The Role of Matrix Proteins in Cardiac Pathology
Abstract
:1. Introduction
2. Thrombospondins
3. Matrix Metalloproteinases (MMPs)
4. Osteopontin
5. Periostin
6. SPARC
7. Tenascin C
8. CCNs
9. Neglected ECM Components
10. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANGII | angiotensin II |
ECM | extracellular matrix |
LV | left ventricle |
MMP | matrix metalloproteinase |
OPN | osteopontin |
RV | right ventricle |
SNP | single nucleotide polymorphism |
SPARC | secreted protein that is acidic and rich in cysteine |
TGF | transforming growth factor |
TN-C | tenascin-C |
TSP | thrombospondin |
References
- Lockhart, M.; Wirrig, E.; Phelps, A.; Wessels, A. Extracellular matrix and heart development. Birth Defects Res. A Clin. Mol. Teratol. 2011, 91, 535–550. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.C.; Pereira, C.; Fonseca, A.; Pinto-do, O.P.; Nascimento, D.S. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front. Cell Dev. Biol. 2020, 8, 621644. [Google Scholar] [CrossRef]
- de Jong, S.; van Veen, T.A.; van Rijen, H.V.; de Bakker, J.M. Fibrosis and cardiac arrhythmias. J. Cardiovasc. Pharmacol. 2011, 57, 630–638. [Google Scholar] [CrossRef]
- Hinderer, S.; Schenke-Layland, K. Cardiac fibrosis—A short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev. 2019, 146, 77–82. [Google Scholar] [CrossRef]
- Bouzeghrane, F.; Reinhardt, D.P.; Reudelhuber, T.L.; Thibault, G. Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H982–H991. [Google Scholar] [CrossRef]
- Mustonen, E.; Ruskoaho, H.; Rysa, J. Thrombospondins, potential drug targets for cardiovascular diseases. Basic Clin. Pharmacol. Toxicol. 2013, 112, 4–12. [Google Scholar] [CrossRef]
- Stenina-Adognravi, O. Thrombospondins: Old players, new games. Curr. Opin. Lipidol. 2013, 24, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.C.; Lawler, J. The thrombospondins. Cold Spring Harb. Perspect. Biol. 2011, 3, a009712. [Google Scholar] [CrossRef]
- Sezaki, S.; Hirohata, S.; Iwabu, A.; Nakamura, K.; Toeda, K.; Miyoshi, T.; Yamawaki, H.; Demircan, K.; Kusachi, S.; Shiratori, Y.; et al. Thrombospondin-1 is induced in rat myocardial infarction and its induction is accelerated by ischemia/reperfusion. Exp. Biol. Med. (Maywood) 2005, 230, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Schroen, B.; Heymans, S.; Sharma, U.; Blankesteijn, W.M.; Pokharel, S.; Cleutjens, J.P.; Porter, J.G.; Evelo, C.T.; Duisters, R.; van Leeuwen, R.E.; et al. Thrombospondin-2 is essential for myocardial matrix integrity: Increased expression identifies failure-prone cardiac hypertrophy. Circ. Res. 2004, 95, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Schips, T.G.; Vanhoutte, D.; Vo, A.; Correll, R.N.; Brody, M.J.; Khalil, H.; Karch, J.; Tjondrokoesoemo, A.; Sargent, M.A.; Maillet, M.; et al. Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nat. Commun. 2019, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Frolova, E.G.; Sopko, N.; Blech, L.; Popovic, Z.B.; Li, J.; Vasanji, A.; Drumm, C.; Krukovets, I.; Jain, M.K.; Penn, M.S.; et al. Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J. 2012, 26, 2363–2373. [Google Scholar] [CrossRef] [Green Version]
- Frangogiannis, N.G.; Ren, G.; Dewald, O.; Zymek, P.; Haudek, S.; Koerting, A.; Winkelmann, K.; Michael, L.H.; Lawler, J.; Entman, M.L. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 2005, 111, 2935–2942. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Dobaczewski, M.; Gonzalez-Quesada, C.; Chen, W.; Biernacka, A.; Li, N.; Lee, D.W.; Frangogiannis, N.G. Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension 2011, 58, 902–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, P.M.; Bauer, E.M.; Rogers, N.M.; Yao, M.; Feijoo-Cuaresma, M.; Pilewski, J.M.; Champion, H.C.; Zuckerbraun, B.S.; Calzada, M.J.; Isenberg, J.S. Activated CD47 promotes pulmonary arterial hypertension through targeting caveolin-1. Cardiovasc. Res. 2012, 93, 682–693. [Google Scholar] [CrossRef] [Green Version]
- Rogers, N.M.; Sharifi-Sanjani, M.; Yao, M.; Ghimire, K.; Bienes-Martinez, R.; Mutchler, S.M.; Knupp, H.E.; Baust, J.; Novelli, E.M.; Ross, M.; et al. TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction. Cardiovasc. Res. 2017, 113, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R.; Frantz, C.; Bals, R.; Wilkens, H. The role of circulating thrombospondin-1 in patients with precapillary pulmonary hypertension. Respir. Res. 2016, 17, 96. [Google Scholar] [CrossRef] [Green Version]
- Swinnen, M.; Vanhoutte, D.; Van Almen, G.C.; Hamdani, N.; Schellings, M.W.; D’Hooge, J.; Van der Velden, J.; Weaver, M.S.; Sage, E.H.; Bornstein, P.; et al. Absence of thrombospondin-2 causes age-related dilated cardiomyopathy. Circulation 2009, 120, 1585–1597. [Google Scholar] [CrossRef] [Green Version]
- Schellings, M.W.; Pinto, Y.M.; Heymans, S. Matricellular proteins in the heart: Possible role during stress and remodeling. Cardiovasc. Res. 2004, 64, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, A.P.; Swinnen, M.; Vanhoutte, D.; VandenDriessche, T.; Chuah, M.; Lindner, D.; Verhesen, W.; de Vries, B.; D’Hooge, J.; Lutgens, E.; et al. Thrombospondin-2 prevents cardiac injury and dysfunction in viral myocarditis through the activation of regulatory T-cells. Cardiovasc. Res. 2012, 94, 115–124. [Google Scholar] [CrossRef]
- Berezin, A.E.; Kremzer, A.A.; Samura, T.A. Circulating thrombospondine-2 in patients with moderate-to-severe chronic heart failure due to coronary artery disease. J. Biomed. Res. 2015, 30, 32. [Google Scholar] [CrossRef] [Green Version]
- Kimura, Y.; Izumiya, Y.; Hanatani, S.; Yamamoto, E.; Kusaka, H.; Tokitsu, T.; Takashio, S.; Sakamoto, K.; Tsujita, K.; Tanaka, T.; et al. High serum levels of thrombospondin-2 correlate with poor prognosis of patients with heart failure with preserved ejection fraction. Heart Vessel. 2016, 31, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, E.; Aro, J.; Puhakka, J.; Ilves, M.; Soini, Y.; Leskinen, H.; Ruskoaho, H.; Rysa, J. Thrombospondin-4 expression is rapidly upregulated by cardiac overload. Biochem. Biophys. Res. Commun. 2008, 373, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Palao, T.; Medzikovic, L.; Rippe, C.; Wanga, S.; Al-Mardini, C.; van Weert, A.; de Vos, J.; van der Wel, N.N.; van Veen, H.A.; van Bavel, E.T.; et al. Thrombospondin-4 mediates cardiovascular remodelling in angiotensin II-induced hypertension. Cardiovasc. Pathol. 2018, 35, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J.; McCarthy, J.; Gabriel, S.; Moliterno, D.J.; Rogers, W.J.; Newby, L.K.; Freedman, M.; Metivier, J.; Cannata, R.; O’Donnell, C.J.; et al. Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction. Circulation 2001, 104, 2641–2644. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Randell, E.; Renouf, J.; Sun, G.; Green, R.; Han, F.Y.; Xie, Y.G. Thrombospondin-4 1186G>C (A387P) is a sex-dependent risk factor for myocardial infarction: A large replication study with increased sample size from the same population. Am. Heart J. 2006, 152, 543.e1–543.e5. [Google Scholar] [CrossRef]
- Wessel, J.; Topol, E.J.; Ji, M.; Meyer, J.; McCarthy, J.J. Replication of the association between the thrombospondin-4 A387P polymorphism and myocardial infarction. Am. Heart J. 2004, 147, 905–909. [Google Scholar] [CrossRef]
- Boekholdt, S.M.; Trip, M.D.; Peters, R.J.; Engelen, M.; Boer, J.M.; Feskens, E.J.; Zwinderman, A.H.; Kastelein, J.J.; Reitsma, P.H. Thrombospondin-2 polymorphism is associated with a reduced risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2002, 22, e24–e27. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Takino, T.; Okada, Y.; Cao, J.; Shinagawa, A.; Yamamoto, E.; Seiki, M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994, 370, 61–65. [Google Scholar] [CrossRef]
- Spinale, F.G. Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol. Rev. 2007, 87, 1285–1342. [Google Scholar] [CrossRef]
- Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messerli, F.H. TIMPs, MMPs and cardiovascular disease. Eur. Heart J. 2004, 25, 1475–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, A.; Prado, A.F.; Antonio, R.C.; Issa, J.P.; Gerlach, R.F. Matrix metalloproteinases are involved in cardiovascular diseases. Basic Clin. Pharmacol. Toxicol. 2014, 115, 301–314. [Google Scholar] [CrossRef] [PubMed]
- DeLeon-Pennell, K.Y.; Meschiari, C.A.; Jung, M.; Lindsey, M.L. Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Prog. Mol. Biol. Transl. Sci. 2017, 147, 75–100. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, S.C.; Campbell, S.E.; Reddy, H.K.; Tjahja, E.; Voelker, D.J. Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol. Cell. Biochem. 1996, 155, 13–21. [Google Scholar] [CrossRef]
- Rohde, L.E.; Ducharme, A.; Arroyo, L.H.; Aikawa, M.; Sukhova, G.H.; Lopez-Anaya, A.; McClure, K.F.; Mitchell, P.G.; Libby, P.; Lee, R.T. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 1999, 99, 3063–3070. [Google Scholar] [CrossRef] [Green Version]
- Spinale, F.G.; Coker, M.L.; Thomas, C.V.; Walker, J.D.; Mukherjee, R.; Hebbar, L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: Relation to ventricular and myocyte function. Circ. Res. 1998, 82, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Hirohata, S.; Kusachi, S.; Murakami, M.; Murakami, T.; Sano, I.; Watanabe, T.; Komatsubara, I.; Kondo, J.; Tsuji, T. Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction. Heart 1997, 78, 278–284. [Google Scholar] [CrossRef]
- Baghirova, S.; Hughes, B.G.; Poirier, M.; Kondo, M.Y.; Schulz, R. Nuclear matrix metalloproteinase-2 in the cardiomyocyte and the ischemic-reperfused heart. J. Mol. Cell. Cardiol. 2016, 94, 153–161. [Google Scholar] [CrossRef]
- Squire, I.B.; Evans, J.; Ng, L.L.; Loftus, I.M.; Thompson, M.M. Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: Correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J. Card. Fail. 2004, 10, 328–333. [Google Scholar] [CrossRef]
- Blankenberg, S.; Rupprecht, H.J.; Poirier, O.; Bickel, C.; Smieja, M.; Hafner, G.; Meyer, J.; Cambien, F.; Tiret, L.; AtheroGene, I. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 2003, 107, 1579–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumura, S.; Iwanaga, S.; Mochizuki, S.; Okamoto, H.; Ogawa, S.; Okada, Y. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J. Clin. Investig. 2005, 115, 599–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarbrough, W.M.; Mukherjee, R.; Escobar, G.P.; Mingoia, J.T.; Sample, J.A.; Hendrick, J.W.; Dowdy, K.B.; McLean, J.E.; Lowry, A.S.; O’Neill, T.P.; et al. Selective targeting and timing of matrix metalloproteinase inhibition in post-myocardial infarction remodeling. Circulation 2003, 108, 1753–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarbrough, W.M.; Mukherjee, R.; Brinsa, T.A.; Dowdy, K.B.; Scott, A.A.; Escobar, G.P.; Joffs, C.; Lucas, D.G.; Crawford, F.A., Jr.; Spinale, F.G. Matrix metalloproteinase inhibition modifies left ventricular remodeling after myocardial infarction in pigs. J. Thorac. Cardiovasc. Surg. 2003, 125, 602–610. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, R.; Brinsa, T.A.; Dowdy, K.B.; Scott, A.A.; Baskin, J.M.; Deschamps, A.M.; Lowry, A.S.; Escobar, G.P.; Lucas, D.G.; Yarbrough, W.M.; et al. Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation 2003, 107, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.L.; Yang, Y.H.; Chang, H.; Hung, C.R. Angiotensin II signals mechanical stretch-induced cardiac matrix metalloproteinase expression via JAK-STAT pathway. J. Mol. Cell. Cardiol. 2004, 37, 785–794. [Google Scholar] [CrossRef]
- Rouet-Benzineb, P.; Gontero, B.; Dreyfus, P.; Lafuma, C. Angiotensin II induces nuclear factor- kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J. Mol. Cell. Cardiol. 2000, 32, 1767–1778. [Google Scholar] [CrossRef]
- Coker, M.L.; Jolly, J.R.; Joffs, C.; Etoh, T.; Holder, J.R.; Bond, B.R.; Spinale, F.G. Matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H543–H551. [Google Scholar] [CrossRef]
- Wolf, S.C.; Brodbeck, C.; Sauter, G.; Risler, T.; Brehm, B.R. Endothelin-1 regulates protein kinase C isoforms differently in smooth muscle cells and in cardiomyocytes. J. Cardiovasc. Pharmacol. 2004, 44, S301–303. [Google Scholar] [CrossRef]
- Chancey, A.L.; Brower, G.L.; Peterson, J.T.; Janicki, J.S. Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 2002, 105, 1983–1988. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.T.; Hallak, H.; Johnson, L.; Li, H.; O’Brien, P.M.; Sliskovic, D.R.; Bocan, T.M.; Coker, M.L.; Etoh, T.; Spinale, F.G. Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 2001, 103, 2303–2309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsusaka, H.; Ide, T.; Matsushima, S.; Ikeuchi, M.; Kubota, T.; Sunagawa, K.; Kinugawa, S.; Tsutsui, H. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 2006, 47, 711–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foronjy, R.F.; Sun, J.; Lemaitre, V.; D’Armiento, J.M. Transgenic expression of matrix metalloproteinase-1 inhibits myocardial fibrosis and prevents the transition to heart failure in a pressure overload mouse model. Hypertens. Res. 2008, 31, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Matsui, K.; Takano, Y.; Yu, Z.X.; Hi, J.E.; Stetler-Stevenson, W.G.; Travis, W.D.; Ferrans, V.J. Immunohistochemical study of endothelin-1 and matrix metalloproteinases in plexogenic pulmonary arteriopathy. Pathol. Res. Pract. 2002, 198, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Lepetit, H.; Eddahibi, S.; Fadel, E.; Frisdal, E.; Munaut, C.; Noel, A.; Humbert, M.; Adnot, S.; D’Ortho, M.P.; Lafuma, C. Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2005, 25, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Pullamsetti, S.; Krick, S.; Yilmaz, H.; Ghofrani, H.A.; Schudt, C.; Weissmann, N.; Fuchs, B.; Seeger, W.; Grimminger, F.; Schermuly, R.T. Inhaled tolafentrine reverses pulmonary vascular remodeling via inhibition of smooth muscle cell migration. Respir. Res. 2005, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Comabella, M.; Pericot, I.; Goertsches, R.; Nos, C.; Castillo, M.; Blas Navarro, J.; Rio, J.; Montalban, X. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 2005, 158, 231–239. [Google Scholar] [CrossRef]
- Sennels, H.; Sorensen, S.; Ostergaard, M.; Knudsen, L.; Hansen, M.; Skjodt, H.; Peters, N.; Colic, A.; Grau, K.; Jacobsen, S. Circulating levels of osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor-kappa B ligand, and high-sensitivity C-reactive protein in patients with active rheumatoid arthritis randomized to etanercept alone or in combination with methotrexate. Scand. J. Rheumatol. 2008, 37, 241–247. [Google Scholar] [CrossRef]
- El-Tanani, M.K.; Campbell, F.C.; Crowe, P.; Erwin, P.; Harkin, D.P.; Pharoah, P.; Ponder, B.; Rudland, P.S. BRCA1 suppresses osteopontin-mediated breast cancer. J. Biol. Chem. 2006, 281, 26587–26601. [Google Scholar] [CrossRef] [Green Version]
- El-Tanani, M.K.; Campbell, F.C.; Kurisetty, V.; Jin, D.; McCann, M.; Rudland, P.S. The regulation and role of osteopontin in malignant transformation and cancer. Cytokine Growth Factor Rev. 2006, 17, 463–474. [Google Scholar] [CrossRef]
- Hamada, Y.; Nokihara, K.; Okazaki, M.; Fujitani, W.; Matsumoto, T.; Matsuo, M.; Umakoshi, Y.; Takahashi, J.; Matsuura, N. Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochem. Biophys. Res. Commun. 2003, 310, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, S.; Yamaguchi, N.; Nishioka, K.; Mima, T.; Ishii, T.; Umeshita-Sasai, M.; Kobayashi, H.; Shimizu, M.; Katada, Y.; Wakitani, S.; et al. Enhanced local production of osteopontin in rheumatoid joints. J. Rheumatol. 2002, 29, 2061–2067. [Google Scholar] [PubMed]
