Kinome-Wide Profiling Identifies Human WNK3 as a Target of Cajanin Stilbene Acid from Cajanus cajan (L.) Millsp.
Abstract
:1. Introduction
2. Results
2.1. Kinase Activity Profiling
2.2. Molecular Docking Studies
2.3. Drug Resistance Profiling
2.4. Survival Analysis
3. Discussion
4. Materials and Methods
4.1. Kinase Activity Profiling
4.2. Molecular Docking
4.3. Microarray-Based mRNA Expression of Kinases in 60 NCI Tumor Cell Lines
4.4. Kaplan–Meier Survival Analysis of Kinase mRNA Expression in Human Tumors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wijk, L.M.; Snel, B. The first eukaryotic kinome tree illuminates the dynamic history of present-day kinases. bioRxiv 2020. [Google Scholar] [CrossRef]
- Manning, G.; Plowman, G.D.; Hunter, T.; Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 2002, 27, 514–520. [Google Scholar] [CrossRef]
- Black, A.; Black, J. Protein kinase C signaling and cell cycle regulation. Review. Front. Immunol. 2013, 3, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shchemelinin, I.; Sefc, L.; Necas, E. Protein kinases, their function and implication in cancer and other diseases. Folia Biol. 2006, 52, 81–100. [Google Scholar]
- Suvarna, G.K.; Vikas, G.; Sharada, P.; Revathi, R.; Muhammad, M. Protein kinases as drug targets in human and animal diseases. Curr. Enzyme Inhib. 2017, 13, 99–106. [Google Scholar] [CrossRef]
- Rozengurt, E. Protein kinase D signaling: Multiple biological functions in health and disease. Physiology 2011, 26, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, S.J.; Rosas-Hernandez, H.; Cuevas, E.; Lantz, S.M.; Barger, S.W.; Sarkar, S.; Paule, M.G.; Ali, S.F.; Imam, S.Z. Protein kinases and Parkinson’s disease. Int. J. Mol. Sci. 2016, 17, 1585. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Raina, A.K.; Rottkamp, C.A.; Aliev, G.; Perry, G.; Boux, H.; Smith, M.A. Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J. Neurochem. 2001, 76, 435–441. [Google Scholar] [CrossRef]
- Tain, Y.-L.; Hsu, C.-N. AMP-activated protein kinase as a reprogramming strategy for hypertension and kidney disease of developmental origin. Int. J. Mol. Sci. 2018, 19, 1744. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, A.N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005, 309, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perner, F.; Perner, C.; Ernst, T.; Heidel, F.H. Roles of JAK2 in aging, inflammation, hematopoiesis and malignant transformation. Cells 2019, 8, 854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminska, B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 2005, 1754, 253–262. [Google Scholar] [CrossRef]
- Yi, Y.S.; Son, Y.J.; Ryou, C.; Sung, G.H.; Kim, J.H.; Cho, J.Y. Functional roles of Syk in macrophage-mediated inflammatory responses. Mediat. Inflamm. 2014, 2014, 270302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikitake, Y.; Liao, J.K. ROCKs as therapeutic targets in cardiovascular diseases. Expert Rev. Cardiovasc. Ther. 2005, 3, 441–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Wang, Y.; Tan, S.; Rao, Q.; Zhu, T.; Huang, G.; Li, Z.; Liu, G. Overexpression of epidermal growth factor receptor (EGFR) and HER-2 in bladder carcinoma and its association with patients’ clinical features. Med. Sci. Monit. 2018, 24, 7178–7185. [Google Scholar] [CrossRef]
