F. Flotation studies of galena (PbS), cerussite (PbCO3) and anglesite (PbSO4) with hydroxamic acids as collectors. Miner. Eng. 2020, 155, 106456. [Google Scholar] [CrossRef]
- Huang, X.; Jia, Y.; Cao, Z.; Wang, S.; Ma, X.; Zhong, H. Investigation of the interfacial adsorption mechanisms of 2-hydroxyethyl dibutyldithiocarbamate surfactant on galena and sphalerite. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123908. [Google Scholar] [CrossRef]
- Ngobeni, W.A.; Hangone, G. The effect of using sodium di-methyl-dithiocarbamate as a co-collector with xanthates in the froth flotation of pentlandite containing ore from Nkomati mine in South Africa. Miner. Eng. 2013, 54, 94–99. [Google Scholar] [CrossRef]
- Qi, J.; Dong, Y.; Liu, S.; Liu, G. A selective flotation of cassiterite with a dithiocarbamate-hydroxamate molecule and its adsorption mechanism. Appl. Surf. Sci. 2021, 538, 147996. [Google Scholar] [CrossRef]
- Matveeva, T.N.; Gromova, N.K.; Lantsova, L.B. Analysis of Complexing and Adsorption Properties of Dithiocarbamates Based on Cyclic and Aliphatic Amines for Gold Ore Flotation. J. Min. Sci. 2020, 56, 268–274. [Google Scholar] [CrossRef]
- Matveeva, T.N.; Chanturia, V.A.; Gromova, N.K.; Lantsova, L.B. New compositions of agents for fine gold recovery from tailings. Gorn. Zhurnal 2019, 2019, 48–51. [Google Scholar] [CrossRef]
- Wang, J.B.; Zhao, F.; Yang, X.L.; Han, W.Y.; Long, K.; Zhou, Y.R. Marine Environmental Risk Assessment Method for Active Substances Used in Antifouling Systems on Ships in China. In Advanced Materials Research; Trans Tech Publications Ltd.: Zurich, Switzerland, 2014; Volume 864, pp. 962–972. [Google Scholar]
- Nagata, S.; Zhou, X.; Okamura, H. Antagonistic and Synergistic Effects of Antifouling Chemicals in Mixture. In Encyclopedia of Ecology, Five-Volume Set; Elsevier: Amsterdam, The Netherlands, 2008; pp. 194–203. [Google Scholar]
- Parviz, M.; Darwish, N.; Alam, M.T.; Parker, S.G.; Ciampi, S.; Gooding, J.J. Investigation of the Antifouling Properties of Phenyl Phosphorylcholine-Based Modified Gold Surfaces. Electroanalysis 2014, 26, 1471–1480. [Google Scholar] [CrossRef]
- Narayanan, T.S.N.; Subbaiyan, M. Effect of dithiocarbamates on the phase constituents, alkaline stability, and wet adhesion of phosphate coatings. Met. Finish. 1994, 92, 33–34. [Google Scholar]
- Narayanan, T.S.N.S.; Subbaiyan, M. Effect of surfactants on the porosity and corrosion resistance of zinc-phosphated steel. Met. Finish. 1993, 91, 43–45. [Google Scholar]
- Belzile, N.; Chen, Y.-W.; Cai, M.-F.; Li, Y. A review on pyrrhotite oxidation. J. Geochem. Explor. 2004, 84, 65–76. [Google Scholar] [CrossRef]
- Shu, X.; Dang, Z.; Zhang, Q.; Yi, X.; Lu, G.; Guo, C.; Yang, C. Passivation of metal-sulfide tailings by covalent coating. Miner. Eng. 2013, 42, 36–42. [Google Scholar] [CrossRef]
- Zhou, Y.; Qu, J. Ionic Liquids as Lubricant Additives: A Review. ACS Appl. Mater. Interfaces 2017, 9, 3209–3222. [Google Scholar] [CrossRef] [PubMed]
- Kenbeek, D.; Buenemann, T.; Rieffe, H. Review of Organic Friction Modifiers-Contribution to Fuel Efficiency; SAE International: Warrendale, PA, USA, 2000. [Google Scholar]
- Rastogi, R.B.; Maurya, J.L.; Jaiswal, V.; Tiwary, D. Lanthanum dithiocarbamates as potential extreme pressure lubrication additives. Int. J. Ind. Chem. 2012, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Hiramatsu, T.; Hanamura, R.; Moriizumi, Y.; Heiden, S. The Study of Friction Modifiers to Improve Fuel Economy for WLTP with Low and Ultra-Low Viscosity Engine Oil; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Wang, Y.; Yue, W.; Kang, J.; Zhu, L.; Fu, Z.; Wang, C. Effect of Surface Nanocrystallization Pretreatment on the Tribological Properties of Plasma Nitrided AISI 316 L Stainless Steel Under Boundary Lubrication. J. Tribol. 2019, 141, 042102. [Google Scholar] [CrossRef]
