Genetic Conservation of CBS Domain Containing Protein Family in Oryza Species and Their Association with Abiotic Stress Responses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Number of Genes Encoding CDCPs Varies in Oryza Species
2.2. Phylogenetic Analysis of CDCPs in Cultivated and Wild Rice
2.3. Gene Structural Organization and Protein Motif Analysis of Different CDCPs
2.4. Gene Duplication and Synteny Analysis in Various Oryza Species
2.5. Analysis of Cis-Elements in the Promoter Sequence of Genes Encoding CDCPs
2.6. Developmental and Stress-Responsive Regulation of Genes Encoding CDCPs
3. Materials and Methods
3.1. Data Retrieval and Sequence Analysis
3.2. Phylogenetic Analysis
3.3. Gene Structure and Motif Analysis
3.4. Chromosomal Distribution, Duplication Analysis, and Synteny
3.5. In Silico Promoter Analysis of CDCPs
3.6. Developmental and Stress Mediated Expression Profiling of Different CDCPs in O. sativa
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stein, J.C.; Yu, Y.; Copetti, D.; Zwickl, D.J.; Zhang, L.; Zhang, C.; Chougule, K.; Gao, D.; Iwata, A.; Goicoechea, J.L.; et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover, and innovation across the genus Oryza. Nat. Genet. 2018, 50, 285–296. [Google Scholar] [CrossRef]
- Agarwal, P.; Parida, S.K.; Raghuvanshi, S.; Kapoor, S.; Khurana, P.; Khurana, J.P.; Tyagi, A.K. Rice improvement through genome-based functional analysis and molecular breeding in India. Rice 2016, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, S.; nee Sabharwal, V.P.; Kushwaha, H.R.; Sopory, S.K.; Singla-Pareek, S.L.; Pareek, A. Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct. Integr. Genom. 2009, 9, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, H.R.; Singh, A.K.; Sopory, S.K.; Singla-Pareek, S.L.; Pareek, A. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation. BMC Genom. 2009, 10, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Kumar, R.; Pareek, A.; Sopory, S.K.; Singla-Pareek, S.L. Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol. Biotechnol. 2012, 52, 205–216. [Google Scholar] [CrossRef]
- Kumar, R.; Subba, A.; Kaur, C.; Ariyadasa, T.U.; Sharan, A.; Pareek, A.; Singla-Pareek, S.L. OsCBSCBSPB4 is a two cystathionine-β-synthase domain-containing protein from rice that functions in abiotic stress tolerance. Curr. Genom. 2018, 19, 50–59. [Google Scholar] [CrossRef]
- Bateman, A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. 1997, 22, 12–13. [Google Scholar] [CrossRef]
- Baykov, A.A.; Tuominen, H.K.; Lahti, R. The CBS domain: A protein module with an emerging prominent role in regulation. ACS Chem. Biol. 2011, 6, 1156–1163. [Google Scholar] [CrossRef]
- Ereño-Orbea, J.; Oyenarte, I.; Martínez-Cruz, L.A. CBS domains: Ligand binding sites and conformational variability. Arch. Biochem. Biophys. 2013, 540, 70–81. [Google Scholar] [CrossRef]
- Ignoul, S.; Eggermont, J. CBS domains: Structure, function, and pathology in human proteins. Am. J. Physiol. Cell Physiol. 2005, 289, C1369–C1378. [Google Scholar] [CrossRef] [Green Version]
- Giménez-Mascarell, P.; González-Recio, I.; Fernández-Rodríguez, C.; Oyenarte, I.; Müller, D.; Martínez-Chantar, M.L.; Martínez-Cruz, L.A. Current structural knowledge on the CNNM family of magnesium transport mediators. Int. J. Mol. Sci. 2019, 20, 1135. [Google Scholar] [CrossRef] [Green Version]
- Zafar, S.A.; Patil, S.B.; Uzair, M.; Fang, J.; Zhao, J.; Guo, T.; Yuan, S.; Uzair, M.; Luo, Q.; Shi, J.; et al. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytol. 2020, 225, 356–375. [Google Scholar] [CrossRef] [Green Version]
- Zafar, S.A.; Uzair, M.; Khan, M.R.; Patil, S.B.; Fang, J.; Zhao, J.; Singla-Pareek, S.L.; Singla-Pareek, A.; Li, X. DPS1 regulates cuticle development and leaf senescence in rice. Food Energy Secur. 2021, 10, e273. [Google Scholar] [CrossRef]