- Gonzalez-Conchas, G.A.; Rodriguez-Romo, L.; Hernandez-Barajas, D.; Gonzalez-Guerrero, J.F.; Rodriguez-Fernandez, I.A.; Verdines-Perez, A.; Templeton, A.J.; Ocana, A.; Seruga, B.; Tannock, I.F.; et al. Epidermal growth factor receptor overexpression and outcomes in early breast cancer: A systematic review and a meta-analysis. Cancer Treat. Rev. 2018, 62, 1–8. [Google Scholar] [CrossRef]
- Cohen, R.B. Epidermal growth factor receptor as a therapeutic target in colorectal cancer. Clin. Colorectal Cancer 2003, 2, 246–251. [Google Scholar] [CrossRef]
- Zhang, T.; Wan, B.; Zhao, Y.; Li, C.; Liu, H.; Lv, T.; Zhan, P.; Song, Y. Treatment of uncommon EGFR mutations in non-small cell lung cancer: New evidence and treatment. Transl. Lung Cancer Res. 2019, 8, 302–316. [Google Scholar] [CrossRef]
- Khan, S.A.; Zeng, Z.; Shia, J.; Paty, P.B. EGFR gene amplification and KRAS mutation predict response to combination targeted therapy in metastatic colorectal cancer. Pathol. Oncol. Res. 2017, 23, 673–677. [Google Scholar] [CrossRef]
- Oliveira-Cunha, M.; Newman, W.G.; Siriwardena, A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers 2011, 3, 1513–1526. [Google Scholar] [CrossRef] [PubMed]
- Arboleda, M.J.; Lyons, J.F.; Kabbinavar, F.F.; Bray, M.R.; Snow, B.E.; Ayala, R.; Danino, M.; Karlan, B.Y.; Slamon, D.J. Overexpression of AKT2/protein kinase Bβ leads to up-regulation of β1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 2003, 63, 196–206. [Google Scholar] [PubMed]
- Banno, E.; Togashi, Y.; de Velasco, M.A.; Mizukami, T.; Nakamura, Y.; Terashima, M.; Sakai, K.; Fujita, Y.; Kamata, K.; Kitano, M.; et al. Clinical significance of Akt2 in advanced pancreatic cancer treated with erlotinib. Int. J. Oncol. 2017, 50, 2049–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konecny, G.E. Emerging strategies for the dual inhibition of HER2-positive breast cancer. Curr. Opin. Obstet. Gynecol. 2013, 25, 55–65. [Google Scholar] [CrossRef]
- Gerson, J.N.; Skariah, S.; Denlinger, C.S.; Astsaturov, I. Perspectives of HER2-targeting in gastric and esophageal cancer. Expert Opin. Investig. Drugs 2017, 26, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Xu, X.; Ye, M.; Sheng, B.; Zhu, X. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS ONE 2018, 13, e0191972. [Google Scholar] [CrossRef] [Green Version]
- Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 2015, 5, a006098. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Mol. Biol. Rep. 2020, 47, 4587–4629. [Google Scholar] [CrossRef]
- Samatar, A.A.; Poulikakos, P.I. Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov. 2014, 13, 928–942. [Google Scholar] [CrossRef]
- Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol. Res. 2020, 152, 104609. [Google Scholar] [CrossRef]
- Carles, F.; Bourg, S.; Meyer, C.; Bonnet, P. PKIDB: A curated, annotated and updated database of protein kinase inhibitors in clinical trials. Molecules 2018, 23, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, P.M. Approved and experimental small-molecule oncology kinase inhibitor drugs: A mid-2016 overview. Med. Res. Rev. 2017, 37, 314–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Xu, Z.; Yan, H.; He, Q.; Yang, X.; Luo, P. A comprehensive review of clinical cardiotoxicity incidence of FDA-approved small-molecule kinase inhibitors. Review. Front. Pharmacol. 