- Shah, F.U.; Glavatskih, S.; Antzutkin, O.N. Novel Alkylborate–Dithiocarbamate Lubricant Additives: Synthesis and Tribophysical Characterization. Tribol. Lett. 2012, 45, 67–78. [Google Scholar] [CrossRef]
- Fuentes-Martínez, J.P.; Toledo-Martínez, I.; Román-Bravo, P.; Garcia y García, P.; Godoy-Alcántar, C.; López-Cardoso, M.; Morales-Rojas, H. Diorganotin(IV) dithiocarbamate complexes as chromogenic sensors of anion binding. Polyhedron 2009, 28, 3953–3966. [Google Scholar] [CrossRef]
- Gao, R.; Li, D.; Zheng, S.; Gu, H.; Deng, W. Colorimetric/fluorescent/Raman trimodal sensing of zinc ions with complexation-mediated Au nanorod. Talanta 2021, 225, 121975. [Google Scholar] [CrossRef]
- Yan, Y.; Krishnakumar, S.; Yu, H.; Ramishetti, S.; Deng, L.-W.; Wang, S.; Huang, L.; Huang, D. Nickel(II) Dithiocarbamate Complexes Containing Sulforhodamine B as Fluorescent Probes for Selective Detection of Nitrogen Dioxide. J. Am. Chem. Soc. 2013, 135, 5312–5315. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, L.; Garcia-Ramos, J.V.; Domingo, C.; Sanchez-Cortes, S. Sensing Polycyclic Aromatic Hydrocarbons with Dithiocarbamate-Functionalized Ag Nanoparticles by Surface-Enhanced Raman Scattering. Anal. Chem. 2009, 81, 953–960. [Google Scholar] [CrossRef]
- Rohit, J.V.; Solanki, J.N.; Kailasa, S.K. Surface modification of silver nanoparticles with dopamine dithiocarbamate for selective colorimetric sensing of mancozeb in environmental samples. Sens. Actuators B Chem. 2014, 200, 219–226. [Google Scholar] [CrossRef]
- Gurumoorthy, G.; Rani, P.J.; Thirumaran, S.; Ciattini, S. Cobalt(III) dithiocarbamates for anion sensing and preparation of cobalt sulfide and cobalt-iron sulfide nanoparticles: Photocatalytic degradation of dyes with as-prepared nanoparticles. Inorg. Chim. Acta 2017, 455, 132–139. [Google Scholar] [CrossRef]
- Mehta, V.N.; Basu, H.; Singhal, R.K.; Kailasa, S.K. Simple and sensitive colorimetric sensing of Cd2+ ion using chitosan dithiocarbamate functionalized gold nanoparticles as a probe. Sens. Actuators B Chem. 2015, 220, 850–858. [Google Scholar] [CrossRef]
- Mehta, V.N.; Mungara, A.K.; Kailasa, S.K. Dopamine dithiocarbamate functionalized silver nanoparticles as colorimetric sensors for the detection of cobalt ion. Anal. Methods 2013, 5, 1818–1822. [Google Scholar] [CrossRef]
- Rofouei, M.K.; Tajarrod, N.; Masteri-Farahani, M.; Zadmard, R. A New Fluorescence Sensor for Cerium (III) Ion Using Glycine Dithiocarbamate Capped Manganese Doped ZnS Quantum Dots. J. Fluoresc. 2015, 25, 1855–1866. [Google Scholar] [CrossRef]
- Sathiyaraj, E.; Gurumoorthy, G.; Thirumaran, S. Nickel(ii) dithiocarbamate complexes containing the pyrrole moiety for sensing anions and synthesis of nickel sulfide and nickel oxide nanoparticles. New J. Chem. 2015, 39, 5336–5349. [Google Scholar] [CrossRef]
- Mehta, V.N.; Kailasa, S.K. Malonamide dithiocarbamate functionalized gold nanoparticles for colorimetric sensing of Cu2+ and Hg2+ ions. RSC Adv. 2015, 5, 4245–4255. [Google Scholar] [CrossRef]
- Rohit, J.V.; Kailasa, S.K. Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry. J. Nanoparticle Res. 2014, 16, 2585. [Google Scholar] [CrossRef]
- Mehta, V.N.; Kailasa, S.K.; Wu, H.-F. Sensitive and selective colorimetric sensing of Fe3+ ion by using p-amino salicylic acid dithiocarbamate functionalized gold nanoparticles. New J. Chem. 2014, 38, 1503–1511. [Google Scholar] [CrossRef]