- Hao, Q.; Shang, W.; Zhang, C.; Chen, H.; Chen, L.; Yuan, S.; Chen, S.; Zhang, X.; Zhou, X. Identification and comparative analysis of CBS domain-containing proteins in Soybean (Glycine max) and the primary function of GmCBS21 in enhanced tolerance to low nitrogen stress. Int. J. Mol. Sci. 2016, 17, 620. [Google Scholar] [CrossRef] [Green Version]
- Hao, Q.; Yang, Y.; Shan, Z.; Chen, H.; Zhang, C.; Chen, L.; Yuan, S.; Zhang, X.; Chen, S.; Yang, Z.; et al. Genome-wide investigation and expression profiling under abiotic stresses of a Soybean unknown function (DUF21) and Cystathionine-β-Synthase (CBS) domain-containing protein family. Biochem. Genet. 2020, 59, 83–113. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.S.; Ok, S.H.; Jeong, B.C.; Jung, K.W.; Cui, M.H.; Hyoung, S.; Lee, M.-R.; Song, H.K.; Shin, J.S. Single cystathionine β-synthase domain–containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. Plant Cell 2011, 23, 3577–3594. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.S.; So, W.M.; Kim, S.Y.; Noh, M.; Hyoung, S.; Yoo, K.S.; Shin, J.S. CBSX3-Trxo-2 regulates ROS generation of mitochondrial complex II (succinate dehydrogenase) in Arabidopsis. Plant Sci. 2020, 294, 110458. [Google Scholar] [CrossRef]
- Subba, A.; Tomar, S.; Pareek, A.; Singla-Pareek, S.L. The chloride channels: Silently serving the plants. Physiol. Plant. 2020, 171, 688–702. [Google Scholar] [CrossRef]
- Jena, K.K. The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa. Breed. Sci. 2010, 60, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Hajjar, R.; Hodgkin, T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef]
- Atwell, B.J.; Wang, H.; Scafaro, A.P. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci. 2014, 215, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.K.; Kang, Y.W.; Lim, H.M.; Hwang, I.; Pai, H.S. Physiological functions of the COPI complex in higher plants. Mol. Cells 2015, 38, 866–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, M.J.; Frigerio, L. Coated vesicles in plant cells. Semin. Cell Dev. Biol. 2007, 18, 471–478. [Google Scholar] [CrossRef]
- Anantharaman, V.; Iyer, L.M.; Aravind, L. Ter-dependent stress response systems: Novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. Mol. Biosyst. 2012, 8, 3142–3165. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.C.; Cho, M.H. Deletion of the chloroplast-localized AtTerC gene product in Arabidopsis thaliana leads to loss of the thylakoid membrane and to seedling lethality. Plant J. 2008, 55, 428–442. [Google Scholar] [CrossRef]
- Schneider, A.; Steinberger, I.; Strissel, H.; Kunz, H.H.; Manavski, N.; Meurer, J.; Burkhard, G.; Jarzombski, S.; Schünemann, D.; Geimer, S.; et al. The Arabidopsis tellurite resistance C protein together with ALB3 is involved in photosystem II protein synthesis. Plant J. 2014, 78, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Ramon, M.; Ruelens, P.; Li, Y.; Sheen, J.; Geuten, K.; Rolland, F. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. Plant J. 2013, 75, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Polge, C.; Thomas, M. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci. 2007, 12, 20–28. [Google Scholar] [CrossRef]
- Cheng, C.; Tsuchimoto, S.; Ohtsubo, H.; Ohtsubo, E. Evolutionary relationships among rice species with AA genome based on SINE insertion analysis. Genes Genet. Syst. 2002, 77, 323–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwamoto, M.; Nagashima, H.; Nagamine, T.; Higo, H.; Higo, K. p-SINE1-like intron of the CatA catalase homologs and phylogenetic relationships among AA-genome Oryza and related species. Theor. Appl. Genet. 1999, 98, 853–861. [Google Scholar] [CrossRef]