2020, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Kannaiyan, R.; Mahadevan, D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer. 2018, 18, 1249–1270. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Yin, B.; Fang, D.-M.; Zhou, X.-L.; Gao, F. Natural products as important tyrosine kinase inhibitors. Eur. J. Med. Chem. 2019, 182, 111664. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Waller, D.L.; Wang, J.; Liu, Q. Natural products as kinase inhibitors. Nat. Prod. Rep. 2012, 29, 392–403. [Google Scholar] [CrossRef]
- Efferth, T.; Koch, E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr. Drug Targets 2011, 12, 122–132. [Google Scholar] [CrossRef]
- Fu, Y.; Kadioglu, O.; Wiench, B.; Wei, Z.; Gao, C.; Luo, M.; Gu, C.; Zu, Y.; Efferth, T. Cell cycle arrest and induction of apoptosis by cajanin stilbene acid from Cajanus cajan in breast cancer cells. Phytomedicine 2015, 22, 462–468. [Google Scholar] [CrossRef]
- Fu, Y.; Kadioglu, O.; Wiench, B.; Wei, Z.; Wang, W.; Luo, M.; Yang, X.; Gu, C.; Zu, Y.; Efferth, T. Activity of the antiestrogenic cajanin stilbene acid towards breast cancer. J. Nutr. Biochem. 2015, 26, 1273–1282. [Google Scholar] [CrossRef]
- Kadioglu, O.; Fu, Y.; Wiench, B.; Zu, Y.; Efferth, T. Synthetic cajanin stilbene acid derivatives inhibit c-MYC in breast cancer cells. Arch. Toxicol. 2016, 90, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Pinkas, D.M.; Bufton, J.C.; Kupinska, K.; Wang, D.; Fairhead, M.; Kopec, J.; Sethi, R.; Dixon-Clarke, S.E.; Chalk, R.; Berridge, G.; et al. 5o2b-Crystal Structure of WNK3 Kinase Domain in a Diphosphorylated State and in a Complex with the Inhibitor PP-121. RCSB PDB Protein Databank. Available online: https://www.rcsb.org/structure/5O2B (accessed on 26 January 2021).
- Huang, M.Y.; Lin, J.; Lu, K.; Xu, H.G.; Geng, Z.Z.; Sun, P.H.; Chen, W.M. Anti-inflammatory effects of cajaninstilbene acid and its derivatives. J. Agric. Food Chem. 2016, 64, 2893–2900. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Luo, M.; Fu, Y.; Zu, Y.; Wang, W.; Gu, C.; Zhao, C.; Li, C.; Efferth, T. Cajaninstilbene acid (CSA) exerts cytoprotective effects against oxidative stress through the Nrf2-dependent antioxidant pathway. Toxicol. Lett. 2013, 219, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Kong, Y.; Fu, Y.; Zu, Y.; Yang, Z.; Yang, M.; Peng, X.; Efferth, T. In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea [Cajanus cajan (L.) Millsp.] leaves. J. Agric. Food Chem. 2011, 59, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.S.; Tao, X.; Liu, X.M.; Zhou, Y.F.; Zhang, M.D.; Liao, Y.H.; Pan, R.L.; Chang, Q. Cajaninstilbene acid ameliorates cognitive impairment induced by intrahippocampal injection of amyloid-β1-42 oligomers. Front. Pharmacol. 2019, 10, 1084. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, C.I.; Aloni, R.; Saeed, M.E.M.; Ullrich, W.; Efferth, T. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. Phytomedicine 2019, 64, 153081. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.R.; Jänne, P.A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 2013, 19, 1389–1400. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.J.; Riely, G.J.; Shaw, A.T. Targeting ALK: Precision medicine takes on drug resistance. Cancer Discov. 2017, 7, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 36. [Google Scholar] [CrossRef]
