Epilepsy in Pregnancy—Management Principles and Focus on Valproate
Abstract
:1. Introduction
2. Preconception Care in Women with Epilepsy
- Every woman with epilepsy during preconception should be provided with comprehensive information on the course of epilepsy during pregnancy.
- If treatment with AEDs is necessary, monotherapy should be used if possible.
- If a change of an AED is necessary, it should be done before pregnancy.
- A woman planning pregnancy should take folic acid (5 mg/day) before and during the early stages of pregnancy.
- Women using AEDs that induce liver enzymes may receive vitamin K during the last period of pregnancy.
- All pregnancies of women with epilepsy should be reported to an appropriate epilepsy and pregnancy registry [12].
3. Epileptic Seizures in Pregnancy
4. Frequency of Epileptic Seizures during Pregnancy
5. Teratogenicity of AEDs
6. Teratogenicity Risk of AEDs
7. AED Polytherapy and the Risk of Major Birth Defects in Children of Mothers with Epilepsy
8. Types of Congenital Malformations in Children of Women with Epilepsy Using AEDs
9. Folic Acid Supplementation
10. Effects of AEDs Use in Pregnant Women on Their Children’s Cognitive Functions
11. Monitoring Serum Levels of AEDs
12. Neuropsychiatric Disorders of Women with Epilepsy in Pregnancy
13. Antenatal Care during Pregnancy
14. Prophylaxis with Vitamin K
15. Delivery in Women with Epilepsy
16. Postpartum in Women with Epilepsy
17. Mortality of Women with Epilepsy in Pregnancy
18. Status Epilepticus during Pregnancy
19. Sudden Unexpected Death in Epilepsy (SUDEP) during Pregnancy
20. Breastfeeding by Women with Epilepsy
21. Information for Breastfeeding Mothers Who Receive AEDs
- Breastfeeding is safe and should be recommended for the period of at least 6 months, preferably 12 months.
- Drugs considered safe include: PHT, VPA, CBZ.
- Drugs considered moderately safe: LTG, OXC, LEV, TPM, GBP, PGB, vigabatrin, TGB.
- Caution recommended: PB, PRM, benzodiazepines, ethosuximide, ZSM, felbamate.
- No information available on some newer AEDs: perampanel, LCM, eslicarbazepine.
22. Focus on VPA
22.1. Generic Adverse Effects
22.2. Neurodevelopmental Risks
22.3. Mechanism Leading to Fetal Malformations
23. Conclusions
- Over 90% of women with epilepsy may deliver healthy children.
- Pregnancy planning is the safest solution for a woman and her future child.
- If changing AEDs is necessary, it should be done during the preconception period.
- The use of a single AED at the optimal dose for the patient is preferred, consistent with the type of seizures or epilepsy syndrome and at the lowest possible teratogenic risk.
- Women who had no seizures nine months before conception have a greater than 80% chance of not experiencing seizures during pregnancy.
- In most women, the frequency of seizures in pregnancy does not change significantly, but in some women, an increase in the dose of AEDs is recommended to ensure good seizure control, especially during the third trimester.
- Regular intake of AEDs, as recommended by a physician, is essential to maintain good seizure control.
- It is recommended to administer a prophylactic dose of 4–5 mg of folic acid per day 3 months before pregnancy and during the first trimester.
- Most women can have a natural childbirth. Indications for cesarean section should be limited to the occurrence of frequent tonic-clonic seizures or other types of seizures that may disrupt the course of labor.
- In most cases, the benefits of breastfeeding are considered to outweigh the possible risks associated with the adverse effects of AEDs on the child.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thomas, S.V. Managing epilepsy in pregnancy. Neurol. India 2011, 59, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.; Moriarty, T. Epilepsy and Women. Quick Reference Guide, 1st ed.; Quality in Practice Committee: Dublin, Ireland, 2016. [Google Scholar]
- Harde, C.L.; Meador, K.J.; Pennell, P.B.; Hauser, W.A.; Gronseth, G.S.; French, J.A.; Wiebe, S.; Thurman, D.; Koppel, B.S.; Kaplan, P.W.; et al. Management issues for women with epilepsy—focus on pregnancy (an evidence-based review): II. Teratogenesis and perinatal outcomes: Report of the Quality Standards Subcommittee and Therapeutics and Technology Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Epilepsia 2009, 50, 1237–1246. [Google Scholar]
