Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia
Abstract
:1. Introduction
2. Results
2.1. PDMSCs Presented Proper Mesenchymal Stromal Cell Profile
2.2. Characteristics of the Study Population
2.3. PDMSCs Conditioned Media Ameliorated Maternal Hypertension and Proteinuria in LPS-Induced PE Mouse Model
2.4. Placental sFlt-1, TNF-α, and IL-6 Expression Were Inhibited by PDMSCs-CM in PE Mice
3. Discussion
4. Materials and Methods
4.1. PDMSCs Conditioned Media Preparation
4.2. Preeclamptic Mouse Model Preparation and PDMSCs-CM Treatment
4.3. RNA Isolation and Real-Time PCR
4.4. Enzyme-Linked Immunosorbent Assay (ELISA)
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishihara, N.; Matsuo, H.; Murakoshi, H.; Laoag-Fernandez, J.B.; Samoto, T.; Maruo, T. Increased Apoptosis in the Syncytiotrophoblast in Human Term Placentas Complicated by Either Preeclampsia or Intrauterine Growth Retardation. Am. J. Obstet. Gynecol. 2002, 186, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Sargent, I.L. Latest Advances in Understanding Preeclampsia. Science 2005, 308, 1592–1594. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.G.; Lindheimer, M.D. Hypertension in Pregnancy. N. Engl. J. Med. 1992, 326, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Pennington, K.A.; Schlitt, J.M.; Jackson, D.L.; Schulz, L.C.; Schust, D.J. Preeclampsia: Multiple Approaches for a Multifactorial Disease. Dis. Model. Mech. 2012, 5, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Marzi, M.; Vigano, A.; Trabattoni, D.; Villa, M.L.; Salvaggio, A.; Clerici, E.; Clerici, M. Characterization of Type 1 and Type 2 Cytokine Production Profile in Physiologic and Pathologic Human Pregnancy. Clin. Exp. Immunol. 1996, 106, 127–133. [Google Scholar] [CrossRef]
- Saito, S.; Sakai, M.; Sasaki, Y.; Tanebe, K.; Tsuda, H.; Michimata, T. Quantitative Analysis of Peripheral Blood Th0, Th1, Th2 and the Th1:Th2 Cell Ratio during Normal Human Pregnancy and Preeclampsia. Clin. Exp. Immunol. 1999, 117, 550–555. [Google Scholar] [CrossRef]
- Saito, S.; Umekage, H.; Sakamoto, Y.; Sakai, M.; Tanebe, K.; Sasaki, Y.; Morikawa, H. Increased T-Helper-1-Type Immunity and Decreased T-Helper-2-Type Immunity in Patients with Preeclampsia. Am. J. Reprod. Immunol. 1999, 41, 297–306. [Google Scholar] [CrossRef]
- Pijnenborg, R.; Vercruysse, L.; Verbist, L.; Van Assche, F.A. Interaction of Interstitial Trophoblast with Placental Bed Capillaries and Venules of Normotensive and Pre-Eclamptic Pregnancies. Placenta 1998, 19, 569–575. [Google Scholar] [CrossRef]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-Eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Gammill, H.S.; Roberts, J.M. Emerging Concepts in Preeclampsia Investigation. Front. Biosci. 2007, 12, 2403–2411. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, C.J.; Yen, C.-F.; Basar, M.; Kayisli, U.A.; Martel, M.; Buhimschi, I.; Buhimschi, C.; Huang, S.J.; Krikun, G.; Schatz, F. Preeclampsia-Related Inflammatory Cytokines Regulate Interleukin-6 Expression in Human Decidual Cells. Am. J. Pathol. 2008, 172, 1571–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandò, C.; Razini, P.; Novielli, C.; Anelli, G.M.; Belicchi, M.; Erratico, S.; Banfi, S.; Meregalli, M.; Tavelli, A.; Baccarin, M.; et al. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction. Stem Cells Transl. Med. 2016, 5, 451–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, B.L.; Huang, H.-I.; Chien, C.-C.; Jui, H.-Y.; Ko, B.-S.; Yao, M.; Shun, C.-T.; Yen, M.-L.; Lee, M.-C.; Chen, Y.-C. Isolation of Multipotent Cells from Human Term Placenta. Stem Cells 2005, 23, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Brooke, G.; Tong, H.; Levesque, J.