- Álvarez-Fernández, M.; Malumbres, M. Mechanisms of sensitivity and resistance to CDK4/6 inhibition. Cancer Cell 2020, 37, 514–529. [Google Scholar] [CrossRef]
- Pitot, H.C. The molecular biology of carcinogenesis. Cancer 1993, 72 (Suppl. S3), 962–970. [Google Scholar] [CrossRef]
- Spandidos, D.A.; Liloglou, T.; Field, J.K. Prognostic significance of oncogenes and tumor suppressor genes in human malignancy. Stem Cells 1993, 11, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Isakov, N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin. Cancer Biol. 2018, 48, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 2017, 8, 8921–8946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, G.E.; Efferth, T. Broad-spectrum cross-resistance to anticancer drugs mediated by epidermal growth factor receptor. Anticancer Res. 2019, 39, 3585–3593. [Google Scholar] [CrossRef]
- Yan, G.; Saeed, M.E.M.; Foersch, S.; Schneider, J.; Roth, W.; Efferth, T. Relationship between EGFR expression and subcellular localization with cancer development and clinical outcome. Oncotarget 2019, 10, 1918–1931. [Google Scholar] [CrossRef]
- Tomicic, M.T.; Dawood, M.; Efferth, T. Epigenetic alterations upstream and downstream of p53 signaling in colorectal carcinoma. Cancers 2021, 13, 4072. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: Path and progression to significance. Int. J. Mol. Sci. 2018, 19, 2871. [Google Scholar] [CrossRef] [Green Version]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: Highly generalizable and beyond laboratory. Trends Plant Sci. 2020, 25, 1076–1086. [Google Scholar] [CrossRef]
- Shore, D.E.; Ruvkun, G. A cytoprotective perspective on longevity regulation. Trends Cell Biol. 2013, 23, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, E.J. Hormesis mediates acquired resilience: Using plant-derived chemicals to enhance health. Annu. Rev. Food Sci. Technol. 2021, 12, 355–381. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J. Cancer biology and hormesis: Human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit. Rev. Toxicol. 2005, 35, 463–582. [Google Scholar] [CrossRef] [PubMed]
- Bhakta-Guha, D.; Efferth, T. Hormesis: Decoding two sides of the same coin. Pharmaceuticals 2015, 8, 865–883. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, W.E. The dose makes the medicine. Drug Discov. Today 2006, 11, 550–555. [Google Scholar] [CrossRef]
- Wiench, B.; Chen, Y.R.; Paulsen, M.; Hamm, R.; Schröder, S.; Yang, N.S.; Efferth, T. Integration of different “-omics” technologies identifies inhibition of the IGF1R-Akt-mTOR signaling cascade involved in the cytotoxic effect of shikonin against leukemia cells. Evid.-Based Complementary Altern. Med. 2013, 2013, 818709. [Google Scholar] [CrossRef]
- Wong, V.K.W.; Zeng, W.; Chen, J.; Yao, X.J.; Leung, E.L.H.; Wang, Q.Q.; Chiu, P.; Ko, B.C.B.; Law, B.Y.K. Tetrandrine, an activator of autophagy, induces autophagic cell death via PKC-α inhibition and mTOR-dependent mechanisms. Front. Pharmacol. 2017, 8, 351. [Google Scholar] [CrossRef] [Green Version]
- PubChem. Bethesda (MD): National Library of Medicine (US). Available online: https://www.nlm.nih.gov (accessed on 26 August 2021).