- Rohit, J.V.; Kailasa, S.K. Simple and selective detection of pendimethalin herbicide in water and food samples based on the aggregation of ractopamine-dithiocarbamate functionalized gold nanoparticles. Sens. Actuators B Chem. 2017, 245, 541–550. [Google Scholar] [CrossRef]
- Rohit, J.V.; Singhal, R.K.; Kailasa, S.K. Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide via non-covalent interactions. Sens. Actuators B Chem. 2016, 237, 1044–1055. [Google Scholar] [CrossRef]
- Tonkin, E.G.; Valentine, H.L.; Zimmerman, L.J.; Valentine, W.M. Parenteral N,N-diethyldithiocarbamate produces segmental demyelination in the rat that is not dependent on cysteine carbamylation. Toxicol. Appl. Pharmacol. 2003, 189, 139–150. [Google Scholar] [CrossRef]
- Tilton, F.; La Du, J.K.; Tanguay, R.L. Sulfhydryl systems are a critical factor in the zebrafish developmental toxicity of the dithiocarbamate sodium metam (NaM). Aquat. Toxicol. 2008, 90, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilton, F.; La Du, J.K.; Vue, M.; Alzarban, N.; Tanguay, R.L. Dithiocarbamates have a common toxic effect on zebrafish body axis formation. Toxicol. Appl. Pharmacol. 2006, 216, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, C.J.; Maas-Diepeveen, J.L.; Niebeek, G.; Vergouw, W.H.A.; Griffioen, P.S.; Luijken, M.W. Aquatic toxicological aspects of dithiocarbamates and related compounds. I. Short-term toxicity tests. Aquat. Toxicol. 1985, 7, 145–164. [Google Scholar] [CrossRef]
- Lushchak, V.I.; Matviishyn, T.M.; Husak, V.V.; Storey, J.M.; Storey, K.B. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018, 17, 1101–1136. [Google Scholar]
- Fujii, S.; Yoshimura, T. A new trend in iron–dithiocarbamate complexes: As an endogenous NO trapping agent. Coord. Chem. Rev. 2000, 198, 89–99. [Google Scholar] [CrossRef]
Dithiocarbamate Compound Used | Heavy Metals Removed | Media/Samples Remediated | Amount Removed/Performance | Ref. |
---|---|---|---|---|
Iron-containing reduced graphene oxide modified with dithiocarbamate | Hg(II), Pb(II), Cd(II) and Cu(II) | wastewater | 181.82, 147.06, 116.28 and 113.64 mg/g respectively | [23] |
Dithiocarbamate-modified coal | Ni(II) | Aqueous solution | 82.37 mg/g | [24] |
Al(OH) -poly(acrylamide-dimethyldiallylammonium chloride)-graft-dithiocarbamate | Pb(II) and Cu(II) | Wastewater | 17.777 mg/g for Cu and 586.699 mg/g for Pb | [25] |
poly-sodium dithiocarbamate and poly-ammonium dithiocarbamate | Zn(II), Ni(II) and Cu(II) | Electroplating wastewater | 226.76, 234.47 and 245.53 mg/g, for Zn, Ni and Cu respectively at pH 6 in 20 min | [26] |
Heavy metal-dithiocarbamates (using sodium diethyldithiocarbamate) | Zn(II), Pb(II), Ni(II), Mn(II), Fe(II), Cu(II) and Cd(II) ions | Water sample | More than 90% removal | [14] |
Sodium polyamidoamine-multi dithiocarbamate (using sodium diethyldithiocarbamate) | Divalent Zn, Cu, Cd and Pb | Soil sediments | Complete precipitation | [27] |
sodium tetraethylenepentamine-multi dithiocarbamate | Divalent Cu, Cd and Pb | Soil samples | Near complete precipitation | [28] |
Dithiocarbamate Compound Used | Metal(s) Determined | Method Used for the Determination | Limit of Detection | Ref. |
---|---|---|---|---|
pyrrolidine dithiocarbamate | Ni(II), Cr(VI), Co(II), and Hg(II) | liquid liquid micro-extraction | 0.011–2.0 µg L−1 | [36] |
Ammonium 1-pyrrolidine dithiocarbamate and Diethylammonium diethyldithiocarbamate | Pb(II), Cu(II) and Cd(II) | Inductively coupled plasma-mass spectroscopy (ICP-MS) | 0.13–1.18 pmol L−1 | [37] |