- Pennell, P.B.; French, J.A.; Harden, C.L.; Davis, A.; Bagiella, E.; Andreopoulos, E.; Lau, C.; Liewellyn, N.; Barnard, S.; Allien, S. Fertility and birth outcomes in women with epilepsy seeking pregnancy. JAMA Neurol. 2018, 75, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Jędrzejczak, J.; Bomba-Opoń, D.; Jakiel, G.; Kwaśniewska, A.; Mirowska-Guzel, D.D. Managing epilepsy in women of childbearing age—Polish Society of Epileptology and Polish Gynecological Society Guidelines. Ginekol. Pol. 2017, 88, 278–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leach, J.P.; Smith, P.E.; Craig, J.; Bagary, M.; Cavanagh, D.; Ducan, S.; Kelso, A.R.C.; Marson, A.G.; McCorry, D.; Nashef, L.; et al. Epilepsy and pregnancy: For healthy pregnancies and happy outcomes. Suggestions for service improvements from the Multispecialty UK Epilepsy Mortality Group. Seizure 2017, 50, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Grimes, D.A. Unplanned pregnancies in the United States. Obstet. Gynecol. 1986, 67, 438–442. [Google Scholar] [CrossRef]
- Delgado-Suárez, C.; García-Azorín, D.; Monje, M.H.G.; Molina-Sánches, M.; Gómez-Inglesias, P.; Kurtis, M.M.; Garcia-Morales, I. Identifying areas for improvement in epilepsy management in developing countries: An experience of neurocooperation in Cameroon. Neurología 2021, 36, 29–33. [Google Scholar] [CrossRef]
- Pennell, P.B. Use of antiepileptic drugs during pregnancy. Evolving concepts. Neurotherapeutics 2016, 13, 811–820. [Google Scholar] [CrossRef]
- Menon, S.; Siewe Fodjo, J.N.; Weckhuysen, S.; Bhwana, D.; Njamnshi, A.K.; Dekker, M.; Colebunders, R. Women with epilepsy in sub–Saharan Africa: A review of the reproductive health challenges and perspectives for management. Seizure 2019, 71, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Sabers, L.; Perucca, E.; Vajda, F.; EURAP Study Group. Dose-dependent risk of malformations with antiepileptic drugs: An analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol. 2011, 10, 609–617. [Google Scholar] [CrossRef]
- Crawford, P. Best practice guidelines for the management of women with epilepsy. Epilepsia 2005, 46 (Suppl. 9), 117–124. [Google Scholar] [CrossRef] [PubMed]
- Sveberg, L.; Svalheim, S.; Tauboll, E. The impact of seizures on pregnancy and delivery. Seizure 2015, 28, 35–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, K.; Hamada, H.; Yamada, T.; Obata-Yasuoka, M.; Minakami, H.; Yoshikawa, H. Impact of planning of pregnancy in women with epilepsy on seizure control during pregnancy and on maternal and neonatal outcomes. Seizure 2014, 23, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Harden, C.L.; Hopp, J.; Ting, T.Y.; Pennell, P.B.; French, J.A.; Hauser, W.A.; Wiebe, S.; Gronseth, G.S.; Thurman, D.; Meador, K.J.; et al. Practice parameter update: Management issues for women with epilepsy–focus on pregnancy (an evidence-based review): Obstetrical complications and change in seizure frequency: Report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and American Epilepsy Society. Neurology 2009, 73, 126–132. [Google Scholar] [PubMed]
- Huang, C.; Dai, Y.; Feng, L.; Gao, W. Clinical characteristics and outcomes in pregnant women with epilepsy. Epilepsy Behav. 2020, 112, 107433. [Google Scholar] [CrossRef] [PubMed]
- Joung, W.J. Pregnancy and childbirth experiences of women with epilepsy: A phenomenological approach. Asian Nurs. Res. 2019, 13, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Egawa, M.; Hara, K.; Ikeda, M.; Kono, E.; Miyashita, S.; Miyasaka, N.; Inaji, M.; Maehara, T.; Yoshida, M. Role of obstetricians in promoting pregnancy-related knowledge among women with epilepsy in Japan. Epilepsy Behav. 2020, 111, 107176. [Google Scholar] [CrossRef]
- Jędrzejczak, J.; Kopytek-Beuzen, M.; Gawłowicz, J.; Stanosz-Sankowska, J.; Majkowska-Zwolińska, B. Knowledge of pregnancy and procreation in women with epilepsy of childbearing age: A 16-year comparative study in Poland. Epilepsy Res. 2020, 164, 106372. [Google Scholar] [CrossRef]
- Ma, G.J.; Yadav, S.; Kaplan, P.W.; Johnson, E. New-onset epilepsy in women with first time seizures during pregnancy. Seizure 2020, 80, 42–45. [Google Scholar] [CrossRef]