- Zhang, Q.; Kochert, G. Independent amplification of two classes of Tourists in some Oryza species. Genetica 1997, 101, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, F.; Wen, Z.; Li, Y.; Wang, F.; Zhu, T.; Zhuo, W.; Jin, X.; Wang, Y.; Zhao, H.; et al. Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biol. 2015, 15, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, S.; Liu, H.; Fu, B.; Li, L.; Xie, M.; Song, Y.; Li, X.; Cai, J.; Wan, W.; et al. Genome and comparative transcriptomics of African wild rice Oryza longistaminata provide insights into molecular mechanism of rhizomatousness and self-incompatibility. Mol. Plant 2015, 8, 1683–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 2013, 14, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, K.; Zhu, X.; Chen, P.; Li, Y.; Xie, G.; Wang, L.; Wang, Y.; Persson, S.; Peng, L. Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genom. 2017, 18, 55. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yu, Y.; Haberer, G.; Marri, P.R.; Fan, C.; Goicoechea, J.L.; Zuccolo, A.; Song, X.; Kudrna, D.; Ammiraju, J.S.; et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat. Genet. 2014, 46, 982–988. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Li, X.; Lv, Y.; Ding, L. Comparative analysis of the phytocyanin gene family in 10 plant species: A focus on Zea mays. Front. Plant Sci. 2015, 6, 515. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.Y.; Vorst, O.; Fiers, M.W.; Stiekema, W.J.; Nap, J.P. In plants, highly expressed genes are the least compact. Trends Genet. 2006, 22, 528–532. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Lu, Y.; Zinta, G.; Lang, Z.; Zhu, J.K. UTR-dependent control of gene expression in plants. Trends Plant Sci. 2018, 23, 248–259. [Google Scholar] [CrossRef]
- Hernández, G.; Altmann, M.; Lasko, P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem. Sci. 2010, 35, 63–73. [Google Scholar] [CrossRef]
- Van Der Velden, A.W.; Thomas, A.A. The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int. J. Biochem. Cell Biol. 1999, 31, 87–106. [Google Scholar] [CrossRef]
- Jansen, R.P. mRNA localization: Message on the move. Nat. Rev. Mol. Cell Biol. 2001, 2, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Mignone, F.; Gissi, C.; Liuni, S.; Pesole, G. Untranslated regions of mRNAs. Genome Biol. 2002, 3, REVIEWS0004. [Google Scholar] [CrossRef]
- Barrett, L.W.; Fletcher, S.; Wilton, S.D. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell. Mol. Life Sci. 2012, 69, 3613–3634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.K.; Kumar, R.; Tripathi, A.K.; Gupta, B.K.; Pareek, A.; Singla-Pareek, S.L. Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. Rice 2015, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushwaha, H.R.; Joshi, R.; Pareek, A.; Singla-Pareek, S.L. MATH-domain family shows response toward abiotic stress in Arabidopsis and Rice. Front. Plant Sci. 2016, 7, 923. [Google Scholar] [CrossRef] [Green Version]
- Panchy, N.; Lehti-Shiu, M.; Shiu, S.H. Evolution of gene duplication in plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef] [Green Version]
- Kaur, C.; Sharma, S.; Hasan, M.R.; Pareek, A.; Singla-Pareek, S.L.; Sopory, S.K. Characteristic variations and similarities in biochemical, molecular, and functional properties of glyoxalases across prokaryotes and eukaryotes. Int. J. Mol. Sci. 2017, 18, 250. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486. [Google Scholar] [CrossRef]
- Lemey, P.; Salemi, M.; Vandamme, A.M. The Phylogenic Handbook: A Practical Approach Phylogenetic Analysis and Hypothesis Testing; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Nan, H.; Li, W.; Lin, Y.L.; Gao, L.Z. Genome-wide analysis of WRKY genes and their response to salt stress in the wild progenitor of Asian cultivated rice, Oryza rufipogon. Front. Genet. 2020, 11, 359. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Lu, J.; Liu, C. Genome-wide identification and characterization of the ALOG domain genes in rice. Int. J. Genom. 2019, 2019, 2146391. [Google Scholar] [CrossRef] [PubMed]