Ammonium pyrrolidine dithiocarbamate | As(III) | solid phase extraction(SPE) | 0.01 μg L−1 | [38] |
Sodium diethyl dithiocarbamate | Cd(II) and Pb(II) | SPE/ FAAS | 0.30 μg L −1 | [39] |
Dithiocarbamate-functionalized magnetite composite | Hg(II) | Atomic absorption spectrometry with gold amalgamation | 1.8 ng L−1 | [40] |
Pyrrolidine dithicarbamate | Pb(II), Bi(III), Pb(II), Hg(II), Au(III), Se(IV), As(III),Ni(II) and Co(II) | Thin-film microextraction | 0.2–0.6 μg/L | [41] |
Dithiocarbamate Precursor Used | Nanoparticle(s) Obtained | Temp. Used | Particle Size and (Band Gap) | Ref. |
---|---|---|---|---|
Bis(N-ethylphenyldithiocarbamato) palladium(II) | Palladium sulphide | 160, 200 and 240 °C resp. | 2.01–2.50 nm, 4.00–4.86 nm and 2.53–4.12 nm (4.90–5.02 eV) | [57] |
Bis(N,N-di(4-fluorobenzyl)dithiocarbamato-S,S′)M(II). (M = Cd) | Cadmium sulphide (CdS) | - | −(3.29 eV) | [58] |
Cu (II) bis N-methyl-N-phenyl Dithiocarbamate | Copper sulphide (CuS and Cu5S9) | ≥240 °C | 34.7 ± 13.3 nm width size (1.85 eV) | [52] |
Dithiocarbamate complexes with varied Ag/In/Ga/Zn ratios | Quinary Ag-In-Ga-Zn-S quantum dots | 220 °C | 2.0 ± 0.4 nm | [59] |
Molybdenum dithiocarbamates | Molybdenium sulphide (MoS2) | - | 40 nm | [60] |
N-alkyldithiocarbamate copper(II) complexes with NaBH4 | Copper sulphide (Cu9S5 and Cu2S) | 180 °C | −(3.0 eV) | [61] |
copper(ii) bis-(2,2′-(dithiocarboxyazanediyl)diacetic acid) | Copper sulphide (CuS) | 90 °C | 8 ± 1 nm | [62] |
bis(diethyldithiocarbamato)disulfidothioxo tungsten(VI) | chromium-doped tungsten disulphide (WS2) | 450 °C | - | [63] |
tetrakis(N,N-diethyldithiocarbamato)molybdenum(IV) | Molybdenum sulphide (MoS2) | 450 °C | flake thickness of ∼10 nm | [64] |
[V2S4(nBu2dtc)4](dtc=dithiocarbamate) | Vanadium sulphide (VS2) | 150 °C | [65] | |
Manganese diethyldithiocarbamate trihydrate | Manganese sulphide (MnS) | 290 °C | (3.3 eV) | [66] |
Tris-(piperidinedithiocarbamato) iron(III) and tris-(tetrahydroquinolinedithiocarbamato)iron(III) | Iron sulphide (Fe0.975S and Fe3S4 phases) | 350–450 °C | (0.95–2.0 eV) | [67] |
lead(II) complexes of morpholine dithiocarbamate | Lead sulphide (PbS) | 160 °C | (13.86–36.06 nm) | [68] |
Dithiocarbamate Pesticides (Common Names) | Dithiocarbamate Pesticides (Scientific Names) | Classification | Organism(s) Affected | Ref. |
---|---|---|---|---|
Ferbam | Ferric dimethyldithiocarbamate | Fungicide | Drugs against gastrointestinal flukes, tapeworms, lungworms and roundworms in farm animals | [84] |
mancozeb | Zinc;manganese(2+); N-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate | Fungicide | Acts against over 400 micro-organisms that damage agricultural produce such as citrus, grapevine, tomato and potato | [85] |
Carbaryl | 1-naphthyl methyl carbamate | Insecticide | Acts against 100 species of destructive insects affecting pets, livestock, poultry, shade trees, ornamentals, nuts, lawns, forests, fruit and citrus | [86] |
Maneb | Manganese-containing ethylene bis-dithiocarbamate | fungicide | To control the diseases of plants | [87,88] |
metam-sodium | Methylisothiocyanate | Fungicide, nematocides and (herbicides) | To fumigate soil prior to planting so as to prevent soilborne diseases | [89] |
Metiram | Zinc ammoniate ethlenebis(dithiocarbamate)-poly (ethylene disulphide) | Fungicide | Prevent plants(ornamentals, field, nuts, vegetables and fruits) by inhibiting the spores of the pathogens from germinating | [90,91] |
Nabam | Ethylenebis[dithiocarbamic acid] disodium salt | Algaecide, bacteriacide and Fungicide | To prevent fungal diseases in tomato, apple and cotton and to eliminate algae from plant field | [92] |