-P.; Atkinson, K. Molecular Trafficking Mechanisms of Multipotent Mesenchymal Stem Cells Derived from Human Bone Marrow and Placenta. Stem Cells Dev. 2008, 17, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Parolini, O.; Alviano, F.; Bergwerf, I.; Boraschi, D.; De Bari, C.; De Waele, P.; Dominici, M.; Evangelista, M.; Falk, W.; Hennerbichler, S.; et al. Toward Cell Therapy Using Placenta-Derived Cells: Disease Mechanisms, Cell Biology, Preclinical Studies, and Regulatory Aspects at the Round Table. Stem Cells Dev. 2010, 19, 143–154. [Google Scholar] [CrossRef]
- Fukuchi, Y.; Nakajima, H.; Sugiyama, D.; Hirose, I.; Kitamura, T.; Tsuji, K. Human Placenta-Derived Cells Have Mesenchymal Stem/Progenitor Cell Potential. Stem Cells 2004, 22, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-J.; Yen, M.-L.; Chen, Y.-C.; Chien, C.-C.; Huang, H.-I.; Bai, C.-H.; Yen, B.L. Placenta-Derived Multipotent Cells Exhibit Immunosuppressive Properties That Are Enhanced in the Presence of Interferon-Gamma. Stem Cells 2006, 24, 2466–2477. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Jiang, X.; Mao, N. Human-Placenta-Derived Mesenchymal Stem Cells Inhibit Proliferation and Function of Allogeneic Immune Cells. Cell Tissue Res. 2007, 330, 437–446. [Google Scholar] [CrossRef]
- Rolfo, A.; Giuffrida, D.; Nuzzo, A.M.; Pierobon, D.; Cardaropoli, S.; Piccoli, E.; Giovarelli, M.; Todros, T. Pro-Inflammatory Profile of Preeclamptic Placental Mesenchymal Stromal Cells: New Insights into the Etiopathogenesis of Preeclampsia. PLoS ONE 2013, 8, e59403. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhao, G.; Fan, H.; Zhao, X.; Li, P.; Wang, Z.; Hu, Y.; Hou, Y. Mesenchymal Stem Cells Ameliorate Th1-Induced Pre-Eclampsia-like Symptoms in Mice via the Suppression of TNF-α Expression. PLoS ONE 2014, 9, e88036. [Google Scholar] [CrossRef]
- Fu, L.; Liu, Y.; Zhang, D.; Xie, J.; Guan, H.; Shang, T. Beneficial Effect of Human Umbilical Cord-Derived Mesenchymal Stem Cells on an Endotoxin-Induced Rat Model of Preeclampsia. Exp. Ther. Med. 2015, 10, 1851–1856. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Chiasson, V.L.; Pinzur, L.; Raveh, S.; Abraham, E.; Jones, K.A.; Bounds, K.R.; Ofir, R.; Flaishon, L.; Chajut, A.; et al. Human Placenta-Derived Stromal Cells Decrease Inflammation, Placental Injury and Blood Pressure in Hypertensive Pregnant Mice. Clin. Sci. 2016, 130, 513–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominina, A.P.; Fridliandskaia, I.I.; Zemel’ko, V.I.; Pugovkina, N.A.; Kovaleva, Z.V.; Zenin, V.V.; Grinchuk, T.M.; Nikol’skiĭ, N.N. Mesenchymal stem cells of human endometrium do not undergo spontaneous transformation during long-term cultivation. Tsitologiia 2013, 55, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qu, X.; Zhao, R.C. Clinical Applications of Mesenchymal Stem Cells. J. Hematol. Oncol. 2012, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; He, Q.; Li, X.; Zhang, X.; Lu, A.; Ge, R.; Zhen, H.; Chang, A.E.; Li, Q.; Shen, L. Long-Term Cultured Human Neural Stem Cells Undergo Spontaneous Transformation to Tumor-Initiating Cells. Int. J. Biol. Sci. 2011, 7, 892–901. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, M.E.; Zaffaroni, N.; Novara, F.; Cometa, A.M.; Avanzini, M.A.; Moretta, A.; Montagna, D.; Maccario, R.; Villa, R.; Daidone, M.G.; et al. Human Bone Marrow Derived Mesenchymal Stem Cells Do Not Undergo Transformation after Long-Term in Vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms. Cancer Res. 2007, 67, 9142–9149. [Google Scholar] [CrossRef] [Green Version]