- Lund, S.A.; Giachelli, C.M.; Scatena, M. The role of osteopontin in inflammatory processes. J. Cell Commun. Signal 2009, 3, 311–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, K.; Do, Y.S.; Ashizawa, N.; Meehan, W.P.; Giachelli, C.M.; Marboe, C.C.; Fleck, E.; Hsueh, W.A. Myocardial osteopontin expression is associated with left ventricular hypertrophy. Circulation 1997, 96, 3063–3071. [Google Scholar] [CrossRef] [PubMed]
- Herum, K.M.; Romaine, A.; Wang, A.; Melleby, A.O.; Strand, M.E.; Pacheco, J.; Braathen, B.; Dunér, P.; Tønnessen, T.; Lunde, I.G.; et al. Syndecan-4 Protects the Heart From the Profibrotic Effects of Thrombin-Cleaved Osteopontin. J. Am. Heart Assoc. 2020, 9, e013518. [Google Scholar] [CrossRef]
- Matsui, Y.; Jia, N.; Okamoto, H.; Kon, S.; Onozuka, H.; Akino, M.; Liu, L.; Morimoto, J.; Rittling, S.R.; Denhardt, D.; et al. Role of Osteopontin in Cardiac Fibrosis and Remodeling in Angiotensin II-Induced Cardiac Hypertrophy. Hypertension 2004, 43, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Rothermund, L.; Kreutz, R.; Kossmehl, P.; Fredersdorf, S.; Shakibaei, M.; Schulze-Tanzil, G.; Paul, M.; Grimm, D. Early Onset of Chondroitin Sulfate and Osteopontin Expression in Angiotensin II-Dependent Left Ventricular Hypertrophy*. Am. J. Hypertens. 2002, 15, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yousefi, K.; Ding, W.; Singh, J.; Shehadeh, L.A. Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure. Cardiovasc. Res. 2017, 113, 633–643. [Google Scholar] [CrossRef]
- Xie, Z.; Singh, M.; Singh, K. Osteopontin modulates myocardial hypertrophy in response to chronic pressure overload in mice. Hypertension 2004, 44, 826–831. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.R.; Schnee, J.; Wang, W.; Kim, S.; Fishbein, M.C.; Bruemmer, D.; Law, R.E.; Nicholas, S.; Ross, R.S.; Hsueh, W.A. Osteopontin modulates angiotensin II- induced fibrosis in the intact murine heart. J. Am. Coll. Cardiol. 2004, 43, 1698–1705. [Google Scholar] [CrossRef] [Green Version]
- Trueblood, N.A.; Xie, Z.; Communal, C.; Sam, F.; Ngoy, S.; Liaw, L.; Jenkins, A.W.; Wang, J.; Sawyer, D.B.; Bing, O.H.; et al. Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ. Res. 2001, 88, 1080–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsubara, I.; Murakami, T.; Kusachi, S.; Nakamura, K.; Hirohata, S.; Hayashi, J.; Takemoto, S.; Suezawa, C.; Ninomiya, Y.; Shiratori, Y. Spatially and temporally different expression of osteonectin and osteopontin in the infarct zone of experimentally induced myocardial infarction in rats. Cardiovasc. Pathol. 2003, 12, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Shirakawa, K.; Endo, J.; Kataoka, M.; Katsumata, Y.; Yoshida, N.; Yamamoto, T.; Isobe, S.; Moriyama, H.; Goto, S.; Kitakata, H.; et al. IL (Interleukin)-10-STAT3-Galectin-3 Axis Is Essential for Osteopontin-Producing Reparative Macrophage Polarization After Myocardial Infarction. Circulation 2018, 138, 2021–2035. [Google Scholar] [CrossRef] [PubMed]
- Duerr, G.D.; Mesenholl, B.; Heinemann, J.C.; Zoerlein, M.; Huebener, P.; Schneider, P.; Feisst, A.; Ghanem, A.; Tiemann, K.; Dewald, D.; et al. Cardioprotective effects of osteopontin-1 during development of murine ischemic cardiomyopathy. Biomed. Res. Int. 2014, 2014, 124063. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Büttner, A.L.; Rellecke, P.; Petrov, G.; Albert, A.; Sixt, S.U.; Lichtenberg, A.; Akhyari, P. Osteopontin as novel biomarker for reversibility of pressure overload induced left ventricular hypertrophy. Biomark. Med. 2020, 14, 513–523. [Google Scholar] [CrossRef]
- Lorenzen, J.M.; Neunhoffer, H.; David, S.; Kielstein, J.T.; Haller, H.; Fliser, D. Angiotensin II receptor blocker and statins lower elevated levels of osteopontin in essential hypertension--results from the EUTOPIA trial. Atherosclerosis 2010, 209, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Azeez, H.A.; Al-Zaky, M. Plasma osteopontin as a predictor of coronary artery disease: Association with echocardiographic characteristics of atherosclerosis. J. Clin. Lab. Anal. 2010, 24, 201–206. [Google Scholar] [CrossRef]
- Mazzone, A.; Parri, M.S.; Giannessi, D.; Ravani, M.; Vaghetti, M.; Altieri, P.; Casalino, L.; Maltinti, M.; Balbi, M.; Barsotti, A.; et al. Osteopontin plasma levels and accelerated atherosclerosis in patients with CAD undergoing PCI: A prospective clinical study. Coron. Artery Dis. 2011, 22, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Barchetta, I.; Ceccarelli, V.; Cimini, F.A.; Bertoccini, L.; Fraioli, A.; Alessandri, C.; Lenzi, A.; Baroni, M.G.; Cavallo, M.G. Impaired bone matrix glycoprotein pattern is associated with increased cardio-metabolic risk profile in patients with type 2 diabetes mellitus. J. Endocrinol. Investig. 2019, 42, 513–520. [Google Scholar] [CrossRef]
- Barchetta, I.; Alessandri, C.; Bertoccini, L.; Cimini, F.A.; Taverniti, L.; Di Franco, M.; Fraioli, A.; Baroni, M.G.; Cavallo, M.G. Increased circulating osteopontin levels in adult patients with type 1 diabetes mellitus and association with dysmetabolic profile. Eur. J. Endocrinol. 2016, 174, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Kudo, A. Introductory review: Periostin-gene and protein structure. Cell. Mol. Life Sci. 2017, 74, 4259–4268. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Kii, I. Periostin function in communication with extracellular matrices. J. Cell Commun. Signal 2018, 12, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, S.; Ouyang, G.; Bai, X.; Huang, Z.; Ma, C.; Liu, M.; Shao, R.; Anderson, R.M.; Rich, J.N.; Wang, X.F. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 2004, 5, 329–339. [Google Scholar] [CrossRef]
- Li, G.; Jin, R.; Norris, R.A.; Zhang, L.; Yu, S.; Wu, F.; Markwald, R.R.; Nanda, A.; Conway, S.J.; Smyth, S.S.; et al. Periostin mediates vascular smooth muscle cell migration through the integrins alphavbeta3 and alphavbeta5 and focal adhesion kinase (FAK) pathway. Atherosclerosis 2010, 208, 358–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruzynska-Frejtag, A.; Machnicki, M.; Rogers, R.; Markwald, R.R.; Conway, S.J. Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. Mech. Dev. 2001, 103, 183–188. [Google Scholar] [CrossRef]
- Snider, P.; Hinton, R.B.; Moreno-Rodriguez, R.A.; Wang, J.; Rogers, R.; Lindsley, A.; Li, F.; Ingram, D.A.; Menick, D.; Field, L.; et al. Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ. Res. 2008, 102, 752–760. [Google Scholar] [CrossRef]
- Lindsley, A.; Snider, P.; Zhou, H.; Rogers, R.; Wang, J.; Olaopa, M.; Kruzynska-Frejtag, A.; Koushik, S.V.; Lilly, B.; Burch, J.B.; et al. Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Dev. Biol. 2007, 307, 340–355. [Google Scholar] [CrossRef] [Green Version]
- Oka, T.; Xu, J.; Kaiser, R.A.; Melendez, J.; Hambleton, M.; Sargent, M.A.; Lorts, A.; Brunskill, E.W.; Dorn, G.W., 2nd; Conway, S.J.; et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ. Res. 2007, 101, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Stansfield, W.E.; Andersen, N.M.; Tang, R.H.; Selzman, C.H. Periostin is a novel factor in cardiac remodeling after experimental and clinical unloading of the failing heart. Ann. Thorac. Surg. 2009, 88, 1916–1921. [Google Scholar] [CrossRef] [Green Version]
- Ladage, D.; Yaniz-Galende, E.; Rapti, K.; Ishikawa, K.; Tilemann, L.; Shapiro, S.; Takewa, Y.; Muller-Ehmsen, J.; Schwarz, M.; Garcia, M.J.; et al. Stimulating myocardial regeneration with periostin Peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis. PLoS ONE 2013, 8, e59656. [Google Scholar] [CrossRef]
- Gillan, L.; Matei, D.; Fishman, D.A.; Gerbin, C.S.; Karlan, B.Y.; Chang, D.D. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res. 2002, 62, 5358–5364. [Google Scholar] [PubMed]