Thiram | Tetramethyl thiuram disulphide | Fungicide | It affects the mucous membrane and skin of microbes | [93] |
Propineb | Polymeric zinc 1, 2-propylene bis(dithiocarbamate) | Fungicide | To treat fungal infections such as leaf blotch in apple and other crops. | [94] |
Zineb | Zincethylenebis(dithiocarbamate) | Fungicide | To control the diseases of plants | [88] |
Ziram | Zinc-dimethyl dithiocarbamate | Fungicide | To repel birds from flowers | [95] |
Methiocarb | N-methylcarbamate | Insecticide | To repel birds from plants | [95] |
Diseases/ Abnormality Treated | Brief Description of the Disease/ Abnormality | Dithiocarbamate Compound Used | Roles of Dithiocarbamate | Ref. |
---|---|---|---|---|
Influenza | Viral disease that affect the respiratory organs | Pyrrolidine dithiocarbamate | It acts against overproduction of reactive oxygen species and inhibit DNA fragmentation | [130] |
Hyperglycemia | Too much of glucose in the bloodstream that may be as a result of diabetes mellitus | Allyldithiocar- bamates | Dithiocarbamates improved the sensitivity of insulin instead of the concentration of insulin leading to 18.2% glucose AUC (glucose area under the curve) in 15 days. | [131] |
Tuberculosis | Bacterial infection that affect the lung | Several N,N-disubstituted and N-mono-dithiocarbamates | Treatment through the inhibition of carbonic anhydrase enzyme. These dithiocarbamate compounds were more effective as inhibitor than the clinically-approved sulfonamide. | [132] |
Alzheimer disease | age-related neurodegenerative disorder | Several coumarin-dithiocarbamate | Treatment through the inhibition of acetylcholinesterase. They were able to reverse the cognative dysfunction | [133] |
Dandruff | Fungal disease that affect the scalp leading to the shedding of dead skin cells. | Series of dithiocarbamates | Inhibition of β-class carbonic anhydrase of Malassezia globosa | [134] |
Myasthenia gravis | An auto-immune disease causing the weakness of muscle | N,N-disubstituted dithiocarbamic acid | Treatment via inhibition of cholinesterase. They possessed better anticholinesterase properties more than Donepezil which is used for treating the disease. | [135] |
SARS-CoV-2. (Still on clinical trial) NCT 04485130 | Viral respiratory disease also known as coronavirus (COVID-19) | Disulfiram | Inhibition of viral replication and the anti-inflammatory activities leading to the treatment of the disease. | [9] |
Alcoholism | Excessive and uncontrollable alcohol intake | Disulfiram | It inhibits acetaldehyde metabolism which is a product obtained from the breakdown of alcohol | [136,137] |
Parkinson’s disease | Genetic disease associated with the loss of neuron | Pyrrolidine dithiocarbamate | It suppresses the level of glutamate | [138] |
Male infertility | Inability to conceive children | Ziram | Reduction of the level of proteineous kinase by damaging the mitochondria ultrastructure thereby inhibiting human sperm motility. | [139] |
Scorpionism | Painful condition as a result of scorpion sting | pyrrolidine dithiocarbamate | Inhibition of venom-induced thermal and mechanical hyperalgesia of Tityus bahiensis. | [140] |
Dithiocarbamate Compounds | Bacteria | Conc. of Isolation | Min. Inhibitory Conc. Range | Ref. |
---|---|---|---|---|
Phenyl dithiocarbamate mixed ligand metal complexes | Escherichia coli, Proteus valgaris, Salmonella typhii, Shigella flexneri, Staphylococcus aureus, Bacillus subtilis, Streptococcus pneumonia, Psendomonas aeruginosa, Vibro chlolerae and Klebseilla pneumonia | 10 mg/mL | 6–8 nm | [6] |