- Ganie, S.A.; Pani, D.R.; Mondal, T.K. Genome-wide analysis of DUF221 domain-containing gene family in Oryza species and identification of its salinity stress-responsive members in rice. PLoS ONE 2017, 12, e0182469. [Google Scholar] [CrossRef] [Green Version]
- Jacquemin, J.; Ammiraju, J.S.; Haberer, G.; Billheimer, D.D.; Yu, Y.; Liu, L.C.; Rivera, L.F.; Mayer, K.; Chen, M.; Wing, R.A. Fifteen million years of evolution in the Oryza genus shows extensive gene family expansion. Mol. Plant 2014, 7, 642–656. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wang, J.; Lin, W.; Li, S.; Li, H.; Zhou, J.; Ni, P.; Dong, W.; Hu, S.; Zeng, C.; et al. The Genomes of Oryza sativa: A history of duplications. PLoS Biol. 2005, 3, e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, C.G.; Xiong, Y.Q.; Liu, T.Y.; Sun, S.H.; Chen, L.B.; Chen, M.S. Evidence for an ancient whole-genome duplication event in rice and other cereals. Acta Genet. Sin. 2005, 32, 519–527. [Google Scholar] [PubMed]
- Wang, X.; Shi, X.; Hao, B.; Ge, S.; Luo, J. Duplication and DNA segmental loss in the rice genome: Implications for diploidization. New Phytol. 2005, 165, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, G.; Pichersky, E.; Malik, V.S.; Timko, M.P.; Scolnik, P.A.; Cashmore, A.R. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. USA 1988, 85, 7089–7093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Xu, W.; Hu, X.; Liu, H.; Lin, Y. W-box and G-box elements play important roles in early senescence of rice flag leaf. Sci. Rep. 2016, 6, 20881. [Google Scholar] [CrossRef] [Green Version]
- Vandepoele, K.; Raes, J.; De Veylder, L.; Rouzé, P.; Rombauts, S.; Inzé, D. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 2002, 14, 903–916. [Google Scholar] [CrossRef] [Green Version]
- Magyar, Z.; De Veylder, L.; Atanassova, A.; Bakó, L.; Inzé, D.; Bögre, L. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell 2005, 17, 2527–2541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, K.; Suzuki, T.; Iwata, E.; Nakamichi, N.; Suzuki, T.; Chen, P.; Ohtani, M.; Ishida, T.; Hosoya, H.; Müller, S.; et al. Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J. 2015, 34, 1992–2007. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cai, W.; Liu, Y.; Li, H.; Fu, L.; Liu, Z.; Xu, L.; Liu, H.; Xu, T.; Xiong, Y. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc. Natl. Acad. Sci. USA 2017, 114, 2765–2770. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, B.; Krishnan, S.P.; Swarup, S.; Bajic, V.B. Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann. Bot. 2005, 96, 669–681. [Google Scholar] [CrossRef] [Green Version]
- Loreti, E.; Valeri, M.C.; Novi, G.; Perata, P. Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiol. 2018, 176, 1286–1298. [Google Scholar] [CrossRef]
- Fujita, Y.; Fujita, M.; Satoh, R.; Maruyama, K.; Parvez, M.M.; Seki, M.; Hiratsu, K.; Ohme-Takagi, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 2005, 17, 3470–3488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakabayashi, K.; Okamoto, M.; Koshiba, T.; Kamiya, Y.; Nambara, E. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: Epigenetic and genetic regulation of transcription in seed. Plant J. 2005, 41, 697–709. [Google Scholar] [CrossRef]
- Dong, X. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1998, 1, 316–323. [Google Scholar] [CrossRef]
- Fan, J.; Niu, X.; Wang, Y.; Ren, G.; Zhuo, T.; Yang, Y.; Lu, B.R.; Liu, Y. Short, direct repeats (SDRs)-mediated post-transcriptional processing of a transcription factor gene OsVP1 in rice (Oryza sativa). J. Exp. Bot. 2007, 58, 3811–3817. [Google Scholar] [CrossRef]
- McCarty, D.R.; Hattori, T.; Carson, C.B.; Vasil, V.; Lazar, M.; Vasil, I.K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 1991, 66, 895–905. [Google Scholar] [CrossRef]