- Yan, W.; Shao, R. Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation. J. Biol. Chem. 2006, 281, 19700–19708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakuno, D.; Kimura, N.; Yoshioka, M.; Mukai, M.; Kimura, T.; Okada, Y.; Yozu, R.; Shukunami, C.; Hiraki, Y.; Kudo, A.; et al. Periostin advances atherosclerotic and rheumatic cardiac valve degeneration by inducing angiogenesis and MMP production in humans and rodents. J. Clin. Investig. 2010, 120, 2292–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Wu, H.; Xia, W.; Chen, X.; Zhu, S.; Zhang, S.; Shao, Y.; Ma, W.; Yang, D.; Zhang, J. Periostin expression is upregulated and associated with myocardial fibrosis in human failing hearts. J. Cardiol. 2014, 63, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimazaki, M.; Nakamura, K.; Kii, I.; Kashima, T.; Amizuka, N.; Li, M.; Saito, M.; Fukuda, K.; Nishiyama, T.; Kitajima, S.; et al. Periostin is essential for cardiac healing after acute myocardial infarction. J. Exp. Med. 2008, 205, 295–303. [Google Scholar] [CrossRef]
- Bradshaw, A.D.; Puolakkainen, P.; Dasgupta, J.; Davidson, J.M.; Wight, T.N.; Helene Sage, E. SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J. Investig. Dermatol. 2003, 120, 949–955. [Google Scholar] [CrossRef] [Green Version]
- McCurdy, S.M.; Dai, Q.; Zhang, J.; Zamilpa, R.; Ramirez, T.A.; Dayah, T.; Nguyen, N.; Jin, Y.F.; Bradshaw, A.D.; Lindsey, M.L. SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H497–H505. [Google Scholar] [CrossRef] [Green Version]
- Schellings, M.W.; Vanhoutte, D.; Swinnen, M.; Cleutjens, J.P.; Debets, J.; van Leeuwen, R.E.; d′Hooge, J.; Van de Werf, F.; Carmeliet, P.; Pinto, Y.M.; et al. Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J. Exp. Med. 2009, 206, 113–123. [Google Scholar] [CrossRef]
- Workman, G.; Sage, E.H. Identification of a sequence in the matricellular protein SPARC that interacts with the scavenger receptor stabilin-1. J. Cell. Biochem. 2011, 112, 1003–1008. [Google Scholar] [CrossRef]
- Xia, N.; Lu, Y.; Gu, M.; Li, N.; Liu, M.; Jiao, J.; Zhu, Z.; Li, J.; Li, D.; Tang, T.; et al. A Unique Population of Regulatory T Cells in Heart Potentiates Cardiac Protection From Myocardial Infarction. Circulation 2020, 142, 1956–1973. [Google Scholar] [CrossRef]
- Rienks, M.; Carai, P.; van Teeffelen, J.; Eskens, B.; Verhesen, W.; Hemmeryckx, B.; Johnson, D.M.; van Leeuwen, R.; Jones, E.A.; Heymans, S.; et al. SPARC preserves endothelial glycocalyx integrity, and protects against adverse cardiac inflammation and injury during viral myocarditis. Matrix Biol. 2018, 74, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Campagnolo, P.; Cesselli, D.; Al Haj Zen, A.; Beltrami, A.P.; Krankel, N.; Katare, R.; Angelini, G.; Emanueli, C.; Madeddu, P. Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 2010, 121, 1735–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avolio, E.; Meloni, M.; Spencer, H.L.; Riu, F.; Katare, R.; Mangialardi, G.; Oikawa, A.; Rodriguez-Arabaolaza, I.; Dang, Z.; Mitchell, K.; et al. Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ. Res. 2015, 116, e81–e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avolio, E.; Mangialardi, G.; Slater, S.C.; Alvino, V.V.; Gu, Y.; Cathery, W.; Beltrami, A.P.; Katare, R.; Heesom, K.; Caputo, M.; et al. Secreted Protein Acidic and Cysteine Rich Matricellular Protein is Enriched in the Bioactive Fraction of the Human Vascular Pericyte Secretome. Antioxid. Redox Signal. 2021, 34, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Nagaretani, H.; Funahashi, T.; Nishizawa, H.; Maeda, N.; Kishida, K.; Kuriyama, H.; Shimomura, I.; Maeda, K.; Hotta, K.; et al. The expression of SPARC in adipose tissue and its increased plasma concentration in patients with coronary artery disease. Obes. Res. 2001, 9, 388–393. [Google Scholar] [CrossRef]
- Ragino, Y.I.; Kashtanova, E.V.; Chernjavski, A.M.; Volkov, A.M.; Polonskaya, Y.V.; Tsimbal, S.Y.; Eremenko, N.V.; Ivanova, M.V. Blood level of osteonectin in stenosing atherosclerosis and calcinosis of coronary arteries. Bull. Exp. Biol. Med. 2011, 151, 370–373. [Google Scholar] [CrossRef]
- Berezin, A.E.; Kremzer, A.A. Predictive value of circulating osteonectin in patients with ischemic symptomatic chronic heart failure. Biomed. J. 2015, 38, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Serebruany, V.L.; Murugesan, S.R.; Pothula, A.; Semaan, H.; Gurbel, P.A. Soluble PECAM-1, but not P-selectin, nor osteonectin identify acute myocardial infarction in patients presenting with chest pain. Cardiology 1999, 91, 50–55. [Google Scholar] [CrossRef]
- Serebruany, V.L.; Atar, D.; Murugesan, S.R.; Jerome, S.; Semaan, H.; Gurbel, P.A. Effect of coronary thrombolysis on the plasma concentration of osteonectin (SPARC, BM40) in patients with acute myocardial infarction. J. Thromb. Thrombolysis 2000, 10, 197–202. [Google Scholar] [CrossRef]
- Bradshaw, A.D.; Baicu, C.F.; Rentz, T.J.; Van Laer, A.O.; Boggs, J.; Lacy, J.M.; Zile, M.R. Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: Role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing. Circulation 2009, 119, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Harris, B.S.; Zhang, Y.; Card, L.; Rivera, L.B.; Brekken, R.A.; Bradshaw, A.D. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H841–H847. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.T.; Zile, M.R.; Zhang, Y.; Laer, A.O.V.; Baicu, C.F.; Stroud, R.E.; Jones, J.A.; LaRue, A.C.; Bradshaw, A.D. Increased macrophage-derived SPARC precedes collagen deposition in myocardial fibrosis. Am. J. Physiol.Heart Circ. Physiol. 2018, 315, H92–H100. [Google Scholar] [CrossRef] [PubMed]
- Riley, H.J.; Kelly, R.R.; Van Laer, A.O.; Neff, L.S.; Dasgupta, S.; Baicu, C.F.; McDonald, L.T.; LaRue, A.C.; Zile, M.R.; Bradshaw, A.D. SPARC production by bone marrow-derived cells contributes to myocardial fibrosis in pressure overload. Am. J. Physiol.Heart Circ. Physiol. 2020, 320, H604–H612. [Google Scholar] [CrossRef] [PubMed]
- Imoto, K.; Okada, M.; Yamawaki, H. Expression profile of matricellular proteins in hypertrophied right ventricle of monocrotaline-induced pulmonary hypertensive rats. J. Vet. Med. Sci. 2017, 79, 1096–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baicu, C.F.; Li, J.; Zhang, Y.; Kasiganesan, H.; Cooper, G.t.; Zile, M.R.; Bradshaw, A.D. Time course of right ventricular pressure-overload induced myocardial fibrosis: Relationship to changes in fibroblast postsynthetic procollagen processing. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H1128–H1134. [Google Scholar] [CrossRef] [Green Version]
- Sato, A.; Aonuma, K.; Imanaka-Yoshida, K.; Yoshida, T.; Isobe, M.; Kawase, D.; Kinoshita, N.; Yazaki, Y.; Hiroe, M. Serum tenascin-C might be a novel predictor of left ventricular remodeling and prognosis after acute myocardial infarction. J. Am. Coll. Cardiol. 2006, 47, 2319–2325. [Google Scholar] [CrossRef] [Green Version]
- Imanaka-Yoshida, K.; Hiroe, M.; Yasutomi, Y.; Toyozaki, T.; Tsuchiya, T.; Noda, N.; Maki, T.; Nishikawa, T.; Sakakura, T.; Yoshida, T. Tenascin-C is a useful marker for disease activity in myocarditis. J. Pathol. 2002, 197, 388–394. [Google Scholar] [CrossRef]
- Shiba, M.; Sugano, Y.; Ikeda, Y.; Okada, H.; Nagai, T.; Ishibashi-Ueda, H.; Yasuda, S.; Ogawa, H.; Anzai, T. Presence of increased inflammatory infiltrates accompanied by activated dendritic cells in the left atrium in rheumatic heart disease. PLoS ONE 2018, 13, e0203756. [Google Scholar] [CrossRef]
- Nishioka, T.; Suzuki, M.; Onishi, K.; Takakura, N.; Inada, H.; Yoshida, T.; Hiroe, M.; Imanaka-Yoshida, K. Eplerenone attenuates myocardial fibrosis in the angiotensin II-induced hypertensive mouse: Involvement of tenascin-C induced by aldosterone-mediated inflammation. J. Cardiovasc. Pharmacol. 2007, 49, 261–268. [Google Scholar] [CrossRef]
- Imanaka-Yoshida, K. Tenascin-C in cardiovascular tissue remodeling: From development to inflammation and repair. Circ. J. 2012, 76, 2513–2520. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Tajiri, K.; Sato, A.; Sakai, S.; Wang, Z.; Yoshida, T.; Uede, T.; Hiroe, M.; Aonuma, K.; Ieda, M.; et al. Tenascin-C accelerates adverse ventricular remodelling after myocardial infarction by modulating macrophage polarization. Cardiovasc. Res. 2019, 115, 614–624. [Google Scholar] [CrossRef]