- George, I.C. How do you treat epilepsy in pregnancy? Neurol. Clin. Pract. 2017, 7, 363–371. [Google Scholar] [CrossRef]
- Battino, D.; Tomson, T.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Sabers, A.; Perucca, E.; Vajda, F. Seizure control and treatment changes in pregnancy: Observations from the EURAP epilepsy pregnancy registry. Epilepsia 2013, 54, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Vajda, F.J.; Hitchcock, A.; Graham, J.; O’Brien, T.; Lander, C.; Eadie, M. Seizure control in antiepileptic drug-treated pregnancy. Epilepsia 2008, 49, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.V.; Syam, U.; Devi, J.S. Predictors of seizures during pregnancy in women with epilepsy. Epilepsia 2012, 53, e85–e88. [Google Scholar] [CrossRef] [PubMed]
- Veroniki, A.A.; Rios, P.; Cogo, E.; Straus, S.E.; Finkelstein, Y.; Kealey, R.; Reynen, E.; Soobiah, C.; Thavorn, K.; Hutton, B.; et al. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: A systematic review and network meta-analysis. BMJ Open 2017, 7, e017248. [Google Scholar] [CrossRef] [PubMed]
- Reimers, A. New antiepileptic drugs and women. Seizure 2014, 23, 585–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimers, A.; Helde, G.; Andersen, N.B.; Aurlien, D.; Navjord, E.S.; Haggag, K.; Christensen, J.; Lillestølen, K.M.; Nakken, K.O.; Brodtkorb, E. Zonisamide serum concentrations during pregnancy. Epilepsy Res. 2018, 144, 25–29. [Google Scholar] [CrossRef]
- Paulzen, M.; Stingl, J.C.; Augustin, M.; Saßmannshausen, H.; Franz, C.; Gründer, G.; Schoretsanitis, G. Comprehensive measurements of intrauterine and postnatal exposure to lamotrigine. Clin. Pharmacokin. 2019, 58, 535–543. [Google Scholar] [CrossRef]
- Schmidt, D.; Canger, R.; Avanzini, G.; Battino, D.; Cusi, C.; Beck-Mannagetta, G.; Koch, S.; Rating, D.; Janz, D. Change of seizure frequency in pregnant epileptic women. J. Neurol. Neurosurg. Psychiatry 1983, 46, 751–755. [Google Scholar] [CrossRef]
- Kusznir Vitturi, B.K.; Barreto Cabral, F.; Mella Cukiert, C. Outcomes of pregnant women with refractory epilepsy. Seizure 2019, 69, 251–257. [Google Scholar] [CrossRef]
- Delgado-Escueta, A.V.I.; Janz, D. Consensus guidelines: Preconcenption counseling, management, and care of the pregnant woman with epilepsy. Neurology 1992, 42, 149–160. [Google Scholar]
- Tomson, T.; Xue, H.; Battino, D. Major congenital malformations in children of women with epilepsy. Seizure 2015, 28, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vajda, F.J.E. Effect of anti-epileptic drug therapy on the unborn child. J. Clin. Neurosci. 2014, 21, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.; Kennedy, F.; Russell, A.; Smithson, W.H.; Parsons, L.; Morrison, P.J.; Liggan, B.; Irwin, B.; Delanty, N.; Hunt, S.J.; et al. Malformation risks of antiepileptic drug monotherapies in pregnancy: Updated results from the UK and Ireland Epilepsy and Pregnancy Registers. J. Neurol. Neurosurg. Psychiatr. 2014, 85, 1029–1034. [Google Scholar] [CrossRef]
- Veroniki, A.A.; Cogo, E.; Rios, P.; Straus, S.E.; Finkelstein, Y.; Kealey, R.; Reynen, E.; Soobiah, C.; Thavorn, K.; Hutton, B.; et al. Comparative safety of anti-epileptic drugs during pregnancy: A systematic review and network meta-analysis of congenital malformations and prenatal outcomes. BMC Med. 2017, 15, 95. [Google Scholar] [CrossRef] [PubMed]
- Lawther, L.; Dolk, H.; Sinclair, M.; Morrow, J. The preconception care experiences of women with epilepsy on sodium valproate. Seizure 2018, 59, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Q.; Su, B.; Wei, J. Neurological teratogenic effects of antiepileptic drugs during pregnancy. Exp. Ther. Med. 2016, 12, 2400–2404. [Google Scholar] [CrossRef] [Green Version]
- Mawhinney, E.; Craig, J.; Morrow, J.; Russell, A.; Smithson, W.H.; Parsons, L.; Morrison, P.J.; Liggan, B.; Irwin, B.; Delanty, N.; et al. Levetiracetam in pregnancy: Results from the UK and Ireland epilepsy and pregnancy registers. Neurology 2013, 80, 400–405. [Google Scholar] [CrossRef]
- Tomson, T.; Landmark, C.J.; Battino, D. Antiepileptic drug treatment in pregnancy: Changes in drug disposition and their clinical implications. Epilepsia 2013, 54, 405–414. [Google Scholar] [CrossRef]
- Beydoun, A.; DuPont, S.; Zhou, D.; Matta, M.; Nagire, V.; Lagae, L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure 2020, 83, 251–263. [Google Scholar] [CrossRef]