- Hattori, T.; Vasil, V.; Rosenkrans, L.; Hannah, L.C.; McCarty, D.R.; Vasil, I.K. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 1992, 6, 609–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarty, D.R. Genetic control and integration of maturation and germination pathways in seed development. Annu. Rev. Plant Biol. 1995, 46, 71–93. [Google Scholar] [CrossRef]
- Suzuki, M.; Wang, H.H.; McCarty, D.R. Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol. 2007, 143, 902–911. [Google Scholar] [CrossRef] [Green Version]
- Li, W.H.; Yang, J.; Gu, X. Expression divergence between duplicate genes. Trends Genet. 2005, 21, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.L. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. B Biol. Sci. 1994, 256, 119–124. [Google Scholar] [CrossRef]
- Force, A.; Lynch, M.; Pickett, F.B.; Amores, A.; Yan, Y.L.; Postlethwait, J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999, 151, 1531–1545. [Google Scholar] [CrossRef]
- Hughes, T.E.; Langdale, J.A.; Kelly, S. The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize. Genome Res. 2014, 24, 1348–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Du, X.; Wang, H.; Jin, C.; Gao, C.; Liu, J.; Zhang, Q. Comparative studies on duplicated tdrd7 paralogs in teleosts: Molecular evolution caused neo-functionalization. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 30, 347–357. [Google Scholar] [CrossRef]
- Hoffmann, R.D.; Palmgren, M. Purifying selection acts on coding and non-coding sequences of paralogous genes in Arabidopsis thaliana. BMC Genom. 2016, 17, 456. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, B.; Flagel, L.; Stupar, R.M.; Udall, J.A.; Verma, N.; Springer, N.M.; Wendel, J.F. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 2009, 182, 503–517. [Google Scholar] [CrossRef] [Green Version]
- Vilo, J.; Brazma, A.; Jonassen, I.; Robinson, A.; Ukkonen, E. Mining for putative regulatory elements in the yeast genome using gene expression data. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2000, 8, 384–394. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; DeBarry, J.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M.; et al. TM4: A free, open-source system for microarray data management and analysis. BioTechniques 2003, 34, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Nijhawan, A.; Tyagi, A.K.; Khurana, J.P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2006, 345, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
Old Classification | New Classification | O. sativa, japonica | O. barthii | O. brachyantha | O. glaberrima | O. rufipogon | O. punctata | O. nivara | O. meridionalis | O. longistaminata | O. sativa, indica | O. glumaepatula |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CBSX1 | CBSX1 | LOC_Os08g22149 | OBART08G10130 | OB08G19240 | ORGLA08G0088800 | ORUFI08G11440 | ONIVA08G10830 | OMERI08G08660 | KN540332.1_FG002 | BGIOSGA014003 | OGLUM08G11030 | |
CBSX2 | CBSX2 | LOC_Os09g02710 | OBART09G00750 | OB09G10450 | ORGLA09G0006600 | ORUFI09G00780 | OPUNC09G00530 | ONIVA09G00790 | OMERI09G00790 | KN538975.1_FGP001 | BGIOSGA030223 | OGLUM09G01050 |
CBSX3 | CBSX3 | LOC_Os02g57280 | OBART02G37390 | OB02G44090 | ORGLA02G0326000 | ORUFI02G38890 | OPUNC02G34550 | ONIVA02G40140 | OMERI02G35160 | KN539631.1_FGP002 | BGIOSGA009298 | OGLUM02G38520 |
CBSX4 | CBSX4 | LOC_Os03g52690 | OBART03G33380 | OB03G40470 | ORGLA03G0303100 | ORUFI03G34760 | OPUNC03G30600 | ONIVA01G07590 | OMERI03G30610 | KN539195.1_FGP002 | BGIOSGA009847 | OGLUM03G33040 |
CBSX5 | CBSX5 | LOC_Os04g05010 | OBART04G01510 | OB04G11410 | ORGLA04G0012700 | ORUFI04G01970 | OPUNC04G01560 | ONIVA04G01220 | OMERI04G01560 | KN540164.1_FGP003 | BGIOSGA038246 | OGLUM09G00370 |
CBSX6 | CBSX6 | LOC_Os01g44360 | OBART01G23850 | OB01G33220 | ORUFI01G26680 | OPUNC01G23900 | ONIVA01G26810 | OMERI01G21950 | KN538828.1_FGP037 | BGIOSGA004059 | OGLUM01G27660 | |