- Imanaka-Yoshida, K.; Hiroe, M.; Nishikawa, T.; Ishiyama, S.; Shimojo, T.; Ohta, Y.; Sakakura, T.; Yoshida, T. Tenascin-C Modulates Adhesion of Cardiomyocytes to Extracellular Matrix during Tissue Remodeling after Myocardial Infarction. Lab. Investig. 2001, 81, 1015–1024. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Song, Y.; Chen, J.; Li, Q.; Gao, J.; Tan, H.; Zhu, Y.; Wang, Z.; Li, M.; Yang, H.; et al. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration. Biomaterials 2021, 276, 121028. [Google Scholar] [CrossRef]
- Xu, M.; Ye, Z.; Zhao, X.; Guo, H.; Gong, X.; Huang, R. Deficiency of tenascin-C attenuated cardiac injury by inactivating TLR4/NLRP3/caspase-1 pathway after myocardial infarction. Cell. Signal. 2021, 86, 110084. [Google Scholar] [CrossRef]
- Yonebayashi, S.; Tajiri, K.; Hara, M.; Saito, H.; Suzuki, N.; Sakai, S.; Kimura, T.; Sato, A.; Sekimoto, A.; Fujita, S.; et al. Generation of Transgenic Mice that Conditionally Overexpress Tenascin-C. Front. Immunol. 2021, 12, 620541. [Google Scholar] [CrossRef]
- Machino-Ohtsuka, T.; Tajiri, K.; Kimura, T.; Sakai, S.; Sato, A.; Yoshida, T.; Hiroe, M.; Yasutomi, Y.; Aonuma, K.; Imanaka-Yoshida, K. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. J. Am. Heart Assoc. 2014, 3, e001052. [Google Scholar] [CrossRef] [Green Version]
- Podesser, B.K.; Kreibich, M.; Dzilic, E.; Santer, D.; Förster, L.; Trojanek, S.; Abraham, D.; Krššák, M.; Klein, K.U.; Tretter, E.V.; et al. Tenascin-C promotes chronic pressure overload-induced cardiac dysfunction, hypertrophy and myocardial fibrosis. J. Hypertens. 2018, 36, 847–856. [Google Scholar] [CrossRef]
- Shimojo, N.; Hashizume, R.; Kanayama, K.; Hara, M.; Suzuki, Y.; Nishioka, T.; Hiroe, M.; Yoshida, T.; Imanaka-Yoshida, K. Tenascin-C may accelerate cardiac fibrosis by activating macrophages via the integrin αVβ3/nuclear factor-κB/interleukin-6 axis. Hypertension 2015, 66, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Wang, L.; Li, F.; Yukht, A.; Qin, M.; Ruther, H.; Yang, M.; Chaux, A.; Shah, P.K.; Sharifi, B.G. Bone Marrow-Derived Tenascin-C Attenuates Cardiac Hypertrophy by Controlling Inflammation. J. Am. Coll. Cardiol. 2017, 70, 1601–1615. [Google Scholar] [CrossRef]
- Mehri, H.; Aslanabadi, N.; Nourazarian, A.; Shademan, B.; Khaki-Khatibi, F. Evaluation of the serum levels of Mannose binding lectin-2, tenascin-C, and total antioxidant capacity in patients with coronary artery disease. J. Clin. Lab. Anal. 2021, 35, e23967. [Google Scholar] [CrossRef]
- Sakamoto, N.; Hoshino, Y.; Misaka, T.; Mizukami, H.; Suzuki, S.; Sugimoto, K.; Yamaki, T.; Kunii, H.; Nakazato, K.; Suzuki, H.; et al. Serum tenascin-C level is associated with coronary plaque rupture in patients with acute coronary syndrome. Heart Vessel. 2014, 29, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Kanagala, P.; Arnold, J.R.; Khan, J.N.; Singh, A.; Gulsin, G.S.; Chan, D.C.S.; Cheng, A.S.H.; Yang, J.; Li, Z.; Gupta, P.; et al. Plasma Tenascin-C: A prognostic biomarker in heart failure with preserved ejection fraction. Biomarkers 2020, 25, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Hessel, M.H.; Bleeker, G.B.; Bax, J.J.; Henneman, M.M.; den Adel, B.; Klok, M.; Schalij, M.J.; Atsma, D.E.; van der Laarse, A. Reverse ventricular remodelling after cardiac resynchronization therapy is associated with a reduction in serum tenascin-C and plasma matrix metalloproteinase-9 levels. Eur. J. Heart Fail. 2007, 9, 1058–1063. [Google Scholar] [CrossRef]
- Shiomi, Y.; Yokokawa, M.; Uzui, H.; Hisazaki, K.; Morishita, T.; Ishida, K.; Fukuoka, Y.; Hasegawa, K.; Ikeda, H.; Tama, N.; et al. Serum tenascin-C levels in atrium predict atrial structural remodeling processes in patients with atrial fibrillation. J. Interv. Card. Electr. 2020, 59, 401–406. [Google Scholar] [CrossRef]
- Gellen, B.; Thorin-Trescases, N.; Thorin, E.; Gand, E.; Sosner, P.; Brishoual, S.; Rigalleau, V.; Montaigne, D.; Javaugue, V.; Pucheu, Y.; et al. Serum tenascin-C is independently associated with increased major adverse cardiovascular events and death in individuals with type 2 diabetes: A French prospective cohort. Diabetologia 2020, 63, 915–923. [Google Scholar] [CrossRef]
- Yokokawa, T.; Sugano, Y.; Nakayama, T.; Nagai, T.; Matsuyama, T.A.; Ohta-Ogo, K.; Ikeda, Y.; Ishibashi-Ueda, H.; Nakatani, T.; Yasuda, S.; et al. Significance of myocardial tenascin-C expression in left ventricular remodelling and long-term outcome in patients with dilated cardiomyopathy. Eur. J. Heart Fail. 2016, 18, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Ulusoy, S.; Ozkan, G.; Mentese, A.; Guvercin, B.; Caner Karahan, S.; Yavuz, A.; Altay, D.U. A new predictor of mortality in hemodialysis patients; Tenascin-C. Life Sci. 2015, 141, 54–60. [Google Scholar] [CrossRef]
- Mo, F.E.; Muntean, A.G.; Chen, C.C.; Stolz, D.B.; Watkins, S.C.; Lau, L.F. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol. Cell. Biol. 2002, 22, 8709–8720. [Google Scholar] [CrossRef] [Green Version]
- Chuva de Sousa Lopes, S.M.; Feijen, A.; Korving, J.; Korchynskyi, O.; Larsson, J.; Karlsson, S.; ten Dijke, P.; Lyons, K.M.; Goldschmeding, R.; Doevendans, P.; et al. Connective tissue growth factor expression and Smad signaling during mouse heart development and myocardial infarction. Dev. Dyn. 2004, 231, 542–550. [Google Scholar] [CrossRef]
- Ivkovic, S.; Yoon, B.S.; Popoff, S.N.; Safadi, F.F.; Libuda, D.E.; Stephenson, R.C.; Daluiski, A.; Lyons, K.M. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 2003, 130, 2779–2791. [Google Scholar] [CrossRef] [Green Version]
- Matsumae, H.; Yoshida, Y.; Ono, K.; Togi, K.; Inoue, K.; Furukawa, Y.; Nakashima, Y.; Kojima, Y.; Nobuyoshi, M.; Kita, T.; et al. CCN1 knockdown suppresses neointimal hyperplasia in a rat artery balloon injury model. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Chaqour, B. Cysteine-rich protein 61 (CCN1) and connective tissue growth factor (CCN2) at the crosshairs of ocular neovascular and fibrovascular disease therapy. J. Cell Commun. Signal 2013, 7, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Ellis, P.D.; Chen, Q.; Barker, P.J.; Metcalfe, J.C.; Kemp, P.R. Nov gene encodes adhesion factor for vascular smooth muscle cells and is dynamically regulated in response to vascular injury. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1912–1919. [Google Scholar] [CrossRef] [Green Version]
- Rother, M.; Krohn, S.; Kania, G.; Vanhoutte, D.; Eisenreich, A.; Wang, X.; Westermann, D.; Savvatis, K.; Dannemann, N.; Skurk, C.; et al. Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator. Circulation 2010, 122, 2688–2698. [Google Scholar] [CrossRef] [Green Version]
- Hilfiker-Kleiner, D.; Kaminski, K.; Kaminska, A.; Fuchs, M.; Klein, G.; Podewski, E.; Grote, K.; Kiian, I.; Wollert, K.C.; Hilfiker, A.; et al. Regulation of proangiogenic factor CCN1 in cardiac muscle: Impact of ischemia, pressure overload, and neurohumoral activation. Circulation 2004, 109, 2227–2233. [Google Scholar] [CrossRef] [Green Version]
- Recchia, A.G.; Filice, E.; Pellegrino, D.; Dobrina, A.; Cerra, M.C.; Maggiolini, M. Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes. J. Mol. Cell. Cardiol. 2009, 46, 352–359. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Oie, E.; Vinge, L.E.; Yndestad, A.; Oystein Andersen, G.; Andersson, Y.; Attramadal, T.; Attramadal, H. Connective tissue growth factor--a novel mediator of angiotensin II-stimulated cardiac fibroblast activation in heart failure in rats. J. Mol. Cell. Cardiol. 2004, 36, 393–404. [Google Scholar] [CrossRef]
- Kanazawa, S.; Miyake, T.; Kakinuma, T.; Tanemoto, K.; Tsunoda, T.; Kikuchi, K. The expression of platelet-derived growth factor and connective tissue growth factor in different types of abdominal aortic aneurysms. J. Cardiovasc. Surg. (Torino) 2005, 46, 271–278. [Google Scholar]
