Whole-Genome Sequencing and RNA-Seq Reveal Differences in Genetic Mechanism for Flowering Response between Weedy Rice and Cultivated Rice
Abstract
:1. Introduction
2. Results
2.1. Whole-Genome Sequence Analyses of PSRR-1
2.2. Unique SNPs and InDels in PSRR-1 through Comparison with 3K-Rice Genome Data Set
2.3. Unmapped Sequence of PSRR-1
2.4. Transcriptome Analysis of PSRR-1 and Cypress under Short and Long-Day Conditions
2.5. Gene Ontology (GO) and Pathway Analysis of DEGs under SD and LD Conditions
2.6. DEGs and Variants in Flowering Genes and Flowering-Related Pathway
2.7. Differentially Expressed Flowering-Related Genes Overlapping DTH QTLs
2.8. Alternative Splicing Events of Flowering Genes under Short- and Long-Day Conditions
2.9. qRT-PCR Validation of Flowering Genes
3. Discussions
4. Materials and Methods
4.1. Plant Materials and Cultivation
4.2. Whole-Genome Sequencing and Analyses
4.3. De Novo Assembly and Analyses of Unmapped Sequences
4.4. Comparison SNPs and InDels with 3K Rice Genome
4.5. Agronomic Trait-Related Variants
4.6. Flowering Genes and Its Gene Signaling Network
4.7. RNA-Sequencing
4.8. Co-localization of Flowering-Related DEGs in Heading/Flowering Date QTLs
4.9. Alternative Splicing of Flowering-Related DEGs
4.10. Validation of Gene Expression via qRT-PCR
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delouche, J.C.; Labrada, R.; Burgos, N.R.; Gealy, D.R. Weedy rices: Origin, biology, ecology and control. In FAO Plant Production and Protection Paper 188; FAO: Rome, Italy, 2007; 144p. [Google Scholar]
- Vaughan, D.A.; Lu, B.R.; Tomooka, N. Was Asian rice (Oryza sativa) domesticated more than once? Rice 2008, 1, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Zhu, J.; Fu, F.; Ye, C.; Wang, W.; Mao, L.; Lin, X.; Chen, L.; Zhang, H.; Guo, L.; et al. Genome re-sequencing suggested a weedy rice origin from domesticated indica-japonica hybridization: A case study from southern China. Planta 2014, 240, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Kim, K.W.; Park, Y.J. Population genomics identifies the origin and signatures of selection of Korean weedy rice. Plant Biotechnol. J. 2017, 15, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; He, Q.; Park, Y.J. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice. Sci. Rep. 2017, 7, 43327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.L.; Li, Y.L.; Jia, Y.; Caicedo, A.L.; Olsen, K.M. Signatures of adaption in weedy rice genome. Nat. Genet. 2017, 49, 5811–5816. [Google Scholar] [CrossRef]
- Qiu, J.; Zhou, Y.; Mao, L.; Ye, C.; Wang, W.; Zhang, J.; Yu, Y.; Fu, F.; Wang, Y.; Qian, F.; et al. Genomic variations associated with local adaptation of weedy rice during de-domestication. Nat. Commun. 2017, 8, 15323. [Google Scholar] [CrossRef]
- Sun, J.; Ma, D.; Tang, L.; Zhao, M.; Zhang, G.; Wang, W.; Song, J.; Li, X.; Liu, Z.; Zhang, W.; et al. Population genomic analysis and de novo assembly reveal the origin of weedy rice as an evolutionary game. Mol. Plant 2019, 12, 632–647. [Google Scholar] [CrossRef] [Green Version]
- Londo, J.P.; Schaal, B.A. Origins and population genetics of weedy red rice in the USA. Mol. Ecol. 2007, 16, 4523–4535. [Google Scholar] [CrossRef]
- Shivrain, V.K.; Burgos, N.R.; Scott, R.C.; Gbur, E.E.; Estorninos, L.E.; McClelland, M.R. Diversity of weedy red rice (Oryza sativa L.) in Arkansas, USA in relation to weed management. Crop Prot. 2010, 29, 721–730. [Google Scholar] [CrossRef]
- Islam, S.; Coronejo, S.; Subudhi, P.K. Whole-genome sequencing reveals uniqueness of black-hulled and straw-hulled weedy rice genomes. Theor. Appl. Genet. 2020, 133, 2461–2475. [Google Scholar] [CrossRef]
- Subudhi, P.K.; Parco, A.; Singh, P.K.; De Leon, T.; Karan, R.; Biradar, H.; Cohn, M.A.; Brar, D.S.; Sasaki, T. Genetic architecture of seed dormancy in US weedy rice in different genetic backgrounds. Crop Sci. 2012, 52, 2564–2575. [Google Scholar] [CrossRef]