CBSCBS5 | CBSX7 | LOC_Os01g69090 | OBART01G42010 | OB01G50800 | ORGLA01G0359900 | ORUFI01G45370 | OPUNC01G40900 | ONIVA01G47160 | OMERI01G39010 | KN538700.1_FGP054 | BGIOSGA000236 | OGLUM01G46190 |
- | CBSX8 | LOC_Os08g41740 | OBART08G21410 | OB08G28150 | ORGLA08G0231800 | ORUFI08G23880 | OPUNC08G19500 | ONIVA08G24390 | OMERI02G01220 | BGIOSGA026597 | OGLUM08G22650 | |
CBSX9 | CBSX9 | LOC_Os02g06410 | OBART02G04490 | OB02G13800 | ORGLA02G0041600 | ORUFI02G04640 | OPUNC02G03750 | ONIVA02G04500 | OMERI02G05310 | BGIOSGA007572 | OGLUM02G04420 | |
- | CBSX10 | LOC_Os10g35630 | OBART10G14660 | OB10G21840 | ORUFI10G15650 | OPUNC10G13150 | ONIVA10G16500 | OMERI10G11390 | BGIOSGA033216 | |||
CBSX11 | CBSX11 | LOC_Os02g42640 | OBART02G25440 | OB02G32800 | ORUFI02G26820 | OPUNC02G23230 | ONIVA02G27880 | OMERI02G24920 | KN539013.1_FGP003 | BGIOSGA008689 | OGLUM02G25950 | |
CBSX12 | CBSX12 | LOC_Os04g58310 | OBART04G29820 | OB04G36790 | ORGLA04G0261200 | ORUFI04G31480 | OPUNC04G27350 | ONIVA04G28300 | OMERI04G25210 | BGIOSGA014082 | OGLUM04G29730 | |
- | CBSX13 | OMERI02G33320 | ||||||||||
- | CBSX14 | OMERI01G33360 | ||||||||||
- | CBSX15 | ONIVA05G14030 | ||||||||||
CBSX7/CBSCBS1 | CBSCBS1 | LOC_Os01g40420 | OBART01G20960 | OB01G30560 | ORUFI01G23670 | OPUNC01G21010 | ONIVA01G23560 | OMERI01G19150 | KN538783.1_FGP013 | BGIOSGA001328 | OGLUM01G24630 | |
CBSCBS2 | CBSCBS2 | LOC_Os01g69240 | OBART01G42110 | OB01G50980 | ORGLA01G0361100 | ORUFI01G45460 | OPUNC01G41000 | ONIVA01G47250 | OMERI01G39130 | KN538700.1_FGP089 | BGIOSGA000232 | OGLUM01G46320 |
CBSCBS3 | CBSCBS3 | LOC_Os04g31340 | OBART04G10160 | OB04G17440 | ORGLA04G0072300 | ORUFI04G11190 | OPUNC04G08200 | ONIVA04G07900 | OMERI04G09350 | KN539457.1_FGP003 | BGIOSGA015211 | OGLUM04G09770 |
CBSX10 | CBSCBS4 | LOC_Os01g44250 | OBART01G23730 | OB01G33160 | ORGLA01G0192900 | ORUFI01G26590 | OPUNC01G23850 | ONIVA01G26710 | OMERI01G21900 | KN538828.1_FGP039 | BGIOSGA004055 | OGLUM01G27560 |
- | CBSCBS5 | OMERI05G12070 | ||||||||||
- | CBSCBS6 | ORGLA02G0341000 | ||||||||||
- | CBSCBS7 | ORGLA03G0390100 | ||||||||||
CBSCLC1 | CBSCLC1 | LOC_Os01g65500 | OBART01G39050 | OB01G47840 | ORGLA01G0329900 | ORUFI01G42410 | OPUNC01G37800 | ONIVA01G43900 | OMERI01G36000 | KN539884.1_FGP008 | BGIOSGA004909 | OGLUM01G43320 |
CBSCLC2 | CBSCLC2 | LOC_Os01g50860 | OBART01G27980 | OB01G37140 | ORGLA01G0231200 | ORUFI01G31050 | OPUNC01G27880 | ONIVA01G31950 | KN539741.1_FGP010 | BGIOSGA004288 | OGLUM01G31960 | |
CBSCLC3 | CBSCLC3 | LOC_Os02g35190 | OBART02G20670 | OB02G28240 | ORGLA02G0177300 | ORUFI02G21700 | OPUNC02G18580 | ONIVA02G22650 | OMERI02G20380 | KN538737.1_FGP009 | BGIOSGA006252 | OGLUM02G20940 |
CBSCLC4 | CBSCLC4 | LOC_Os03g48940 | OBART03G30570 | OB03G37650 | ORGLA03G0280100 | ORUFI03G31810 | OPUNC03G27870 | ONIVA03G31920 | OMERI03G26730 | KN542832.1_FGP001 | BGIOSGA009993 | OGLUM03G30790 |
CBSCLC5 | CBSCLC5 | LOC_Os04g55210 | OBART04G27250 | OB04G34170 | ORGLA04G0235000 | ORUFI04G28900 | OPUNC04G24730 | ONIVA04G25550 | OMERI04G22690 | KN538912.1_FGP009 | BGIOSGA017236 | OGLUM04G27200 |
CBSCLC6 | CBSCLC6 | LOC_Os08g20570 | OBART08G09810 | OB08G18730 | ORGLA08G0084800 | ORUFI08G11100 | OPUNC08G09140 | ONIVA08G10550 | KN538923.1_FGP002 | BGIOSGA028422 | OGLUM08G10690 | |
CBSCLC7 | CBSCLC7 | LOC_Os12g25200 | OBART12G10660 | OB12G19240 | ORGLA12G0099500 | ORUFI12G11740 | OPUNC12G09550 | ONIVA08G11240 | OMERI12G07260 | KN540094.1_FGP001 | BGIOSGA036265 | OGLUM12G11730 |
CBSCLC8 | CBSCLC8 | LOC_Os08g38980 | OBART08G19330 | OB08G26380 | ORGLA08G0170000 | ORUFI08G21610 | OPUNC08G17380 | ONIVA08G21390 | OMERI08G15970 | KN539998.1_FGP007 | BGIOSGA028930 | OGLUM08G20420 |
CBSCLC9 | CBSCLC9 | LOC_Os02g48880 | OBART02G30500 | OB02G37640 | ORGLA02G0260400 | ORUFI02G32200 | OPUNC02G28140 | ONIVA02G33300 | OMERI02G29500 | KN539828.1_FGP002 | BGIOSGA005723 | OGLUM02G31200 |