- Kinney, M.O.; Craig, J.J. Pregnancy and epilepsy; meeting the challenges over the last 25 years: The rise of the pregnancy registries. Seizure 2017, 44, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Magalhães, L.M.; Graça, J.; Vieira, M.; Gama, H.; Moreira, J.; Rocha, J.F.; Soares-da-Silva, P. Eslicarbazepine acetate exposure in pregnant women with epilepsy. Seizure 2018, 58, 72–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 years of second-generation antiseizure medications: Impact and future perspectives. Lancet Neurol. 2020, 19, 544–556. [Google Scholar] [CrossRef]
- Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Perucca, E.; Sabers, A.; Thomas, S.V.; Vajda, F. Comparative risk of major congenital malformations with eight different antiepileptic drugs: A prospective cohort study of the EURAP registry. Lancet Neurol. 2018, 17, 530–538. [Google Scholar] [CrossRef]
- Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Perucca, E.; Sabers, A.; Thomas, S.V.; Vajda, F. Declining malformation rates with changed antiepileptic drug prescribing: An observational study. Neurology 2019, 93, e831–e840. [Google Scholar] [CrossRef] [PubMed]
- Weston, J.; Bromley, R.; Jackson, C.F.; Adab, N.; Clayton-Smith, J.; Greenhalgh, J.; Hounsome, J.; McKay, A.J.; Smith, K.T.; Marson, A.G. Monotherapy treatment of epilepsy in pregnancy: Congenital malformation outcomes in the child. Cochrane Database Syst. Rev. 2016, 11, CD010224. [Google Scholar] [CrossRef] [Green Version]
- Jentink, J.; Loane, M.A.; Dolk, H.; Barisic, I.; Garne, E.; Morris, J.K.; de Jong-van-den-Berg, L.T.W.; EUROCAT Antiepileptic Study Working Group. Valproic acid monotherapy in pregnancy and major congenital malformations. N. Engl. J. Med. 2010, 362, 2185–2193. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.H. Valproate: Life-saving, life-changing. Clin. Med. 2018, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Asadi-Pooya, A.A. High dose folic acid supplementation in women with epilepsy: Are we sure it is safe? Seizure 2015, 27, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Lascar, E.M.; Warner, N.W.; Doherty, M.J. Pregnancy outcomes in women with epilepsy and MTHFR mutations supplemented with methylated folate and methylcobalamin (methylated B12). Epilepsy Behav. Rep. 2021, 15, 100419. [Google Scholar] [CrossRef]
- Huber-Mollema, Y.; Oort, F.J.; Lindhout, D.; Rodenburg, R. Well-being of mothers with epilepsy with school-aged children. Epilepsy Behav. 2020, 105, 106966. [Google Scholar] [CrossRef]
- Manford, M. Recent advances in epilepsy. J. Neurol. 2017, 264, 1811–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, A.G.; Nadebaum, C.; Anderson, V.; Reutens, D.; Barton, S.; O’Brien, T.J.; Vajda, F. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. Epilepsia 2015, 56, 1047–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiggs, K.K.; Rickert, M.E.; Sujan, A.C.; Quinn, P.D.; Larsson, H.; Lichtenstein, P. Antiseizure medication use during pregnancy and risk of ASD and ADHD in children. Neurology 2020, 95, 3232–3240. [Google Scholar] [CrossRef] [PubMed]
- Thangaratinam, S.; Marlin, N.; Newton, S.; Weckesser, A.; Bagary, M.; Greenhill, L.; Rikunenko, R.; D’Amico, M.; Rogozińska, E.; Kelso, A.; et al. AntiEpileptic drug Monitoring in PREgnancy (EMPIRE): A double-blind randomized trial on effectiveness and acceptability of monitoring strategies. Health Technol. Assess. 2018, 22, 1–152. [Google Scholar] [CrossRef] [PubMed]
- Borthen, I.; Eide, M.G.; Veiby, G.; Daltveit, A.K.; Gilhus, N.E. Complications during pregnancy in women with epilepsy: Population-based cohort study. BJOG 2009, 116, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Narayan, B.A.; Nelson-Piercy, C.B. Medical problems in pregnancy. Clin. Med. 2017, 17, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchaud, A.; Cohen, J.M.; Patomo, E.; Huybrechts, K.F.; Desai, R.J.; Gray, K.J.; Mogun, H.; Hernandez-Diaz, S.; Bateman, B.T. Anticonvulsants and the risk of perinatal bleeding complications: A pregnancy cohort study. Neurology 2018, 91, e442–e533. [Google Scholar] [CrossRef]