sodium cyclohexyldithioc-arbamate and sodium phenyldithiocarbamate | Salmonella typhi, Proteus mirabilis, Pseudomonas aeruginosa, Bacillus cereus and Bacillus subtilis | 15–30 mg/mL | (7.7–16.3 mm) and (8.5–19 mm) respectively | [162] |
tris(ephedrinedithiocarbamate) complexes | Pseudomona aeruginosa, Staphylococcus sciuri, Enterococcus caseofluvialis, Staphylococcus aureus, Enterobacter cloacae, Salmonella dublin, Klebsiella pneumonia and Escherichia coli | 25–100 μg/mL | 14.6–126.5 μM | [163] |
N-ethyl-N-phenyldithiocarbamate complexes | Staphylococcus aureus, Salmonella typhi, Pseudomonas aureginosa and Escherichia coli | 100 μg/mL | - | [164] |
Dibenzyldithiocarbamate | Mycobacterium smegmatis Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli | 0.5 mg/mL | 64–1000 µg/mL | [165] |
Rh(III)-morpholine-4-dithiocarbamate | Salmonella typhai, Pseudomunas aeroginosa, Proteus mirabilis, Yersinia enterocolitica, Enterococcus faecalis Staphylococcus aureus | 50 ppm | 5–28 mm | [166] |
silver(I) dithiocarbamate triphenylphosphine | Escherichia coli, Salmonella. typhimurium, Pseudomunas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus | 1000 µg/mL | 0.19–75.45 µM/mL | [159] |
N-methyl-N-phenyl dithiocarbamate complexes of Cu(II), In(III) and Sb(III) | Bacillus cereus, Enterococcus faecalis, Enterococcus gallinurium, Listeria monocytogenes, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, Salmonella enterica and Salmonella Typhimurium | 0.022–2.522 µg/mL | 7.00–19.33 mm | [167] |
Dithiocarbamate Compound | Substance Sensed | Detection Limits | Ref. |
---|---|---|---|
Chitosan dithiocarbamate | Divalent cadmium | 63 nM. | [217] |
Dithiocarbamate functionalized silver nanoparticles | Divalent cobalt | 14 μM | [218] |
ZnS quantum dots doped with glycine dithiocarbamate -functionalized Mn. | Trivalent cerium | 2.29 × 10−7 mol.L−1 | [219] |
Nickel(II) dithiocarbamate complexes | Halide ions | - | [220] |
Gold nanoparticles functionalized with Malonamide dithiocarbamate | Divalent mercury and copper | 45 nM and 41 nM for Hg2+ and Cu2+ions respectively. | [221] |
Silver nanoparticles functioalized with Cyclen dithiocarbamate | Paraquat and thiram pesticides | 7.21 × 10−6 M and 2.81 × 10−6 M for paraquat and thiram respectively | [222] |
Gold nanoparticles functionalized with p-amino salicylic acid dithiocarbamate | Trivalent iron | 14.82 nM | [223] |
Gold nanoparticles decorated with Ractopamine-dithiocarbamate | Pendimethalin herbicide | 0.22 μM | [224] |
Gold nanoparticles decorated with dithiocarbamate-p-tertbutylcalix[4]arene | Metsulfuron-methyl herbicide | 1.9 × 10−7 M | [225] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajiboye, T.O.; Ajiboye, T.T.; Marzouki, R.; Onwudiwe, D.C. The Versatility in the Applications of Dithiocarbamates. Int. J. Mol. Sci. 2022, 23, 1317. https://doi.org/10.3390/ijms23031317
Ajiboye TO, Ajiboye TT, Marzouki R, Onwudiwe DC. The Versatility in the Applications of Dithiocarbamates. International Journal of Molecular Sciences. 2022; 23(3):1317. https://doi.org/10.3390/ijms23031317
Chicago/Turabian StyleAjiboye, Timothy O., Titilope T. Ajiboye, Riadh Marzouki, and Damian C. Onwudiwe. 2022. "The Versatility in the Applications of Dithiocarbamates" International Journal of Molecular Sciences 23, no. 3: 1317. https://doi.org/10.3390/ijms23031317
APA StyleAjiboye, T. O., Ajiboye, T. T., Marzouki, R., & Onwudiwe, D. C. (2022). The Versatility in the Applications of Dithiocarbamates. International Journal of Molecular Sciences, 23(3), 1317. https://doi.org/10.3390/ijms23031317