- Subudhi, P.K.; Singh, P.K.; De Leon, T.; Parco, A.; Karan, R.; Biradar, H.; Cohn, M.A.; Sasaki, T. Mapping of seed shattering loci provides insights into origin of weedy rice and rice domestication. J. Hered. 2014, 105, 276–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Xu, W.; Song, X.; Dai, W.; Dai, L.; Zhang, Z.; Qiang, S. Early flowering and rapid grain filling determine early maturity and escape from harvesting in weedy rice. Pest Manag. Sci. 2017, 74, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Yano, M.; Katayose, Y.; Ashikari, M.; Yamanouchi, U.; Monna, L.; Fuse, T.; Baba, T.; Yamamoto, K.; Umehara, Y.; Nagamura, Y.; et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 2000, 12, 2473–2483. [Google Scholar] [CrossRef] [Green Version]
- Komiya, R.; Ikegami, A.; Tamaki, S.; Yokoi, S.; Shimamoto, K. Hd3a and RFT1 are essential for flowering in rice. Development 2008, 135, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhu, S.; Cui, S.; Hou, H.; Wu, H.; Hao, B.; Cai, L.; Xu, Z.; Liu, L.; Jiang, L.; et al. Transcriptional and post-transcriptional regulation of heading date in rice. New Phytol. 2020, 230, 943–956. [Google Scholar] [CrossRef]
- Cockram, J.; Jones, H.; Leigh, F.J.; O’Sullivan, D.; Powell, W.; Laurie, D.A.; Greenland, A.J. Control of flowering time in temperate cereals: Genes, domestication, and sustainable productivity. J. Exp. Bot. 2007, 58, 1231–1244. [Google Scholar] [CrossRef]
- Hayama, R.; Coupland, G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 2004, 135, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, K.; Hori, K.; Tanaka-Ogiso, E.; Yano, M. Cloning of quantitative trait genes from rice reveal conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice. Front. Plant Sci. 2014, 5, 193. [Google Scholar] [CrossRef] [Green Version]
- Fowler, S.; Lee, K.; Onouchi, H.; Samach, A.; Richardson, K.; Morris, B.; Coupland, G.; Putterill, J. GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 1999, 18, 4679–4688. [Google Scholar] [CrossRef] [Green Version]
- Hayama, R.; Yokoi, S.; Tamaki, S.; Yano, M.; Shimamoto, K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 2003, 422, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Izawa, T.; Fuse, T.; Yamanouchi, U.; Kubo, T.; Shimatani, Z.; Yano, M.; Yoshimura, A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 2004, 18, 926–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subudhi, P.K.; De Leon, T.B.; Tapia, R.; Chai, C.; Karan, R.; Ontoy, J.; Singh, P.K. Genetic interaction involving photoperiod-responsive Hd1 promotes early flowering under long day condition in rice. Sci. Rep. 2018, 8, 2081. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Xing, Y.; Weng, X.; Zhao, Y.; Tang, W.; Wang, L.; Zhou, H.; Yu, S.; Xu, C.; Li, X.; et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 2008, 40, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.; Shankar, R.; Jain, M.; Subudhi, P.K. Genome-wide discovery of DNA polymorphisms by whole genome sequencing differentiates weedy and cultivated rice. Sci. Rep. 2018, 8, 14218. [Google Scholar] [CrossRef] [PubMed]
- Lachagari, V.B.R.; Gupta, R.; Lekkala, S.P.; Mahadevan, L.; Kuriakose, B.; Chakravartty, N.; Mohan Katta, A.V.S.K.; Santhosh, S.; Reddy, A.R.; Thomas, G. Whole genome sequencing and comparative genomic analysis reveal allelic variations unique to a purple colored rice landrace (Oryza sativa ssp. indica cv. Purpleputtu). Front. Plant Sci. 2019, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Subudhi, P.K.; De Leon, T.; Singh, P.K.; Parco, A.; Cohn, M.; Sasaki, T. A chromosome segment substitution library of weedy rice for genetic dissection of complex agronomic and domestication traits. PLoS ONE 2015, 10, e0130650. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Pujar, A.; Youens-Clark, K.; Yap, I.; Jaiswal, P.; Tecle, I.; Tung, C.W.; Ren, L.; Spooner, W.; Wei, X.; et al. Gramene QTL database: Development, content and applications. Database (Oxford) 2009, 2009, bap005. [Google Scholar] [CrossRef]