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Zeino, M.; Saeed, M.E.; Kadioglu, O.; Efferth, T. The ability of molecular docking to unravel the controversy and challenges related to P-glycoprotein—A well-known, yet poorly understood drug transporter. Investig. New Drugs 2014, 32, 618–625. [Google Scholar] [CrossRef]
- Scherf, U.; Ross, D.T.; Waltham, M.; Smith, L.H.; Lee, J.K.; Tanabe, L.; Kohn, K.W.; Reinhold, W.C.; Myers, T.G.; Andrews, D.T.; et al. A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 2000, 24, 236–244. [Google Scholar] [CrossRef]
- Staunton, J.E.; Slonim, D.K.; Coller, H.A.; Tamayo, P.; Angelo, M.J.; Park, J.; Scherf, U.; Lee, J.K.; Reinhold, W.O.; Weinstein, J.N.; et al. Chemosensitivity prediction by transcriptional profiling. Proc. Natl. Acad. Sci. USA 2001, 98, 10787–10792. [Google Scholar] [CrossRef] [Green Version]
- Amundson, S.A.; Do, K.T.; Vinikoor, L.C.; Lee, R.A.; Koch-Paiz, C.A.; Ahn, J.; Reimers, M.; Chen, Y.; Scudiero, D.A.; Weinstein, J.N.; et al. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer Res. 2008, 68, 415–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadioglu, O.; Saeed, M.E.M.; Munder, M.; Spuller, A.; Greten, H.J.; Efferth, T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed. Pharmacother. 2020, 131, 110718. [Google Scholar] [CrossRef] [PubMed]
- Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 1966, 50, 163–170. [Google Scholar] [PubMed]
- Dinse, G.E.; Lagakos, S.W. Nonparametric estimation of lifetime and disease onset distributions from incomplete observations. Biometrics 1982, 38, 921–932. [Google Scholar] [CrossRef] [PubMed]
Compound | Effect | Target | Lowest Binding Energy (LBE, kcal/mol) | Mean Binding Energy (MBE, kcal/mol) | Predicted Inhibition Constant (pKi, µM) |
---|---|---|---|---|---|
Defined docking: | |||||
PP-121 (control) | Inhibition | WNK3 | −9.42 ± <0.01 | −9.39 ± <0.01 | 0.124 ± 0.14 |
CSA | Inhibition | WNK3 | −9.65 ± 0.02 | −8.84 ± 0.04 | 0.084 ± 0.002 |
Blind docking: | |||||
PP-121 (control) | Inhibition | WNK3 | −7.29 ± 0.13 | −6.98 ± 0.22 | 4.60 ± 1.02 |
CSA | Inhibition | WNK3 | −7.83 ± 0.05 | −6.93 ± 0.29 | 1.81 ± 0.15 |
CSA | Inhibition | EIF2AK2 | −6.79 ± 0.01 | −6.41 ± 0.13 | 10.43 ± 0.13 |
CSA | Inhibition | p38γ | −6.18 ± 0.17 | −5.61 ± 0.20 | 30.38 ± 8.82 |
CSA | Inhibition | RPS6KA3 | −6.17 ± 0.09 | −5.74 ± 0.12 | 30.05 ± 4.10 |
CSA | Inhibition | PAK1 | −5.82 ± 0.07 | −5.60 ± 0.27 | 53.66 ± 6.44 |
CSA | Stimulation | PRKCB | −6.47 ± 0.28 | −6.17 ± 0.27 | 19.53 ± 8.97 |
CSA | Stimulation | LYN | −6.10 ± 0.05 | −5.53 ± 0.28 | 34.15 ± 2.79 |
CSA | Stimulation | GRK2 | −6.07 ± 0.07 | −5.56 ± 0.22 | 35.68 ± 4.19 |
CSA | Stimulation | TSF1 | −5.75 ± 0.01 | −5.16 ± 0.03 | 61.28 ± 0.81 |
CSA | Stimulation | EPHA5 | −5.33 ± 0.15 | −4.80 ± 0.04 | 127.29 ± 32.74 |
Compound | Method | No. of Amino Acids | Amino Acids Involved in Binding | No. of Shared Amino Acids |
---|---|---|---|---|
PP-121 | Co-crystallization | 11 | Lys159, Val161, Ala174, Leu225, Thr227, Glu228, Leu229, Met230, Phe282, Asp294, and Leu297 | |