CBSCLC10 | CBSCLC10 | LOC_Os04g36560 | OBART04G13680 | OB04G20940 | ORGLA04G0107400 | ORUFI04G14940 | OPUNC04G11570 | ONIVA04G11880 | OMERI04G12300 | KN538758.1__FGP045 | BGIOSGA015026 | OGLUM04g13430 |
- | CBSCLC11 | OBART08G09800 | ||||||||||
CBSSIS1 | CBSSIS1 | LOC_Os02g06360 | OBART02G04440 | OB02G13760 | ORGLA02G0041100 | ORUFI02G04580 | OPUNC02G03710 | ONIVA02G04440 | OMERI02G05280 | AMDW01038281.1_FGP001 | BGIOSGA007570 | OGLUM02G04360 |
CBSPPR1 | CBSPPR1 | LOC_Os09g26190 | OBART09G11240 | OB09G17770 | ORGLA09G0083900 | ORUFI09G12030 | OPUNC09G09700 | ONIVA09G10970 | OMERI09G08760 | KN538802.1_FGP030 | BGIOSGA030810 | OGLUM09G11610 |
CBSIMPDH1 | CBSIMPDH1 | LOC_Os03g56800 | OBART03G36230 | OB03G43120 | ORGLA03G0332100 | ORUFI03G37690 | OPUNC03G33230 | ONIVA10G12680 | OMERI03G33460 | KN538718.1_FGP015 | BGIOSGA013663 | OGLUM03G35940 |
CBSDUFCH1 | CBSDUFCH1 | LOC_Os03g39640 | OBART03G24980 | OB03G33260 | ORGLA03G0231500 | ORUFI03G25590 | OPUNC03G22890 | ONIVA05G20570 | OMERI09G00570 | KN539929.1_FGP005 | BGIOSGA010327 | OGLUM03G25680 |
- | CBSDUFCH2 | ORGLA11G0223100 | ||||||||||
CBSDUF1 | CBSDUF1 | LOC_Os05g32850 | OBART05G15460 | OB05G23380 | ORGLA05G0133400 | ORUFI05G16590 | OPUNC05G13520 | ONIVA05G15910 | KN538789.1_FGP036 | BGIOSGA019818 | OGLUM05G16330 | |
CBSDUF2 | CBSDUF2 | LOC_Os03g47120 | OBART03G29240 | OB03G36640 | ORGLA03G0270900 | ORUFI03G30380 | OPUNC03G26710 | ONIVA03G30450 | OMERI03G25510 | KN539376.1_FGP002 | BGIOSGA013305 | OGLUM03G29470 |
CBSDUF3 | CBSDUF3 | LOC_Os03g03430 | OB03G11990 | ORGLA03G0017900 | OPUNC03G01830 | ONIVA03G01670 | OMERI03G01920 | KN538922.1_FGP007 | BGIOSGA011758 | OGLUM03G02000 | ||
CBSCBSPB1 | CBSCBSPB1 | LOC_Os01g69900 | OBART01G42210 | OB01G51130 | ORGLA01G0362200 | ORUFI01G45630 | OPUNC01G30700 | ONIVA01G48290 | OMERI01G39240 | AMDW01119939.1_FGP001 | BGIOSGA005080 | OGLUM01G46480 |
CBSCBSPB2 | CBSCBSPB2 | LOC_Os11g06930 | OBART11G04430 | OB11G13640 | ORGLA11G0041900 | ORUFI11G04310 | OPUNC11G04060 | ONIVA11G04460 | OMERI11G03910 | KN538712.1_FGP055 | BGIOSGA034423 | OGLUM11G04170 |
CBSCBSPB3 | CBSCBSPB3 | LOC_Os01g73040 | OBART01G44640 | OB01G53940 | ORGLA01G0384500 | ORUFI01G48120 | OPUNC01G43690 | ONIVA01G50810 | OMERI01G41500 | KN541465.1_FGP002 | BGIOSGA005225 | OGLUM01G49030 |
CBSCBSPB4 | CBSCBSPB4 | LOC_Os12g07190 | OBART12G04230 | OB12G14180 | ORGLA12G0039900 | ORUFI12G04820 | OPUNC12G04290 | ONIVA12G03900 | OMERI12G02390 | KN538717.1_FGP087 | BGIOSGA036554 | OGLUM12G05000 |
CBSCBSPB5 | CBSCBSPB5 | OBART11G14240 | OB11G21210 | ORUFI11G15240 | OPUNC11G11960 | ONIVA11G13730 | OMERI11G11890 | KN538707.1_FGT010 | BGIOSGA033955 | OGLUM11G13800 | ||
CBSX8 | CBSCBSCBD1 | LOC_Os03g63940 | OBART03G41570 | OB03G48600 | ORGLA03G0385000 | ORUFI03G43350 | OPUNC03G38580 | ONIVA03G44080 | OMERI03G38270 | KN538745.1_FGP032 | BGIOSGA013983 | OGLUM03G41400 |
CBSCBS4 | CBSCBSCBD2 | LOC_Os04g32880 | OBART04G11280 | ORGLA04G0082300 | ORUFI04G12420 | OPUNC04G09270 | ONIVA04G09180 | OMERI04G09790 | KN540832.1_FGP004 | BGIOSGA015167 | OGLUM04G10930 | |
- | CBSTerCH | BGIOSGA039158 | ||||||||||
- | CBSCoatomerE | BGIOSGA017237 |
Genome | Paralogous Gene Pairs | Ka | Ks | Ka/Ks | Type of Selection | Type of Duplication |
---|---|---|---|---|---|---|
O. barthii | ||||||
OBART01G42110/OBART04G10160 | ObCBSCBS2/ObCBSCBS3 | 0.318665 | 1.884767 | 0.169074 | Negative | Segmental |
OBART01G42010/OBART08G21410 | ObCBSX7/ObCBSX8 | 0.418751 | 1.481156 | 0.282719 | Negative | Segmental |
OBART11G04430/OBART12G04230 | CBSCBSPB2/CBSCBSPB4 | 0.13844 | 0.685464 | 0.201966 | Negative | Segmental |
OBART02G20670/OBART04G13680 | CBSCLC3/CBSCLC10 | 0.073549 | 0.819377 | 0.089762 | Negative | Segmental |
OBART08G09810/OBART08G09800 * | ObaC-BSCLC6/ObaCBSCLC11 | 0 | 0 | Tandem | ||