- Lee, S.J.; Zhang, M.; Hu, K.; Lin, L.; Zhang, D.; Jin, Y. CCN1 suppresses pulmonary vascular smooth muscle contraction in response to hypoxia. Pulm. Circ. 2015, 5, 716–722. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Fan, Y.; Hao, Y.; Yuan, P.; Liu, D.; Jing, Z.; Zhang, Z. Cysteine-rich 61 (Cyr61) upregulated in pulmonary arterial hypertension promotes the proliferation of pulmonary artery smooth muscle cells. Int. J. Med. Sci. 2017, 14, 820–828. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Zhao, J.; Qian, J.; Hao, Y.; Wang, Q.; Gao, L.; Li, M.; Zeng, X.; Zhang, Z. Cysteine-rich protein 61 as a novel biomarker in systemic lupus erythematosus-associated pulmonary arterial hypertension. Clin. Exp. Rheumatol. 2019, 37, 623–632. [Google Scholar]
- Zagorski, J.; Obraztsova, M.; Gellar, M.A.; Kline, J.A.; Watts, J.A. Transcriptional changes in right ventricular tissues are enriched in the outflow tract compared with the apex during chronic pulmonary embolism in rats. Physiol. Genom. 2009, 39, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Liang, W.; He, X.; Owusu-Agyeman, M.; Wu, Z.; Zhou, Y.; Cao, Y.; Zhang, C.; Liu, J.; Jiang, J.; et al. Prognostic Value of Cysteine-Rich Protein 61 Combined with N-Terminal Pro-B-Type Natriuretic Peptide for Mortality in Acute Heart Failure Patients with and without Chronic Kidney Disease. Cardiorenal. Med. 2020, 10, 11–21. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, C.; Liu, J.; Zhang, L.; Cao, Y.; Wu, D.; Yao, F.; Xue, R.; Huang, H.; Jiang, J.; et al. Prognostic Significance of Serum Cysteine-Rich Protein 61 in Patients with Acute Heart Failure. Cell. Physiol. Biochem. 2018, 48, 1177–1187. [Google Scholar] [CrossRef]
- Feng, T.; Meng, J.; Kou, S.; Jiang, Z.; Huang, X.; Lu, Z.; Zhao, H.; Lau, L.F.; Zhou, B.; Zhang, H. CCN1-Induced Cellular Senescence Promotes Heart Regeneration. Circulation 2019, 139, 2495–2498. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Gravning, J.; Martinov, V.N.; Lueder, T.G.v.; Edvardsen, T.; Czibik, G.; Moe, I.T.; Vinge, L.E.; Øie, E.; Valen, G.; et al. Mechanisms of novel cardioprotective functions of CCN2/CTGF in myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H1291–H1302. [Google Scholar] [CrossRef]
- Gravning, J.; Ørn, S.; Kaasbøll, O.J.; Martinov, V.N.; Manhenke, C.; Dickstein, K.; Edvardsen, T.; Attramadal, H.; Ahmed, M.S. Myocardial connective tissue growth factor (CCN2/CTGF) attenuates left ventricular remodeling after myocardial infarction. PLoS ONE 2012, 7, e52120. [Google Scholar] [CrossRef] [Green Version]
- Gravning, J.; Ahmed, M.S.; von Lueder, T.G.; Edvardsen, T.; Attramadal, H. CCN2/CTGF attenuates myocardial hypertrophy and cardiac dysfunction upon chronic pressure-overload. Int. J. Cardiol. 2013, 168, 2049–2056. [Google Scholar] [CrossRef]
- Szabó, Z.; Magga, J.; Alakoski, T.; Ulvila, J.; Piuhola, J.; Vainio, L.; Kivirikko, K.I.; Vuolteenaho, O.; Ruskoaho, H.; Lipson, K.E.; et al. Connective Tissue Growth Factor Inhibition Attenuates Left Ventricular Remodeling and Dysfunction in Pressure Overload–Induced Heart Failure. Hypertension 2014, 63, 1235–1240. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Yang, H.C.; Kon, V.; Fogo, A.B.; Lawrence, D.A.; Ma, J. Vitronectin-binding PAI-1 protects against the development of cardiac fibrosis through interaction with fibroblasts. Lab. Investig. 2014, 94, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Pate, G.E.; Walinski, H.P.; Bohunek, L.; Podor, T.J. Validation of the vitronectin knockout mouse as a model for studying myocardial infarction: Vitronectin appears to influence left ventricular remodelling following myocardial infarction. Exp. Clin. Cardiol. 2013, 18, 43–47. [Google Scholar]
- Aslan, S.; Ikitimur, B.; Cakmak, H.A.; Ozcan, S.; Yuksel, H. Vitronectin levels and coronary artery disease severity in acute coronary syndromes. Eur. Heart J. 2013, 34, 4053. [Google Scholar] [CrossRef] [Green Version]
- Aslan, S.; Ikitimur, B.; Cakmak, H.A.; Karadag, B.; Tufekcioglu, E.Y.; Ekmekci, H.; Yuksel, H. Prognostic utility of serum vitronectin levels in acute myocardial infarction. Herz 2015, 40, 685–689. [Google Scholar] [CrossRef]
- Derer, W.; Barnathan, E.S.; Safak, E.; Agarwal, P.; Heidecke, H.; Mockel, M.; Gross, M.; Oezcelik, C.; Dietz, R.; Dechend, R. Vitronectin concentrations predict risk in patients undergoing coronary stenting. Circ. Cardiovasc. Interv. 2009, 2, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Mazzali, M.; Kipari, T.; Ophascharoensuk, V.; Wesson, J.A.; Johnson, R.; Hughes, J. Osteopontin—A molecule for all seasons. Q. J. Med. 2002, 95, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Sasse, P.; Malan, D.; Fleischmann, M.; Roell, W.; Gustafsson, E.; Bostani, T.; Fan, Y.; Kolbe, T.; Breitbach, M.; Addicks, K.; et al. Perlecan is critical for heart stability. Cardiovasc. Res. 2008, 80, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Nakahama, M.; Murakami, T.; Kusachi, S.; Naito, I.; Takeda, K.; Ohnishi, H.; Komatsubara, I.; Oka, T.; Ninomiya, Y.; Tsuji, T. Expression of perlecan proteoglycan in the infarct zone of mouse myocardial infarction. J. Mol. Cell. Cardiol. 2000, 32, 1087–1100. [Google Scholar] [CrossRef]
- Tran, P.K.; Agardh, H.E.; Tran-Lundmark, K.; Ekstrand, J.; Roy, J.; Henderson, B.; Gabrielsen, A.; Hansson, G.K.; Swedenborg, J.; Paulsson-Berne, G.; et al. Reduced perlecan expression and accumulation in human carotid atherosclerotic lesions. Atherosclerosis 2007, 190, 264–270. [Google Scholar] [CrossRef]
- Kunjathoor, V.V.; Chiu, D.S.; O’Brien, K.D.; LeBoeuf, R.C. Accumulation of biglycan and perlecan, but not versican, in lesions of murine models of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Tran-Lundmark, K.; Tran, P.K.; Paulsson-Berne, G.; Friden, V.; Soininen, R.; Tryggvason, K.; Wight, T.N.; Kinsella, M.G.; Boren, J.; Hedin, U. Heparan sulfate in perlecan promotes mouse atherosclerosis: Roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ. Res. 2008, 103, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Asundi, V.K.; Keister, B.F.; Stahl, R.C.; Carey, D.J. Developmental and cell-type-specific expression of cell surface heparan sulfate proteoglycans in the rat heart. Exp. Cell Res. 1997, 230, 145–153. [Google Scholar] [CrossRef]
- Finsen, A.V.; Woldbaek, P.R.; Li, J.; Wu, J.; Lyberg, T.; Tonnessen, T.; Christensen, G. Increased syndecan expression following myocardial infarction indicates a role in cardiac remodeling. Physiol. Genom. 2004, 16, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Endo, C.; Kusachi, S.; Ninomiya, Y.; Yamamoto, K.; Murakami, M.; Murakami, T.; Shinji, T.; Koide, N.; Kondo, J.; Tsuji, T. Time-dependent increases in syndecan-1 and fibroglycan messenger RNA expression in the infarct zone after experimentally induced myocardial infarction in rats. Coron. Artery Dis. 1997, 8, 155–161. [Google Scholar] [CrossRef]
- Vanhoutte, D.; Schellings, M.W.; Gotte, M.; Swinnen, M.; Herias, V.; Wild, M.K.; Vestweber, D.; Chorianopoulos, E.; Cortes, V.; Rigotti, A.; et al. Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation 2007, 115, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Xue, S.N.; Wu, W.; Zhou, S.X.; Zhang, Y.L.; Yuan, G.Y.; Wang, J.F. Increased level of soluble syndecan-1 in serum correlates with myocardial expression in a rat model of myocardial infarction. Mol. Cell. Biochem. 2012, 359, 177–182. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Li, R.; Dai, Q.; Yong, Y.; Zong, B.; Xu, Y.; Li, E.; Ferro, A.; Xu, B. Syndecan-4 over-expression preserves cardiac function in a rat model of myocardial infarction. J. Mol. Cell. Cardiol. 2012, 53, 250–258. [Google Scholar] [CrossRef]