- Gu, X.Y.; Foley, M.E. Epistatic interactions of three loci regulate flowering time under short and long daylengths in a backcross population of rice. Theor. Appl. Genet. 2007, 114, 745–754. [Google Scholar] [CrossRef]
- Thurber, C.S.; Jia, M.H.; Jia, Y.; Caicedo, A.L. Similar traits, different genes? Examining convergent evolution in related weedy rice populations. Mol. Ecol. 2013, 22, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Vigueira, C.; Liu, Y.; Caicedo, A.L. More than one way to evolve a weed: Parallel evolution of U.S. weedy rice through independent genetic mechanisms. Mol. Ecol. 2015, 24, 3329–3344. [Google Scholar] [CrossRef] [PubMed]
- Yonemaru, J.I.; Yamamoto, T.; Fukuoka, S.; Uga, Y.; Hori, K.; Yano, M. Q-TARO: QTL annotation rice online database. Rice 2010, 3, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Thurber, C.S.; Reagon, M.; Olsen, K.M.; Jia, Y.; Caicedo, A.L. The evolution of flowering strategies in US weedy rice. Am. J. Bot. 2014, 101, 1737–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Cai, X. OsRRMh, a Spen-like gene, plays an important role during the vegetative to reproductive transition in rice. J. Integr. Plant Biol. 2013, 55, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Xu, Z.K.; Song, R.T. OsFY, a homolog of AtFY, encodes a protein that can interact with OsFCA-gamma in rice (Oryza sativa L.). Acta Biochem. Biophys. Sin. 2006, 38, 492–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Feng, F.; Wei, H.; Mei, H.; Xu, K.; Chen, S.; Li, T.; Liang, X.; Liu, H.; Luo, L. Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Front. Plant Sci. 2016, 7, 1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Weide, R.H.; Simonis, M.; Hermsen, R.; Toonen, P.; Cuppen, E.; de Ligt, J. The genomic scrapheap challenge; extracting relevant data from unmapped whole genome sequencing reads, including strain specific genomic segments, in rats. PLoS ONE 2016, 11, e0160036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadir, S.; Xiong, H.B.; Zhu, Q.; Zhang, X.L.; Xu, H.Y.; Li, J.; Dongchen, W.; Henry, D.; Guo, X.Q.; Khan, S.; et al. Weedy rice in sustainable rice production: A review. Agron. Sustain. Dev. 2017, 37, 46. [Google Scholar] [CrossRef]
- Reagon, M.; Thurber, C.S.; Gross, B.L.; Olsen, K.M.; Jia, Y.; Caicedo, A.L. Genomic patterns of nucleotide diversity in divergent population of U.S. weedy rice. BMC Evol. Biol. 2010, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; He, F.; Berkowitz, O.; Liu, J.; Cao, P.; Tang, M.; Shi, H.; Wang, W.; Shen, Z.; Whelan, J.; et al. Alternative splicing plays a critical role in maintaining mineral nutrient homeostasis in rice (Oryza sativa). Plant Cell 2018, 30, 2267–2285. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.X.; Zhu, F.Y.; Wang, F.Z.; Ye, N.H.; Gao, B.; Chen, X.; Zhao, S.S.; Fan, T.; Cao, Y.Y.; Liu, T.Y.; et al. Alternative splicing and translation play important roles in hypoxic germination in rice. J. Exp. Bot. 2019, 70, 817–833. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, P.; Jin, G.; Gui, D.; Liu, L.; Zhang, C. Temporal regulation of alternative splicing events in rice memory under drought stress. Plant Divers. 2020. [Google Scholar] [CrossRef]
- Xia, W.; Liu, J.; Zhang, J.; Mason, A.S.; Li, Z.; Gong, S.; Zhong, Y.; Dou, Y.; Sun, X.; Fan, H.; et al. Alternative splicing of flowering time gene FT is associated with halving of time to flowering in coconut. Sci. Rep. 2020, 10, 11640. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Kaufmann, K.; Theissen, G.; Nei, M. A simple method for predicting the functional differentiation of duplicate genes and its application to MIKC-type MADS-box genes. Nucleic Acids Res. 2005, 33, e12. [Google Scholar] [CrossRef] [Green Version]