- Sveberg, L.; Vik, K.; Henriksen, T.; Taubøll, E. Women with epilepsy and post partum bleeding–Is there a role for vitamin K supplementation? Seizure 2015, 28, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Harden, C.L.; Pennell, P.B.; Koppel, B.S.; Hoving, C.A.; Gidal, B.; Meador, K.J.; Hopp, J.; Ting, T.Y.; Hauser, W.A.; Thurman, D.; et al. Practice parameter update: Management issues for women with epilepsy–focus on pregnancy (an evidence-based review): Vitamin K, folic acid, blood levels, and breastfeeding: Report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and American Epilepsy Society. Neurology 2009, 73, 142–149. [Google Scholar]
- MacDonald, S.C.; Bateman, B.T.; McElrath, T.F.; Hernández-Díaz, S. Mortality and morbidity during delivery hospitalization among pregnant women with epilepsy in the United States. JAMA Neurol. 2015, 72, 981–988. [Google Scholar] [CrossRef]
- Borgelt, L.M.; Hart, F.M.; Bainbridge, J.L. Epilepsy during pregnancy: Focus on management strategies. Int. J. Women Health 2016, 8, 505–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edey, S.; Moran, N.; Nashef, L. SUDEP and epilepsy–related mortality in pregnancy. Epilepsia 2014, 55, e72–e74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Katsuragi, S.; Hasegawa, J.; Tanaka, K.; Nakamura, M.; Hayata, E.; Nakata, M.; Sekizawa, A.; Ishiwata, I.; Ikeda, T. Maternal death related to sudden unexpected death in epilepsy: A nationwide survey in Japan. Brain Sci. 2021, 11, 995. [Google Scholar] [CrossRef] [PubMed]
- Veiby, G.; Bjørk, M.; Engelsen, B.A.; Gilhus, N.E. Epilepsy and recommendations for breastfeeding. Seizure 2015, 28, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, A.K.; Meador, K.J.; Karanam, A.; Brown, C.; May, R.C.; Gerard, E.E.; Gedzelman, E.R.; Penovich, P.E.; Kalayjan, L.A.; Cavitt, J.; et al. Antiepileptic drug exposure in infants of breastfeeding mothers with epilepsy. JAMA Neurol. 2020, 77, 441–450. [Google Scholar] [CrossRef]
- Janković, S.M.; Janković, S.V. Lessons learned from the discovery of sodium valproate and what has this meant to future drug discovery efforts? Expert Opin. Drug Discov. 2020, 15, 1355–1364. [Google Scholar] [CrossRef]
- Miziak, B.; Konarzewska, A.; Ułamek-Kozioł, M.; Dudra-Jastrzębska, M.; Pluta, R.; Czuczwar, S.J. Anti-epileptogenic effects of antiepileptic drugs. Int. J. Mol. Sci. 2020, 21, 2340. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Gupta, S.; Verma, I.; Morsy, M.A.; Nair, A.B.; Ahmed, A.F. Hidden pharmacological activities of valproic acid: A new insight. Biomed. Pharmacother. 2021, 142, 112021. [Google Scholar] [CrossRef]
- Piskorska, B.; Miziak, B.; Czuczwar, S.J.; Borowicz, K.K. Safety issues around misuse of antiepileptics. Expert Opin. Drug Saf. 2013, 12, 647–657. [Google Scholar] [CrossRef]
- Schneider, T.; Przewłocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: Animal model of autism. Neuropsychopharmacology 2005, 30, 80–89. [Google Scholar] [CrossRef]
- Schneider, T.; Ziòłkowska, B.; Gieryk, A.; Tyminska, A.; Przewłocki, R. Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology 2007, 193, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Roman, A.; Basta-Kaim, A.; Kubera, M.; Budziszewska, B.; Schneider, K.; Przewłocki, R. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 2008, 33, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Win-Shwe, T.-T.; Nway, N.C.; Imai, N.; Lwin, T.-T.; Mat, O.; Watanabe, H. Social behavior, neuroimmune markers and glutamic decarboxylase levels in a rat model of valproic acid-induced autism. J. Toxicol. Sci. 2018, 43, 631–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinjo, T.; Ito, M.; Seki, T.; Fukuhara, T.; Bolati, K.; Arai, H.; Suzuki, T. Prenatal exposure to valproic acid is associated with altered neurocognitive function and neurogenesis in the dentate gyrus of male offspring rats. Brain Res. 2019, 1723, 146403. [Google Scholar] [CrossRef]
- Ito, M.; Kinjo, T.; Seki, T.; Horie, J.; Suzuki, T. The long-term prognosis of hippocampal neurogenesis and behavioral changes of offspring from rats exposed to valproic acid during pregnancy. Neuropsychopharmacol. Res. 2021, 41, 260–264. [Google Scholar] [CrossRef]
