Multiplex Analysis to Unravel the Mode of Antifungal Activity of the Plant Defensin HsAFP1 in Single Yeast Cells
Abstract
:1. Introduction
2. Results
2.1. Validation of the Continuous Microfluidic Platform and of Multiplexing Fluorescent Dyes
2.2. Interdependency of Cellular Events in Single Yeast Cells upon Treatment with Different HsAFP1 Concentrations
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.1.1. Materials for Microfluidic Chip Fabrication
4.1.2. Strains and Materials for Culturing and Staining Yeast Cells
4.2. Fabrication of Microfluidic Chips with Microwell Arrays
4.3. Preparation of Yeast Cells
4.4. Membrane Permeabilization Evaluated by Flow Cytometry
4.5. ROS Induction and Membrane Permeabilization Evaluated by the Continuous Microfluidic Platform
4.6. Image Processing and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Levy, S.F.; Ziv, N. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol. 2012, 10, e1001325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellweger, F.L.; Fredrick, N.D. Age-correlated stress resistance improves fitness of yeast: Support from agent-based simulations. BMC Syst. Biol. 2014, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; François, J.M. Use of noise in gene expression as an experimental parameter to test phenotypic effects. Yeast 2016, 33, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Giardina, D.M. Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors. PLoS Genet. 2018, 14, e1007744. [Google Scholar] [CrossRef] [PubMed]
- Sumner, E.R.; Avery, A.M. Cell cycle- and age-dependent activation of Sod1p drives the formation of stress resistant cell subpopulations within clonal yeast cultures. Mol. Microbiol. 2003, 50, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.T.; Vriens, K. Digital microfluidics for time-resolved cytotoxicity studies on single non-adherent yeast cells. Lab. Chip. 2015, 15, 1852–1860. [Google Scholar] [CrossRef] [Green Version]
- Vriens, K.; Kumar, P.T. Increasing the fungicidal action of amphotericin B by inhibiting the nitric oxide-dependent tolerance pathway. Oxid. Med. Cell. Longev. 2017, 2017, 4064628. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Zhang, W. Single-cell isolation and analysis. Front. Cell. Dev. Biol. 2016, 4, 135–182. [Google Scholar] [CrossRef] [Green Version]
- Chin, V.I.; Taupin, P. Microfabricated platform for studying stem cell fates. Biotechnol. Bioeng. 2004, 88, 399–415. [Google Scholar] [CrossRef]
- Lindström, S.; Andersson-Svahn, H. Miniaturization of biological assays—Overview on microwell devices for single-cell analyses. Biochim. Biophys. Acta 2011, 1810, 308–316. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Nakahara, A.; Shimura, N. Single cell real time secretion assay using amorphous fluoropolymer microwell array. In Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 755–758. [Google Scholar]
- Breukers, J.; Horta, S. Tuning the surface interactions between single cells and an OSTE+ microwell array for enhanced single cell manipulation. ACS Appl. Mater. Interfaces 2021, 13, 2316–2326. [Google Scholar] [CrossRef] [PubMed]
- Osborn, R.W.; De Samblanx, G.W. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett. 1995, 368, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Thevissen, K.; Kristensen, H.H. Therapeutic potential of antifungal plant and insect defensins. Drug. Discov. Today 2007, 12, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Cools, T.L.; Struyfs, C. A linear 19-Mer plant defensin-derived peptide acts synergistically with caspofungin against Candida albicans biofilms. Front. Microbiol. 2017, 8, 2051. [Google Scholar] [CrossRef]
- Cools, T.L.; Vriens, K. The antifungal plant defensin HsAFP1 is a phosphatidic acid-interacting peptide inducing membrane permeabilization. Front. Microbiol. 2017, 8, 2295. [Google Scholar] [CrossRef] [Green Version]
- Struyfs, C.; Cools, T.L. The antifungal plant defensin HsAFP1 induces autophagy, vacuolar dysfunction and cell cycle impairment in yeast. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183255. [Google Scholar] [CrossRef]
- Aerts, A.M.; Bammens, L. The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front. Microbiol. 2011, 2, 47. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.; Fernandes, E. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef]
- Haase, S.B.; Reed, S.I. Improved flow cytometric analysis of the budding yeast cell cycle. Cell Cycle 2002, 1, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Struyfs, C.; Cammue, B.P.A. Membrane-interacting antifungal peptides. Front. Cell. Dev. Biol. 2021, 9, 649875. [Google Scholar] [CrossRef]
- Galgóczy, L.; Yap, A. Cysteine-rich antifungal proteins from filamentous fungi are promising bioactive natural compounds in anti-Candida therapy. Isr. J. Chem. 2019, 59, 360–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, P.M.; Gonçalves, S. Defensins: Antifungal lessons from eukaryotes. Front. Microbiol. 2014, 5, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aerts, A.M.; François, I.E.J.A. The mode of antifungal action of plant, insect and human defensins. Cell. Mol. Life Sci. 2008, 65, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.; Hwang, J.S. Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin. Biochem. Biophys. Res. Commun. 2011, 408, 89–93. [Google Scholar] [CrossRef]
- Varela, E.; Rey, J. How does the microbial load affect the quality of equine cool-stored semen? Theriogenology 2018, 114, 212–220. [Google Scholar] [CrossRef]
- Decrop, D.; Pardon, G. Single-step imprinting of femtoliter microwell arrays allows digital bioassays with attomolar limit of detection. ACS Appl. Mater. Interfaces 2017, 9, 10418–10426. [Google Scholar] [CrossRef]
- Vriens, K.; Cools, T.L. Synergistic activity of the plant defensin HsAFP1 and caspofungin against Candida albicans biofilms and planktonic cultures. PLoS ONE 2015, 10, e0132701. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Struyfs, C.; Breukers, J.; Spasic, D.; Lammertyn, J.; Cammue, B.P.A.; Thevissen, K. Multiplex Analysis to Unravel the Mode of Antifungal Activity of the Plant Defensin HsAFP1 in Single Yeast Cells. Int. J. Mol. Sci. 2022, 23, 1515. https://doi.org/10.3390/ijms23031515
Struyfs C, Breukers J, Spasic D, Lammertyn J, Cammue BPA, Thevissen K. Multiplex Analysis to Unravel the Mode of Antifungal Activity of the Plant Defensin HsAFP1 in Single Yeast Cells. International Journal of Molecular Sciences. 2022; 23(3):1515. https://doi.org/10.3390/ijms23031515
Chicago/Turabian StyleStruyfs, Caroline, Jolien Breukers, Dragana Spasic, Jeroen Lammertyn, Bruno P. A. Cammue, and Karin Thevissen. 2022. "Multiplex Analysis to Unravel the Mode of Antifungal Activity of the Plant Defensin HsAFP1 in Single Yeast Cells" International Journal of Molecular Sciences 23, no. 3: 1515. https://doi.org/10.3390/ijms23031515
APA StyleStruyfs, C., Breukers, J., Spasic, D., Lammertyn, J., Cammue, B. P. A., & Thevissen, K. (2022). Multiplex Analysis to Unravel the Mode of Antifungal Activity of the Plant Defensin HsAFP1 in Single Yeast Cells. International Journal of Molecular Sciences, 23(3), 1515. https://doi.org/10.3390/ijms23031515