- Onouchi, H.; Igeno, M.I.; Perilleux, C.; Graves, K.; Coupland, G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 2000, 12, 885–900. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, K.; Melzer, R.; Theissen, G. MIKC-type MADS domain proteins: Structural modularity, protein interactions and network evolution in land plants. Gene 2005, 347, 183–198. [Google Scholar] [CrossRef]
- Tadege, M.; Sheldon, C.C.; Helliwell, C.A.; Upadhyaya, N.M.; Dennis, E.S.; Peacock, J. Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnol. J. 2003, 1, 361–369. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Han, J.J.; Han, M.J.; An, G. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J. 2004, 38, 754–764. [Google Scholar] [CrossRef]
- Riechmann, J.L.; Meyerowitz, E.M. MADS domain proteins in plant development. Biol. Chem. 1997, 378, 1079–1101. [Google Scholar]
- Alvarez-Buylla, E.R.; Pelaz, S.; Liljegren, S.J.; Gold, S.E.; Burgeff, C.; Ditta, G.S.; de Pouplana, L.R.; Martinez-Castilla, L.; Yanofsky, M.F. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. USA 2000, 97, 5328–5333. [Google Scholar] [CrossRef] [Green Version]
- Ryu, C.H.; Lee, S.; Cho, L.H.; Kim, S.L.; Lee, Y.S.; Choi, S.C.; Jeong, H.J.; Yi, J.; Park, S.J.; Han, C.D.; et al. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ. 2009, 32, 1412–1427. [Google Scholar] [CrossRef] [PubMed]
- Putterill, J.; Robson, F.; Lee, K.; Simon, R.; Coupland, G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 1995, 80, 847–857. [Google Scholar] [CrossRef] [Green Version]
- Linscombe, S.D.; Jodari, F.; Mckenzie, K.S.; Bollich, P.K.; White, L.M.; Growth, D.E.; Dunand, R.T. Registration of Cypress rice. Crop Sci. 1993, 33, 355. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S.; et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar]
- Layer, R.M.; Chiang, C.; Quinlan, A.R.; Hall, I.M. LUMPY: A probabilistic framework for structural variant discovery. Genome Biol. 2014, 15, R84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cingolani, P.; Platts, A.; Wang, L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.; Lu, X.; Ruden, D. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimin, A.V.; Marçais, G.; Puiu, D.; Roberts, M.; Salzberg, S.L.; Yorke, J.A. The MaSuRCA genome assembler. Bioinformatics 2013, 29, 2669–2677. [Google Scholar] [CrossRef] [Green Version]
- Smit, A.F.A.; Hubley, R.; Green, P. RepeatMasker Open-4.0. 2015. Available online: http://www.repeatmasker.org/ (accessed on 15 September 2020).
- Stanke, M.; Diekhans, M.; Baertsch, R.; Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008, 24, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2008, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- The UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; John Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Mansueto, L.; Fuentes, R.R.; Borja, F.N.; Detras, J.; Abriol-Santos, J.M.; Chebotarov, D.; Sanciangco, M.; Palis, K.; Copetti, D.; Poliakov, A.; et al. Rice SNP-seek database update: New SNPs, indels, and queries. Nucleic Acids Res. 2017, 45, D1075–D1081. [Google Scholar] [CrossRef]
- Slenter, D.N.; Kutmon, M.; Hanspers, K.; Riutta, A.; Windsor, J.; Nunes, N.; Mélius, J.; Cirillo, E.; Coort, S.L.; Digles, D.; et al. WikiPathways: A multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 2018, 46, D661–D667. [Google Scholar] [CrossRef]
- Kim, D.; Landmead, B.; Salzberg, S.L. HISAT: A fast-spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef]
- Naithani, S.; Gupta, P.; Preece, J.; D’Eustachio, P.; Elser, J.; Garg, P.; Dikeman, D.A.; Kiff, J.; Cook, J.; Olson, A.; et al. Plant Reactome: A knowledgebase and resource for comparative pathway analysis. Nucleic Acids Res. 2019, 48, D1093–D1103. [Google Scholar] [CrossRef]