- Sakade, Y.; Yamanaka, K.; Soumiya, H.; Furukawa, S.; Fukumitsu, H. Exposure to valproic acid during middle to late-stage corticogenesis induces learning and social behavioral abnormalities with attention deficit/hyperactivity in adult mice. Biomed. Res. 2019, 40, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Kawada, K.; Mimori, S.; Okuma, Y.; Nomura, Y. Involvement of endoplasmic reticulum stress and neurite outgrowth in the model mice of autism spectrum disorder. Neurochem. Int. 2018, 119, 115–119. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Q.; Yan, T.; Zhang, Y.; Xu, H.J.; Yu, H.P.; Tu, Z.; Guo, X.; Jiang, Y.H.; Li, X.J.; et al. Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl. Psychiatry 2019, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, M.M.; Deckmann, I.; Fontes-Dutra, M.; Bauer-Negrini, G.; Della-Flora Nunes, G.; Nunes, W.; Rabelo, B.; Riesgo, R.; Margis, R.; Bambini-Junior, V.; et al. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA. Food Chem. Toxicol. 2018, 115, 336–343. [Google Scholar] [CrossRef]
- Dos Santos, A.L.G.; de Leão, E.R.L.P.; de Almeida Miranda, D.; de Souza, D.N.C.; Picanço Diniz, C.W.; Diniz, D.G. BALB/c female subjected to valproic acid during gestational period exhibited greater microglial and behavioral changes than male mice: A significant contra intuitive result. Int. J. Dev. Neurosci. 2021, 81, 37–50. [Google Scholar] [CrossRef]
- Cohen, O.S.; Varlinskaya, E.I.; Wilson, C.A.; Glatt, S.J.; Mooney, S.M. Acute prenatal exposure to a moderate dose of valproic acid increases social behavior and alters gene expression in rat. Int. J. Dev. Neurosci. 2013, 31, 740–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibi, D.; Fujiki, Y.; Koide, N.; Nakasai, G.; Takaba, R.; Hiramatsu, M. Paternal valproic acid exposure in mice triggers behavioral alterations in offspring. Neurotoxicol. Teratol. 2019, 76, 106837. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Li, Z.; Li, J.; Cheng, Q.; Zheng, Q.; Zhai, C.; Kang, M.; Wei, C.; Lan, J.; Fan, J.; et al. Maternal folic acid supplementation prevents autistic behaviors in a rat model induced by prenatal exposure to valproic acid. Food Funct. 2021, 12, 4544–4555. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Pedersen, L.; Sun, Y.; Werenber Dreier, J.; Brikell, I.; Dalsgaard, S. Association of prenatal exposure to valproate and other antiepileptic drugs with risk for attention-deficit/hyperactivity disorder in offspring. JAMA Netw. Open 2019, 2, e186606. [Google Scholar] [CrossRef] [Green Version]
- Honybun, E.; Thwaites, R.; Malpas, C.B.; Rayner, G.; Anderson, A.; Graham, J.; Hitchcock, A.; O’Brien, T.J.; Vajda, F.J.E.; Perucca, P. Prenatal valproate exposure and adverse neurodevelopmental outcomes: Does sex matter? Epilepsia 2021, 62, 709–719. [Google Scholar] [CrossRef]
- Andrade, C. Valproate in pregnancy: Recent research and regulatory responses. J. Clin. Psychiatry 2018, 79, 18f12351. [Google Scholar] [CrossRef]
- Menegola, E.; Di Renzo, F.; Broccia, M.L.; Prudenziati, M.; Minucci, S.; Massa, V.; Giavini, E. Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res. B Dev. Reprod. Toxicol. 2005, 74, 392–398. [Google Scholar] [CrossRef]
- Tung, E.W.Y.; Winn, L.M. Epigenetic modifications in valproic acid-indced teratogenesis. Toxicol. Appl. Pharmacol. 2010, 248, 201–209. [Google Scholar] [CrossRef]
- Tung, E.W.Y.; Winn, L.M. Valproic acid-induced DNA damage increases embryonic p27(KIP1) and caspase-3 expression: A mechanism for valproic acid-induced neural tube defects. Reprod. Toxicol. 2011, 32, 255–260. [Google Scholar] [CrossRef]
- Sykes, P.J.; Morley, A.A.; Hooker, A.M. The PKZ1 recombination mutation assay: A sensitive assay for low dose studies. Dose Response 2006, 4, 91–105. [Google Scholar] [CrossRef]
- Lamparter, C.; Winn, L.M. Tissue-specific effects of valproic acid on DNA repair genes and apoptosis in postimplantation mouse embryos. Toxicol. Sci. 2014, 141, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.L.; Bialer, M.; Cabrera, R.M.; Finelli, R.H.; Wlodarczyk, B.J. Teratogenicity of valproic acid and its constitutional isomer, amide derivative valnoctamide in mice. Birth Defects Res. 2019, 111, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Takei, Y.; Harada, A.; Nakata, T.; Chen, J.; Hirokawa, N. Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J. Cell Biol. 2001, 155, 65–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attisano, L.; Wrana, J.L. Signal transduction by the TGF-beta superfamily. Science 2002, 296, 1646–1647. [Google Scholar] [CrossRef]