- Echtermeyer, F.; Harendza, T.; Hubrich, S.; Lorenz, A.; Herzog, C.; Mueller, M.; Schmitz, M.; Grund, A.; Larmann, J.; Stypmann, J.; et al. Syndecan-4 signalling inhibits apoptosis and controls NFAT activity during myocardial damage and remodelling. Cardiovasc. Res. 2011, 92, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Schellings, M.W.; Vanhoutte, D.; van Almen, G.C.; Swinnen, M.; Leenders, J.J.; Kubben, N.; van Leeuwen, R.E.; Hofstra, L.; Heymans, S.; Pinto, Y.M. Syndecan-1 amplifies angiotensin II-induced cardiac fibrosis. Hypertension 2010, 55, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Tromp, J.; van der Pol, A.; Klip, I.T.; de Boer, R.A.; Jaarsma, T.; van Gilst, W.H.; Voors, A.A.; van Veldhuisen, D.J.; van der Meer, P. Fibrosis marker syndecan-1 and outcome in patients with heart failure with reduced and preserved ejection fraction. Circ. Heart Fail. 2014, 7, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Wernly, B.; Fuernau, G.; Masyuk, M.; Muessig, J.M.; Pfeiler, S.; Bruno, R.R.; Desch, S.; Muench, P.; Lichtenauer, M.; Kelm, M.; et al. Syndecan-1 Predicts Outcome in Patients with ST-Segment Elevation Infarction Independent from Infarct-related Myocardial Injury. Sci. Rep. 2019, 9, 18367. [Google Scholar] [CrossRef] [Green Version]
- Matsui, Y.; Ikesue, M.; Danzaki, K.; Morimoto, J.; Sato, M.; Tanaka, S.; Kojima, T.; Tsutsui, H.; Uede, T. Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction. Circ. Res. 2011, 108, 1328–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finsen, A.V.; Lunde, I.G.; Sjaastad, I.; Ostli, E.K.; Lyngra, M.; Jarstadmarken, H.O.; Hasic, A.; Nygard, S.; Wilcox-Adelman, S.A.; Goetinck, P.F.; et al. Syndecan-4 is essential for development of concentric myocardial hypertrophy via stretch-induced activation of the calcineurin-NFAT pathway. PLoS ONE 2011, 6, e28302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strand, M.E.; Herum, K.M.; Rana, Z.A.; Skrbic, B.; Askevold, E.T.; Dahl, C.P.; Vistnes, M.; Hasic, A.; Kvaloy, H.; Sjaastad, I.; et al. Innate immune signaling induces expression and shedding of the heparan sulfate proteoglycan syndecan-4 in cardiac fibroblasts and myocytes, affecting inflammation in the pressure-overloaded heart. FEBS J. 2013, 280, 2228–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, A.D. The role of SPARC in extracellular matrix assembly. J. Cell Commun. Signal 2009, 3, 239–246. [Google Scholar] [CrossRef] [Green Version]
Matrix Protein | Role in Non-Ischemic Cardiac Pathology | Role in Ischemic Cardiac Pathology | Proposed Molecular and/or Cellular Mechanisms | Ref. |
---|---|---|---|---|
TSP1 | TSP1-null mice + TAC banding lead to LVH and dilatation. TSP1-null mice + hypoxia (PAH model) have less RVH and arteriolar thickening. | Upregulates expression in infarcted heart (especially border zones), limiting extension of fibrosis into non-infarcted zones. | - Inhibits MMP-2, -3 and -9 activity - Regulates expression of pro-inflammatory cytokines/chemokines - Controls macrophage and myofibroblast infiltration into infarcted myocardium - Regulates TGF-β activity - Maintains sarcolemmal integrity | [9,10,13,14,15] |
TSP2 | Pressure overload model TSP2-null mice + ANGII infusion lead to mortality from hemorrhagic cardiac rupture and pericardial tamponade. Aging TSP2-null mice + age develop impaired systolic function, cardiac dilatation and fibrosis compared to control mice. Viral myocarditis TSP2-null mice + human coxsackievirus B3-induced viral myocarditis experience increased cardiac inflammation, injury and mortality. | TSP2 may protect structural integrity of myocardium post-MI. | - Regulates MMP-2 and -9 expression - Regulates activity of anti-inflammatory T regulatory cells - Activates the Akt survival pathway in cardiomyocytes | [10,18,19,20] |
TSP3 | TAC banding = Upregulated myocardial TSP3 expression. TSP3 cardiomyocyte-specific overexpression + TAC lead to exaggerated hypertrophy and fibrotic response and greater cardiac dysfunction. | No known role. | - Limits integrin expression and promotes sarcolemmal instability | [11] |
TSP4 | ANGII, AVP, TAC = Upregulated myocardial TSP4 expression. TSP4-null mice + ANGII develop LV hypertrophy, fibrosis and aortic dissection. | MI = Upregulates myocardial TSP4 expression. | - Suppresses deposition of ECM proteins - Modulates expression of pro-inflammatory and fibrotic genes | [12,23,24] |
MMPs | ANGII = Increased MMP-2 and -9 expression. Spontaneously hypertensive rats = Increased MMP2. MMP inhibition protects the volume-overloaded heart from dilatation and LV hypertrophy. MMP-2-null mice and mice with transgenic overexpression of MMP-2 are protected from TAC-induced LV hypertrophy. | MI = Upregulates myocardial MMP-1, -2, -3, -7, -8, -9, -12, -14 and -28 expression. MMP-2-null mice and WT mice treated with an MMP-2 (and MMP-9) inhibitor are protected from cardiac rupture following MI. | - Regulates leukocyte infiltration - Upregulates JAK-STAT and NF-κB signaling | [34,35,36,42,46,47,50,51,52] |
Osteopontin (OPN) | ANGII, TAC = Increased myocardial OPN expression. OPN-null mice + ANGII display reduced hypertrophy, fibrosis and systolic function. | OPN is produced by macrophages within infarcted myocardium. OPN-null mice + MI develop greater cardiac dilatation. OPN-null mice + repeated IRI develop small non-transmural infarctions and ventricular dysfunction. | - Promotes signaling via p38 MAPK and c-Jun - Regulates adhesion of cardiomyocytes to ECM proteins - Induces collagen I expression by cardiac fibroblasts - Modulates expression of ECM proteins, including TN-C, and MMPs | [65,66,67,70] |
Periostin | TAC = Increased myocardial expression of periostin. Periostin-null mice + TAC develop less hypertrophy and fibrosis. | Periostin is re-expressed by cardiac fibroblasts following MI and protects infarcted myocardium from ventricular wall rupture. Periostin-null mice + MI have reduced fibrosis and scar formation compared to controls (with survival after acute injury). | Alters fibrotic gene programming in cardiac fibroblasts | [88,89] |
SPARC | TAC = Increased myocardial expression of SPARC. SPARC-null mice + TAC have altered collagen processing and reduced diastolic dysfunction. SPARC-null mice + viral myocarditis have increased mortality. | SPARC-null mice + MI have preserved LV function compared to controls BUT demonstrate increased risk of cardiac rupture, HF and mortality. Adenoviral overexpression of SPARC+ MI prevents cardiac dilatation and dysfunction. | - Regulates macrophages, regulatory T cells and leukocytes - Regulates proliferation and migration of cardiac stromal cells - Mediates post-synthetic collagen processing and interaction with cardiac fibroblasts - Alters expression of ECM and adhesion molecule genes in fibroblasts - Activates TGF-β signaling pathway | [97,98,99,100,101,104,111,112,113,184] |
Tenascin C (TN-C) | TN-C-null mice + TAC or ANGII show attenuated hypertrophy and fibrosis with preserved cardiac function. TN-C-null mice + ANGII treatment or abdominal aorta constriction have reduced cardiac function. | MI = Increased TN-C expression by cardiac fibroblasts at border zone between necrotic and intact myocardium. TN-C-null mice + MI have higher LVEF compared to WT mice. Transgenic overexpression of myocardial TN-C + MI has higher mortality rates. | - Modulates M1/M2-macrophage polarization - Modulates adhesion between cardiomyocytes and ECM following MI - Regulates pro-inflammatory signaling pathways - Dendritic cell activation and Th17 cell differentiation in autoimmune myocarditis | [120,121,122,124,125,126,127,128,129] |
CCN1 | ANGII, adrenergic stimulation = Increased CCN1 myocardial expression. CCN1 may be protective against PAH and autoimmune myocarditis. | MI = CCN1 expression is upregulated in ischemic and remote LV myocardium. | - Regulates fibroblast senescence - Modulates immune cell migration | [144,145,150,155] |