- Jin, J.P.; Tian, F.; Yang, D.C.; Meng, Y.Q.; Kong, L.; Luo, J.C.; Gao, G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017, 45, D1040–D1045. [Google Scholar] [CrossRef] [Green Version]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. Heredity 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Foissac, S.; Sammeth, M. ASTALAVISTA: Dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res. 2007, 35, W297–W299. [Google Scholar] [CrossRef] [Green Version]
- Sammeth, M.; Foissac, S.; Guigo, R. A general definition and nomenclature for alternative splicing events. PLoS Comput. Biol. 2008, 4, e1000147. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Plant Pathway | LD PSRR vs. LD CPRS | SD PSRR vs. SD CPRS | LD PSRR vs. SD PSRR | |
---|---|---|---|---|
Cellular processes | Protein metabolism: translation | 5.0 | 3.7 | 1.1 |
Cell cycle | 3.5 | 3.3 | 1.9 | |
Cellular processes | 2.3 | 1.8 | 0.6 | |
DNA replication: activation of the pre-replicative complex | 0.6 | 0.4 | 0.0 | |
Circadian rhythm | Circadian rhythm | 0.0 | 0.0 | 0.6 |
Growth and developmental processes | Reproductive structure development | 11.7 | 7.2 | 11.5 |
Growth and developmental processes | 4.2 | 2.7 | 4.7 | |
Vegetative structure development | 1.5 | 0.6 | 2.1 | |
Amine and polyamine biosynthesis | 1.3 | 0.0 | 0.8 | |
Metabolism and regulation | Metabolism and regulation | 17.9 | 20.8 | 19.2 |
Secondary metabolism | 11.9 | 13.0 | 14.9 | |
Hormone signaling, transport, and metabolism | 10.0 | 11.8 | 13.4 | |
Amino acid metabolism | 12.5 | 10.8 | 8.2 | |
Carbohydrate metabolism | 5.0 | 8.0 | 6.6 | |
Cofactor biosyntheses | 5.0 | 3.7 | 4.0 | |
Inorganic nutrients metabolism | 2.1 | 4.5 | 2.1 | |
Fatty acid and lipid metabolism | 2.1 | 2.7 | 2.1 | |
Detoxification | 0.0 | 1.2 | 1.3 | |
Amine and polyamine biosynthesis | 0.0 | 0.6 | 0.4 | |
Nucleotide metabolism | 0.0 | 0.4 | 0.0 | |
Photorespiration | 0.2 | 0.2 | 0.0 | |
Responses to stimuli: abiotic stimuli and stresses | Responses to stimuli: abiotic stimuli and stresses | 1.0 | 1.0 | 1.5 |
Response to cold temperature | 0.4 | 0.4 | 0.8 | |
Response to drought | 0.8 | 0.4 | 0.4 | |
Response to heavy metals | 0.4 | 0.4 | 0.8 | |
Response to submergence | 0.0 | 0.4 | 0.0 | |
Response to salinity | 0.2 | 0.0 | 0.2 | |
Responses to stimuli: biotic stimuli and stresses | Responses to stimuli: biotic stimuli and stresses | 0.2 | 0.0 | 0.4 |
Recognition of fungal and bacterial pathogens and immunity response | 0.2 | 0.0 | 0.4 |
Gene Symbol | SD PSRR | LD PSRR | SD Cypress | LD Cypress |
---|---|---|---|---|
Ehd1 | A5SS | - | A5SS | A5SS |
Ghd7 | - | - | - | - |
Hd1 | - | - | A3SS | A3SS |
Hd3a | - | - | - | - |
OsMADS14 | A3SS | A3SS | A3SS | A3SS |
OsMADS15 | - | - | - | A3SS, ES, IR, IR1 + IR2 |
OsMADS56 | Complex IR | Complex IR | - | - |
RFT1 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, R.S.; Coronejo, S.; Concepcion, J.; Subudhi, P.K. Whole-Genome Sequencing and RNA-Seq Reveal Differences in Genetic Mechanism for Flowering Response between Weedy Rice and Cultivated Rice. Int. J. Mol. Sci. 2022, 23, 1608. https://doi.org/10.3390/ijms23031608
Garcia RS, Coronejo S, Concepcion J, Subudhi PK. Whole-Genome Sequencing and RNA-Seq Reveal Differences in Genetic Mechanism for Flowering Response between Weedy Rice and Cultivated Rice. International Journal of Molecular Sciences. 2022; 23(3):1608. https://doi.org/10.3390/ijms23031608
Chicago/Turabian StyleGarcia, Richard S., Sapphire Coronejo, Jonathan Concepcion, and Prasanta K. Subudhi. 2022. "Whole-Genome Sequencing and RNA-Seq Reveal Differences in Genetic Mechanism for Flowering Response between Weedy Rice and Cultivated Rice" International Journal of Molecular Sciences 23, no. 3: 1608. https://doi.org/10.3390/ijms23031608
APA StyleGarcia, R. S., Coronejo, S., Concepcion, J., & Subudhi, P. K. (2022). Whole-Genome Sequencing and RNA-Seq Reveal Differences in Genetic Mechanism for Flowering Response between Weedy Rice and Cultivated Rice. International Journal of Molecular Sciences, 23(3), 1608. https://doi.org/10.3390/ijms23031608