- Shen, Y.; Schlessinger, K.; Zhu, X.; Meffre, E.; Quimby, F.; Levy, D.E.; Darnell, J.E., Jr. Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation. Mol. Cell Biol. 2004, 24, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Leimeister, C.; Externbrink, A.; Klamt, B.; Gessler, M. Hey genes: A novel subfamily of hairy- and enhancer of split related genes specifically expressed during mouse embryogenesis. Mech. Dev. 2008, 85, 173–177. [Google Scholar] [CrossRef]
- Tung, E.W.Y.; Winn, L.M. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: A role for oxidative stress in valproic acid-induced neural tube effects. Mol. Pharmacol. 2011, 80, 979–987. [Google Scholar] [CrossRef]
- Paradis, F.-H.; Hales, B.F. Valproic acid induces the hyperacetylation of P53, expression of P53 target genes, and markers of the intrinsic apoptopic pathway in midorganogenesis murine limbs. Dev. Reprod. Toxicol. 2015, 104, 177–183. [Google Scholar]
- Richardson, L.; Venkataraman, S.; Stevenson, P.; Yang, Y.; Moss, J.; Graham, L.; Burton, N.; Hill, B.; Rao, J.; Baldock, R.A.; et al. EMAGE mouse embryo spatial gene expression database: 2014 update. Nucleic Acids Res. 2014, 42, D835–D844. [Google Scholar] [CrossRef] [Green Version]
- Muhsen, M.; Youngs, J.; Riu, A.; Gustafsson, J.-Å.; Kondamadugu, V.S.; Garyfalidis, E.; Bondensson, M. Folic acid supplementation rescues valproic acid-induced developmental neurotoxicity and behavioral alterations in zebrafish embryos. Epilepsia 2021, 62, 1689–1700. [Google Scholar] [CrossRef]
- Holmes, L.B.; Mittendorf, R.; Shen, A.; Smith, C.R.; Hernandez-Diaz, S. Fetal effects of anticonvulsant polytherapies: Different risks from different drug combinations. Arch. Neurol. 2011, 68, 1275–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vajda, F.J.E.; O’Brien, T.J.; Graham, J.E.; Hitchock, A.A.; Lander, C.M.; Eadie, M.J. Antiepileptic drug polytherapy in pregnant women with epilepsy. Acta Neurol. Scand. 2018, 138, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, B.; Miziak, B.; Czuczwar, P.; Wierzchowska-Cioch, E.; Pluta, R.; Czuczwar, S.J. A viewpoint on rational and irrational fixed-drug combinations. Expert Rev. Clin. Pharmacol. 2018, 11, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Kardoost, M.; Hajzadeh-Saffar, E.; Ghorbanian, M.T.; Ghezelaygh, Z.; Bagheri, K.P.; Behdani, M.; Habibi-Anbouhi, M. Genotoxicity assessment of antiepileptic drugs in human embryonic stem cells. Epilepsy Res. 2019, 158, 106232. [Google Scholar] [CrossRef]
- Borowicz, K.K.; Swiader, M.; Luszczki, J.; Czuczwar, S.J. Effect of gabapentin on the anticonvulsant activity of antiepileptic drugs against electroconvulsions in mice: An isobolographic analysis. Epilepsia 2002, 43, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Wegner, C.; Nau, H. Alteration of embryonic folate metabolism by valproic acid during organogenesis: Implications for mechanism of teratogenesis. Neurology 1992, 42 (Suppl. 5), 17–24. [Google Scholar]
- Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 2001, 276, 36734–36741. [Google Scholar] [CrossRef] [Green Version]
- Keni, R.R.; Jose, M.; Reshma, A.S.; Baishya, J.; Sarma, P.S.; Thomas, S.V. Anti-epileptic drug and folic acid usage during pregnancy, seizure and malformation outcomes: Changes over two decades in the Kerala Registry of Epilepsy and Pregnancy. Epilepsy Res. 2020, 159, 106250. [Google Scholar] [CrossRef]
- Tomson, T.; Muraca, G.; Razaz, N. Paternal exposure to antiepileptic drugs and offspring outcomes: A nationwide population-based cohort study in Sweden. J. Neurol. Neurosurg. Psychiatry 2020, 91, 907–913. [Google Scholar] [CrossRef]
Dose of an AED | EURAP Registry [10] | British Registry [33] | |
---|---|---|---|
Up to 2 Months | Up to 1 Year | Up to 6 Weeks | |
VPA | |||
600 mg/day | ND | ND | 5.0% (N = 476) |
<700 | 4.2% (N = 431) | 5.6% | ND |
>1000 | ND | ND | 10.4% (N = 297) |
≥700–1500 | 9.0% (N = 480) | 10.4% | ND |
≥1500 | 23.2% (N = 99) | 24.2% | ND |
CBZ | |||
<400 mg/day | 1.3% (N = 148) | 3.4% | ND |
0–≤500 | ND | ND | 1.9% (N = 729) |
≥400–<1000 | 3.2% (N = 1047) | 5.3% | ND |
>500–≤1000 | ND | ND | 2.7% (N = 739) |
≥1000 | 7.7% (N = 207) | 8.7% | 5.3% (N = 170) |
LTG | |||
0–≤200 mg/day | ND | ND | 2.1% (N = 1143) |
>200–≤400 | ND | ND | 2.4% (N = 665) |
<300 | 1.7% (N = 836) | 2.0% | ND |