- Popov, B.V.; Petrov, N.S.; Mikhailov, V.M.; Tomilin, A.N.; Alekseenko, L.L.; Grinchuk, T.M.; Zaichik, A.M. Spontaneous Transformation and Immortalization of Mesenchymal Stem Cells in Vitro. Cell Tissue Biol. 2009, 3, 110–120. [Google Scholar] [CrossRef]
- Nuzzo, A.M.; Giuffrida, D.; Zenerino, C.; Piazzese, A.; Olearo, E.; Todros, T.; Rolfo, A. JunB/Cyclin-D1 Imbalance in Placental Mesenchymal Stromal Cells Derived from Preeclamptic Pregnancies with Fetal-Placental Compromise. Placenta 2014, 35, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Karp, J.M.; Leng Teo, G.S. Mesenchymal Stem Cell Homing: The Devil Is in the Details. Cell Stem Cell 2009, 4, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Asami, T.; Ishii, M.; Fujii, H.; Namkoong, H.; Tasaka, S.; Matsushita, K.; Ishii, K.; Yagi, K.; Fujiwara, H.; Funatsu, Y.; et al. Modulation of Murine Macrophage TLR7/8-Mediated Cytokine Expression by Mesenchymal Stem Cell-Conditioned Medium. Mediat. Inflamm. 2013, 2013, 264260. [Google Scholar] [CrossRef]
- Nuzzo, A.M.; Giuffrida, D.; Masturzo, B.; Mele, P.; Piccoli, E.; Eva, C.; Todros, T.; Rolfo, A. Altered Expression of G1/S Phase Cell Cycle Regulators in Placental Mesenchymal Stromal Cells Derived from Preeclamptic Pregnancies with Fetal-Placental Compromise. Cell Cycle 2017, 16, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-K.; Wu, S.-Y.; Tang, S.-E.; Li, M.-H.; Lin, S.-S.; Chu, S.-J.; Huang, K.-L. Protective Effects of Neural Crest-Derived Stem Cell-Conditioned Media against Ischemia-Reperfusion-Induced Lung Injury in Rats. Inflammation 2017, 40, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lei, D.; Ouyang, W.; Ren, J.; Li, H.; Hu, J.; Huang, S. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines in Vitro. BioMed. Res. Int. 2014, 2014, 109389. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.; Benhaim, P.; Hedrick, M.H. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol. Biol. Cell 2002, 13, 4279–4295. [Google Scholar] [CrossRef]
- Lee, O.K.; Kuo, T.K.; Chen, W.-M.; Lee, K.-D.; Hsieh, S.-L.; Chen, T.-H. Isolation of Multipotent Mesenchymal Stem Cells from Umbilical Cord Blood. Blood 2004, 103, 1669–1675. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Liao, L.; Wang, Q.; Ma, L.; Ma, G.; Jiang, X.; Zhao, R.C. Isolation and Identification of Mesenchymal Stem Cells from Human Fetal Pancreas. J. Lab. Clin. Med. 2003, 141, 342–349. [Google Scholar] [CrossRef]
- Abomaray, F.M.; Al Jumah, M.A.; Kalionis, B.; AlAskar, A.S.; Al Harthy, S.; Jawdat, D.; Al Khaldi, A.; Alkushi, A.; Knawy, B.A.; Abumaree, M.H. Human Chorionic Villous Mesenchymal Stem Cells Modify the Functions of Human Dendritic Cells, and Induce an Anti-Inflammatory Phenotype in CD1+ Dendritic Cells. Stem Cell Rev. Rep. 2015, 11, 423–441. [Google Scholar] [CrossRef]
- Abumaree, M.H.; Abomaray, F.M.; Alshabibi, M.A.; AlAskar, A.S.; Kalionis, B. Immunomodulatory Properties of Human Placental Mesenchymal Stem/Stromal Cells. Placenta 2017, 59, 87–95. [Google Scholar] [CrossRef]
- Du, W.; Li, X.; Chi, Y.; Ma, F.; Li, Z.; Yang, S.; Song, B.; Cui, J.; Ma, T.; Li, J.; et al. VCAM-1+ Placenta Chorionic Villi-Derived Mesenchymal Stem Cells Display Potent pro-Angiogenic Activity. Stem Cell Res. Ther. 2016, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Grylls, A.; Seidler, K.; Neil, J. Link between Microbiota and Hypertension: Focus on LPS/TLR4 Pathway in Endothelial Dysfunction and Vascular Inflammation, and Therapeutic Implication of Probiotics. Biomed. Pharmacother. 2021, 137, 111334. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z.; Han, Y.; Yu, H. Fatty Acid Oxidation Changes and the Correlation with Oxidative Stress in Different Preeclampsia-like Mouse Models. PLoS ONE 2014, 9, e109554. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Zeng, P.; Xu, Z.; Ye, D.; Yu, X.; Wang, N.; Tang, J.; Zhou, Y.; Huang, Y. Treatment of Lipoxin A(4) and Its Analogue on Low-Dose Endotoxin Induced Preeclampsia in Rat and Possible Mechanisms. Reprod. Toxicol. 2012, 34, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Fu, L.; Wang, L.; Lin, L.; Yu, L.; Zhang, L.; Shang, T. Therapeutic Benefit of Mesenchymal Stem Cells in Pregnant Rats with Angiotensin Receptor Agonistic Autoantibody-Induced Hypertension: Implications for Immunomodulation and Cytoprotection. Hypertens. Pregnancy 2017, 36, 247–258. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.F.; Almeida, T.R.; Ribeiro Machado, M.P.; Cuba, M.B.; Alves, A.C.; da Silva, M.V.; Rodrigues Júnior, V.; Dias da Silva, V.J. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension. Stem Cells Int. 2015, 2015, 685383. [Google Scholar] [CrossRef]
- Oliveira-Sales, E.B.; Maquigussa, E.; Semedo, P.; Pereira, L.G.; Ferreira, V.M.; Câmara, N.O.; Bergamaschi, C.T.; Campos, R.R.; Boim, M.A. Mesenchymal Stem Cells (MSC) Prevented the Progression of Renovascular Hypertension, Improved Renal Function and Architecture. PLoS ONE 2013, 8, e78464. [Google Scholar] [CrossRef] [Green Version]
- Vizoso, F.J.; Eiro, N.; Cid, S.; Schneider, J.; Perez-Fernandez, R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int. J. Mol. Sci. 2017, 18, 1852. [Google Scholar] [CrossRef] [Green Version]
- Beer, L.; Mildner, M.; Ankersmit, H.J. Cell Secretome Based Drug Substances in Regenerative Medicine: When Regulatory Affairs Meet Basic Science. Ann. Transl. Med. 2017, 5, 170. [Google Scholar] [CrossRef] [Green Version]
- Albonici, L.; Benvenuto, M.; Focaccetti, C.; Cifaldi, L.; Miele, M.T.; Limana, F.; Manzari, V.; Bei, R. PlGF Immunological Impact during Pregnancy. Int. J. Mol. Sci. 2020, 21, 8714. [Google Scholar] [CrossRef]
- Jones, R.L.; Stoikos, C.; Findlay, J.K.; Salamonsen, L.A. TGF-Beta Superfamily Expression and Actions in the Endometrium and Placenta. Reprod. Camb. Engl. 2006, 132, 217–232. [Google Scholar] [CrossRef]
- Wu, L.-Z.; Liu, X.-L.; Xie, Q.-Z. Osteopontin Facilitates Invasion in Human Trophoblastic Cells via Promoting Matrix Metalloproteinase-9 in Vitro. Int. J. Clin. Exp. Pathol. 2015, 8, 14121–14130. [Google Scholar]
- Qazi, B.S.; Tang, K.; Qazi, A. Recent advances in underlying pathologies provide insight into interleukin-8 expression-mediated inflammation and angiogenesis. Int. J. Inflam. 2011, 2011, 908468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Ye, W.; Liu, X.; Lv, Y.; Yao, C.; Wei, J. VEGF and SFLT-1 in Serum of PIH Patients and Effects on the Foetus. Exp. Ther. Med. 2019, 17, 2123–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuzzo, A.M.; Giuffrida, D.; Moretti, L.; Re, P.; Grassi, G.; Menato, G.; Rolfo, A. Placental and Maternal SFlt1/PlGF Expression in Gestational Diabetes Mellitus. Sci. Rep. 2021, 11, 2312. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, A.; Attini, R.; Nuzzo, A.M.; Piazzese, A.; Parisi, S.; Ferraresi, M.; Todros, T.; Piccoli, G.B. Chronic Kidney Disease May Be Differentially Diagnosed from Preeclampsia by Serum Biomarkers. Kidney Int. 2013, 83, 177–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.M.J.; Khalil, R.A. Genetic, Immune and Vasoactive Factors in the Vascular Dysfunction Associated with Hypertension in Pregnancy. Expert Opin. Ther. Targets 2015, 19, 1495–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, D.L.; Olister, S.M.; Liu, X.; Thompson, J.H.; Zhang, X.J.; Pennline, K.; Azuero, R.; Clark, D.A.; Miller, M.J. Interleukin-10 Attenuates Experimental Fetal Growth Restriction and Demise. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1998, 12, 189–197. [Google Scholar] [CrossRef]