PP-121 | Defined docking | 10 | Gly156, Lys159, Val161, Val207, Thr227, Glu228, Met230, Phe282, Gly293, and Asp294 | 8 (PP-121 co-crystalization vs. PP-121 docking) |
CSA | Defined docking | 15 | Lys 159, Val161, Cys176, Ile206, Val207, Phe209, Thr227, Glu228, Leu229, Met230, Phe282, Gly293, Asp294, Leu295, and Leu297 | 9 (PP-121 co-crystalization vs. CSA docking), 9 (PP-121 docking vs. CSA docking) |
Gene | Drug | Microarray 1 | Microarray 2 | |
---|---|---|---|---|
WNK3 | 5-Fluorouracil | Pattern ID | GC86671 | GC178208 |
r-Value | 0.32301 | 0.34587 | ||
p-Value | 0.00591 | 0.00339 | ||
Tamoxifen | Pattern ID | GC86671 | GC178208 | |
r-Value | 0.30004 | 0.36186 | ||
p-Value | 0.01047 | 0.00243 | ||
Crizotinib | Pattern ID | GC44489 | GC178208 | |
r-Value | 0.33139 | 0.34646 | ||
p-Value | 0.00517 | 0.00359 | ||
RPS6KA3 | Fulvestrant | Pattern ID | GC96136 | GC177750 |
r-Value | 0.30735 | 0.35198 | ||
p-Value | 0.00946 | 0.00336 | ||
Everolimus | Pattern ID | GC96137 | GC211674 | |
r-Value | 0.31989 | 0.30472 | ||
p-Value | 0.00675 | 0.00947 | ||
Temsirolimus | Pattern ID | GC36220 | GC233962 | |
r-Value | 0.37459 | 0.22470 | ||
p-Value | 0.00204 | 0.04496 | ||
PAK1 | Doxorubicin | Pattern ID | GC211478 | GC33567 |
r-Value | 0.35408 | 0.35215 | ||
p-Value | 0.00319 | 0.00311 | ||
Epirubicin | Pattern ID | GC211478 | GC33567 | |
r-Value | 0.38281 | 0.38511 | ||
p-Value | 0.00150 | 0.00129 | ||
Mitoxantrone | Pattern ID | GC211478 | 112634 | |
r-Value | 0.32416 | 0.33716 | ||
p-Value | 0.00652 | 0.00482 | ||
Bleomycin | Pattern ID | GC211478 | 112634 | |
r-Value | 0.31395 | 0.30689 | ||
p-Value | 0.00819 | 0.00955 | ||
Anastrozol | Pattern ID | GC70856 | GC96507 | |
r-Value | 0.37190 | 0.31179 | ||
p-Value | 0.00425 | 0.01459 | ||
Temsirolimus | Pattern ID | GC85014 | 166874 | |
r-Value | 0.39783 | 0.37298 | ||
p-Value | 0.00099 | 0.00196 | ||
Sirolimus | Pattern ID | GC85014 | GC191365 | |
r-Value | 0.33352 | 0.39398 | ||
p-Value | 0.00491 | 0.0010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özenver, N.; Kadioglu, O.; Fu, Y.; Efferth, T. Kinome-Wide Profiling Identifies Human WNK3 as a Target of Cajanin Stilbene Acid from Cajanus cajan (L.) Millsp. Int. J. Mol. Sci. 2022, 23, 1506. https://doi.org/10.3390/ijms23031506
Özenver N, Kadioglu O, Fu Y, Efferth T. Kinome-Wide Profiling Identifies Human WNK3 as a Target of Cajanin Stilbene Acid from Cajanus cajan (L.) Millsp. International Journal of Molecular Sciences. 2022; 23(3):1506. https://doi.org/10.3390/ijms23031506
Chicago/Turabian StyleÖzenver, Nadire, Onat Kadioglu, Yujie Fu, and Thomas Efferth. 2022. "Kinome-Wide Profiling Identifies Human WNK3 as a Target of Cajanin Stilbene Acid from Cajanus cajan (L.) Millsp." International Journal of Molecular Sciences 23, no. 3: 1506. https://doi.org/10.3390/ijms23031506
APA StyleÖzenver, N., Kadioglu, O., Fu, Y., & Efferth, T. (2022). Kinome-Wide Profiling Identifies Human WNK3 as a Target of Cajanin Stilbene Acid from Cajanus cajan (L.) Millsp. International Journal of Molecular Sciences, 23(3), 1506. https://doi.org/10.3390/ijms23031506