≥300 | 3.6% (N = 444) | 4.5% | ND |
VPA Intrauterine Exposure in Rodents | Effects in Male Offspring Unless Stated Otherwise | Reference |
---|---|---|
Single i.p. injection at 600 mg/kg on gestational day 12.5 in rats | Pain susceptibility ↓ Acoustic prepulse inhibition ↓ Exploration ↓ with locomotor hyperactivity Social interactions ↓ | [71] |
The same as above | Expression of proekephalins mRNA ↓ in dorsal striatum and nucleus accumbens Anxiety ↑ Conditioned place aversion for naloxone ↓ | [72] |
The same as above | Basal corticosterone concentration ↑ Thymus weight ↓ Proliferative response of splenocytes to convacaline A ↓ Interferon gamma/interleukin 10 ratio Production of nitric oxide by peritoneal macrophages ↑ | [73] |
The same as above | mRNA expressions of genes related to social behavior ↓ (both in males and females) Hippocampal glutamic acid decarboxylase ↓ Hippocampal proinflammatory cytokines ↑ (also in females) | [74] |
VPA at 200 mg/kg i.p. daily, starting on gestational day 12.5 until birth in rats | Brain malformations in 66.6% at postnatal day 30 Locomotor activity in the open field test ↑ Time spent in open arms in the elevated plus-maze test ↑ Number of bromodeoxyuridine-positive cells ↑ in the dentate gyrus | [75] |
The same as above | No aberrant behavior at postnatal day 150 Number of bromodeoxyuridine-positive cells ↓ in the dentate gyrus | [76] |
VPA (200 mg/kg, i.p.) administered on gestational day 14 to pregnant mice | Impaired social interaction, locomotor activity ↑, learning deficits Impaired neuronal activity with neural density ↑ in the prefrontal cortex | [77] |
VPA (500 mg/kg) given on gestational day 9.5 to pregnant mice | Less exploratory activity, increased anxiety-like behavior, enhanced aggression Expression of glucose-regulated protein 94 ↑ (endoplasmic reticulum stress marker) in the cerebral cortex and hippocampus Expression of Hes1 gene ↓ (involved in inhibiting neuronal differentiation) Expression of Pax6 gene ↓ (associated with enhanced proliferation of neural stem cells) Expression of Math1 and Neurogenin genes (increasing the differentiation of neuronal lineage) ↑ in the cerebral cortex | [78] |
VPA (600 mg/kg) on gestational day 12.5 to pregnant rats | Abnormal exploratory activity, even more expressed in female offspring Volume of the molecular layer and number of microglial cells ↑ in the dentate gyrus | [81] |
VPA (350 mg/kg) on gestational day 13 to pregnant rats | Social investigation and play fighting ↑ Transcriptomic alterations in anterior amygdala, cerebellar vermix, and orbitofrontal cortex | [82] |
VPA (600 mg/kg) on gestational day 12.5 to pregnant rats | Aberrant behavior Blood concentration of miR138-p ↑ | [80] |
VPA (300 mg/kg) on gestational days 26 and 29 to pregnant cynomolgus monkeys | NeuN-positive neurons ↓ in the prefrontal cortex and cerebellum Ki67-positive proliferating neuronal precursors ↓ in cerebellar external granular layer GFAP-positive astrocytes ↑ in the prefrontal cortex | [79] |
AED Combination | North American AED Pregnancy Registry [102] | British Registry [34] (N = 367) |
---|---|---|
LTG + VPA | 9.1% (N = 55) | ND |
LTG + other AEDs | 2.9% (N = 450) | ND |
CBZ + VPA | 15.4% (N = 39) | ND |
CBZ + other AEDs | 2.5% (N = 326) | ND |
LEV + LTG | ND | 1.8% |
LEV + VPA | ND | 6.9% |
LEV + CBZ | ND | 9.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyk, B.; Miziak, B.; Pluta, R.; Czuczwar, S.J. Epilepsy in Pregnancy—Management Principles and Focus on Valproate. Int. J. Mol. Sci. 2022, 23, 1369. https://doi.org/10.3390/ijms23031369
Błaszczyk B, Miziak B, Pluta R, Czuczwar SJ. Epilepsy in Pregnancy—Management Principles and Focus on Valproate. International Journal of Molecular Sciences. 2022; 23(3):1369. https://doi.org/10.3390/ijms23031369
Chicago/Turabian StyleBłaszczyk, Barbara, Barbara Miziak, Ryszard Pluta, and Stanisław J. Czuczwar. 2022. "Epilepsy in Pregnancy—Management Principles and Focus on Valproate" International Journal of Molecular Sciences 23, no. 3: 1369. https://doi.org/10.3390/ijms23031369
APA StyleBłaszczyk, B., Miziak, B., Pluta, R., & Czuczwar, S. J. (2022). Epilepsy in Pregnancy—Management Principles and Focus on Valproate. International Journal of Molecular Sciences, 23(3), 1369. https://doi.org/10.3390/ijms23031369