- Vonlaufen, A.; Phillips, P.A.; Xu, Z.; Zhang, X.; Yang, L.; Pirola, R.C.; Wilson, J.S.; Apte, M.V. Withdrawal of Alcohol Promotes Regression While Continued Alcohol Intake Promotes Persistence of LPS-Induced Pancreatic Injury in Alcohol-Fed Rats. Gut 2011, 60, 238–246. [Google Scholar] [CrossRef]
- Wang, L.-L.; Yu, Y.; Guan, H.-B.; Qiao, C. Effect of Human Umbilical Cord Mesenchymal Stem Cell Transplantation in a Rat Model of Preeclampsia. Reprod. Sci. 2016, 23, 1058–1070. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, M. Effect of paeonol on adhesive function of rat vascular endothelial cells induced by lipopolysaccharide and co-cultured with smooth muscle cells. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi/China J. Chin. Mater. Med. 2014, 39, 1058–1063. [Google Scholar]
- Zekri, A.-R.N.; Salama, H.; Medhat, E.; Musa, S.; Abdel-Haleem, H.; Ahmed, O.S.; Khedr, H.A.H.; Lotfy, M.M.; Zachariah, K.S.; Bahnassy, A.A. The Impact of Repeated Autologous Infusion of Haematopoietic Stem Cells in Patients with Liver Insufficiency. Stem Cell Res. Ther. 2015, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Liu, Z.; Wang, Y.; Xu, R.; Sun, Y.; Zhang, M.; Yu, X.; Wang, H.; Meng, L.; Su, H.; et al. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection. Stem Cells Transl. Med. 2017, 6, 2053–2061. [Google Scholar] [CrossRef] [Green Version]
- Hauser, P.V.; De Fazio, R.; Bruno, S.; Sdei, S.; Grange, C.; Bussolati, B.; Benedetto, C.; Camussi, G. Stem Cells Derived from Human Amniotic Fluid Contribute to Acute Kidney Injury Recovery. Am. J. Pathol. 2010, 177, 2011–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oludare, G.O.; Ilo, O.J.; Lamidi, B.A. Effects of Lipopolysaccharide and High Saline Intake on Blood Pressure, Angiogenic Factors and Liver Enzymes of Pregnant Rats. Niger. J. Physiol. Sci. Off. Publ. Physiol. Soc. Niger. 2017, 32, 129–136. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
PDMSCs-CM (n = 5) | Control (n = 5) | p-Value | |
---|---|---|---|
Number of fetuses | 41 | 24 | p < 0.01 |
Fetal reabsorption | 0 | 5 | p = 0.02 |
Fetal weight, grams (median and range) | 0.82 (0.62–1.26) | 0.75 (0.59–0.99) | ns |
Placental weight, grams (median and range) | 0.12 (0.07–0.25) | 0.09 (0.05–0.14) | p < 0.01 |
Hematocrit (%) | 11.1 | 10.8 | ns |
RBC | 7.2 | 7.08 | ns |
WBC | 1.1 | 1.2 | ns |
Plt | 330 | 135 | ns |
Htc (%) | 10.4 | 10.3 | ns |
Hb | 10.1 | 9.9 | ns |
ALT (mg/dL) | 39.7 | 39.7 | ns |
AST (mg/dL) | 247.7 | 263.7 | ns |
Urea (mg/dL) | 35.2 | 34.2 | ns |
Creatinine (mg/dL) | 0.07 | 0.07 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuzzo, A.M.; Moretti, L.; Mele, P.; Todros, T.; Eva, C.; Rolfo, A. Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia. Int. J. Mol. Sci. 2022, 23, 1674. https://doi.org/10.3390/ijms23031674
Nuzzo AM, Moretti L, Mele P, Todros T, Eva C, Rolfo A. Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia. International Journal of Molecular Sciences. 2022; 23(3):1674. https://doi.org/10.3390/ijms23031674
Chicago/Turabian StyleNuzzo, Anna Maria, Laura Moretti, Paolo Mele, Tullia Todros, Carola Eva, and Alessandro Rolfo. 2022. "Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia" International Journal of Molecular Sciences 23, no. 3: 1674. https://doi.org/10.3390/ijms23031674
APA StyleNuzzo, A. M., Moretti, L., Mele, P., Todros, T., Eva, C., & Rolfo, A. (2022). Effect of Placenta-Derived Mesenchymal Stromal Cells Conditioned Media on an LPS-Induced Mouse Model of Preeclampsia. International Journal of Molecular Sciences, 23(3), 1674. https://doi.org/10.3390/ijms23031674