CCN2 | Transgenic mice with cardiac-restricted CCN2 overexpression + abdominal aortic banding have a blunted hypertrophic response and sustained LV systolic function compared to controls. | MI = CCN2 expression is upregulated in non-ischemic myocardium in rats. Transgenic mice with cardiac-restricted overexpression of CCN2 + MI have reduced infarct size, attenuated LV remodeling and improved LV function compared to controls. | - Stimulates fibroblast proliferation - Activates reperfusion injury salvage kinase (RISK) pathways - Reduces hypertrophic signaling pathways | [147,156,157,158] |
Vitronectin | Vitronectin binding with PA1-1 and blockade of vitronectin-integrin interaction + ANG II protect against cardiac fibrosis. | Vitronectin-null mice demonstrate smaller infarcts, less ventricular dilation and preserved EF following MI. | Changes apoptotic activity and adhesive capacity of fibroblasts | [160,161] |
Perlecan | Perlecan-null mice x APOE-null mice have decreased aortic atherosclerotic lesions. | MI = Perlecan is expressed by fibroblasts, myofibroblasts and surviving myocytes. Perlecan-deficient heterozygous mice develop reduced heart function following MI. | [166,167,170] | |
Syndecans | Syndecan-1-null mice + ANG II have reduced cardiac fibrosis and dysfunction compared to controls. Syndecan-4 expression is upregulated in the pressure-overloaded myocardium. Syndecan-4-null mice develop increased cardiac dilatation and dysfunction compared to WT mice. | MI = Upregulated syndecan (1–4) expression. Syndecan-1-null mice + MI display exaggerated cardiac dilatation and failure. Overexpression of syndecan-1 via adenoviral gene expression protects against HF post-MI. Overexpression of myocardial syndecan-4 + MI demonstrates less fibrosis and mortality, and improves cardiac function. Syndecan-4-null mice + MI experience greater myocardial injury, enhanced hypertrophic response and increased risk of myocardial rupture. Surviving mice show improved EF at seven days post-MI. | Syndecan-1: - Inhibits leukocyte adhesion and migration - Downregulates monocyte chemoattractant protein-1 expression - Regulates MMP-2 and -9 activity - Regulates Smad2 phosphorylation Syndecan-4: - Regulates cardiac fibroblast signaling, adhesion, migration and differentiation - Regulates cardiomyocyte apoptosis - Alters caspase3 and phospho-ERK expression, along with NFAT signaling - Regulates collagen production in cardiac fibroblasts | [173,174,175,176,177,178,181,182,183] |
Matrix Protein | Role in Diagnosis of Human Cardiac Pathology | References |
---|---|---|
TSP1 | TSP1 is upregulated in lung parenchyma and vasculature in PH. Plasma TSP1 levels are increased in patients with PH (n = 93) compared to controls without PH (n = 19). Higher plasma TSP1 levels correlate with mean pulmonary artery pressure and reduced survival. An SNP in the coding region of TSP1 (N700S) confers an >8-fold increased risk of MI in Caucasians. | [16,17] |
TSP2 | In patients with aortic stenosis, TSP2 expression is increased in patients with LVH and reduced EF (n = 5) compared to patients with LVH and preserved EF (n = 20). In patients with HF (n- = 188), high TSP2 levels correlate with HF-related death and all-cause mortality. In patients with HFpEF (n = 150), high plasma TSP2 levels are independently associated with cardiovascular events and risk of death. A TSP2 variant (SNP in 3′ untranslated region) is protective against MI. | [10,21,22,28] |
TSP3 | Not yet studied. | |
TSP4 | A TSP4 variant (A378P), present at a high frequency in Caucasian populations, is associated with a lower rate of MI. | [26,27] |
MMPs | MMP-1, MMP-2 and MMP-9 levels vary in a time-dependent fashion post-MI and correlate with cardiac function. Plasma MMP-9 levels predict CV mortality in patients with CAD (n = 1127). | [38,40,41] |
Osteopontin (OPN) | High OPN levels in patients with aortic stenosis (n = 149) may be predictive of LVH reversibility following surgical aortic valve replacement. Plasma OPN levels correlate with CAD burden and cardiometabolic risk in diabetes mellitus. Angiotensin II receptor blockade (n = 94) and co-therapy with an HMG CoA reductase blocker (n = 190) reduce OPN levels. | [75,76,77,79,80] |
Periostin | Periostin is upregulated in valvular heart disease, HF and following MI. | [93,94,95] |
SPARC | In patients with moderate-severe HF (n = 154), SPARC levels predict HF-related death, all-cause mortality and risk of recurrent HF-related hospitalization. Small studies have shown plasma SPARC levels to be significantly elevated in patients with coronary artery disease compared to age- and BMI-matched or sex-matched controls. However, they have not been shown to be a sensitive marker of acute MI. | [105,106,107,108,109] |
Tenascin C (TN-C) | Serum TN-C levels are increased in patients with coronary artery disease (n = 60) compared to controls (n = 20). In patients with ACS, TN-C levels are significantly higher in patients with ruptured plaque (n = 23) compared to those with non-ruptured plaques (n = 29). Serum TN-C may be predictive of LV remodeling and MACE in patients with acute MI. TN-C levels are higher in patients with HFpEF (n = 130) compared to age- and sex-matched controls (n = 42) and are independently associated with the composite of all-cause death and HF hospitalization. TN-C levels correlate with LA size in patients with AF. Higher myocardial TN-C expression measured in endomyocardial biopsies (n = 123) of patients with DCM is associated with reduced EF and decreased survival. TN-C levels are an independent predictor of mortality in individuals receiving hemodialysis (n = 238) compared to healthy controls (n = 25). | [116,123,130,131,132,134,136,137] |
CCN1 | There is robust expression of CCN1 in cardiomyocytes of patients with end-stage ischemic cardiomyopathy (n = 5) compared to controls with non-failing LVs (n = 4). In acute HF, CCN1 levels are predictive of three-month (n = 248) and six-month mortality (n = 183). CCN1 is increased in patients with SLE + PAH (n = 54) compared to healthy controls (n = 54), and patients with SLE and no PAH (n = 52). | [145,151,153,154] |
CCN2 | CCN2 levels in patients with acute ST-elevation MI admitted for percutaneous coronary intervention (n = 42) are associated with reduced infarct size and improved LVEF at one year. | [157] |
Vitronectin | Vitronectin levels are increased in patients with ACS (n = 62) compared to healthy controls (n = 18) and correlate with severity of CAD. Vitronectin independently predicts MACE following ACS (n = 62) and coronary artery stenting (n = 238). | [162,163,164] |
Perlecan | Not yet studied. | |
Syndecans | In patients with HF (n = 567), syndecan-1 levels correlate with markers of fibrosis and remodeling. Syndecan-1 levels are associated with an increased risk of all-cause mortality and rehospitalization for HF in patients with HFpEF, but not HFrEF. Syndecan-1 levels independently predict six-month mortality in patients with STEMI (n = 206). Syndecan-4 mRNA and protein levels are increased in myocardial biopsies taken from patients with aortic stenosis and hypertrophic myocardium (n = 12) compared to controls (n = 12). Syndecan-4 expression in the myocardium is increased in failing hearts (n = 20) compared to non-failing hearts (n = 10). | [179,180,182,183] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh, K.; Julovi, S.M.; Rogers, N.M. The Role of Matrix Proteins in Cardiac Pathology. Int. J. Mol. Sci. 2022, 23, 1338. https://doi.org/10.3390/ijms23031338
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. International Journal of Molecular Sciences. 2022; 23(3):1338. https://doi.org/10.3390/ijms23031338
Chicago/Turabian StyleTrinh, Katie, Sohel M. Julovi, and Natasha M. Rogers. 2022. "The Role of Matrix Proteins in Cardiac Pathology" International Journal of Molecular Sciences 23, no. 3: 1338. https://doi.org/10.3390/ijms23031338
APA StyleTrinh, K., Julovi, S. M., & Rogers, N. M. (2022). The Role of Matrix Proteins in Cardiac Pathology. International Journal of Molecular Sciences, 23(3), 1338. https://doi.org/10.3390/ijms23031338