O. brachyantha | ||||||
OB01G50980/OB04G17440 | ObrCBSCBS2/ObrCBSCBS3 | 0.280887 | 2.127978 | 0.131997 | Negative | Segmental |
OB01G50800/OB08G28150 | ObrCBSX7/ObrCBSX8 | 0.412242 | 1.49645 | 0.27548 | Negative | Segmental |
OB10G21840/OB02G32800 | ObrCBSX10/ObrCBSX11 | 0.420248 | 0.90595 | 0.463875 | Negative | Segmental |
OB11G13640/OB12G14180 | ObrCBSCBSPB2/ObrCBSCBSPB4 | 0.12394 | 0.770187 | 0.160921 | Negative | Segmental |
OB02G28240/OB04G20940 | ObrCBSCLC3/ObrCBSCLC10 | 0.076766 | 0.80562 | 0.095288 | Negative | Segmental |
OB02G37640/OB08G26380 | ObrCBSCLC9/ObrCBSCLC9 | 0.168039 | 1.389784 | 0.12091 | Negative | Segmental |
O. glaberrima | ||||||
ORGLA01G0361100/ORGLA04G0072300 | OgCBSCBS2/OgCBSCBS3 | 0.312057 | 2.522365 | 0.123716 | Negative | Segmental |
ORGLA11G0041900/ORGLA12G0039900 | OgCBSCBSPB2/OgCBSCBSPB4 | 0.148377 | 0.637685 | 0.232681 | Negative | Segmental |
ORGLA02G0177300/ORGLA04G0107400 | OgCBSCLC3/OgCBSCLC10 | 0.073549 | 0.81441 | 0.09031 | Negative | Segmental |
O. glumaepatula | ||||||
OGLUM01G46320/OGLUM04G09770 | OglCBSCBS2/OglCBSCBS3 | 0.301647 | 2.187936 | 0.137868 | Negative | Segmental |
OGLUM01G46190/OGLUM08G22650 | OglCBSX7/OglCBSX8 | 0.512293 | 1.151735 | 0.444801 | Negative | Segmental |
OGLUM11G04170/OGLUM12G05000 | OglCBSCBSPB2/OglCBSCBSPB4 | 0.152228 | 0.644932 | 0.236037 | Negative | Segmental |
OGLUM02G20940/OGLUM04G13430 | OglCBSCLC3/OglCBSCLC10 | 0.085222 | 0.857666 | 0.099366 | Negative | Segmental |
O. sativa subsp. indica | ||||||
BGIOSGA000232/BGIOSGA015211 | OsIbCBSCBS2/OsICBSCBS3 | 0.314794 | 2.122648 | 0.148302 | Negative | Segmental |
BGIOSGA000236/BGIOSGA026597 | OsICBSX7/OsICBSX8 | 0.465974 | 1.220924 | 0.381657 | Negative | Segmental |
BGIOSGA033216/BGIOSGA008689 | OsICBSCBS7/OsICBSX11 | 0.371022 | 0.695562 | 0.533414 | Negative | Segmental |
BGIOSGA034423/BGIOSGA036554 | OsICBSCBSPB2/OsICBSCBSPB4 | 0.149293 | 0.639354 | 0.233506 | Negative | Segmental |
BGIOSGA006252/BGIOSGA015026 | OsICBSCLC3/OsICBSCLC10 | 0.06991 | 0.819761 | 0.085281 | Negative | Segmental |
BGIOSGA008689/BGIOSGA014082 | OsICBSX11/OsICBSX12 | 0.487428 | 0.914739 | 0.53286 | Negative | Segmental |
BGIOSGA017236/BGIOSGA017237 | OsIC-BSCLC5/OsICBSCoatomerE | 0.177 | 0.251 | 0.705 | Negative | Tandem |
O. sativa subsp. japonica | ||||||
LOC_Os01g69240/LOC_Os04g31340 | OsJCBSCBS2/OsJCBSCBS3 | 0.310713 | 2.117603 | 0.146728 | Negative | Segmental |
LOC_Os01g69090/LOC_Os08g41740 | OsJCBSX7/OsJCBSX8 | 0.481468 | 1.14693 | 0.419788 | Negative | Segmental |
LOC_Os11g06930/LOC_Os12g07190 | OsJCBSCBSPB2/OsJCBSCBSPB4 | 0.152918 | 0.646455 | 0.236549 | Negative | Segmental |
O. meridionalis | ||||||
OMERI02G20380/OMERI04G12300 | OmCBSCLC3/OmCBSCLC10 | 0.099376 | 0.823261 | 0.12071 | Negative | Segmental |
O. nivara | ||||||
ONIVA01G47160/ONIVA08G24390 | OnCBX7/OnCBSX8 | 0.472698 | 1.145059 | 0.412816 | Negative | Segmental |
ONIVA11G04460/ONIVA12G03900 | OnCBSCBSPB2/OnCBSCBSPB4 | 0.155831 | 0.642344 | 0.242597 | Negative | Segmental |
ONIVA02G22650/ONIVA04G11880 | OnCBSCLC3/OnCBSCLC10 | 0.079511 | 0.825245 | 0.096349 | Negative | Segmental |
O. punctata | ||||||
OPUNC01G41000/OPUNC04G08200 | OpCBSCBS2/OpCBSCBS3 | 0.303796 | 2.715368 | 0.11188 | Negative | Segmental |
OPUNC01G40900/OPUNC08G19500 | OpCBSX7/OpCBSX8 | 0.440624 | 1.36049 | 0.323871 | Negative | Segmental |
OPUNC11G04060/OPUNC12G04290 | OpCBSCBSPB2/OpCBSCBSPB4 | 0.165014 | 0.732182 | 0.225373 | Negative | Segmental |
OPUNC02G18580/OPUNC04G11570 | OpCBSCLC3/OpCBSCLC10 | 0.061213 | 0.852646 | 0.071792 | Negative | Segmental |
O. rufipogon | ||||||
ORUFI01G45460/ORUFI04G11190 | OrCBSCBS2/OrCBSCBS3 | 0.325525 | 2.010145 | 0.161941 | Negative | Segmental |
ORUFI01G45370/ORUFI08G23880 | OrCBSX7/OrCBSX8 | 0.47554 | 1.099707 | 0.432424 | Negative | Segmental |
ORUFI10G15650/ORUFI02G26820 | OrCBSX10/OrCBSX11 | 1.091475 | 2.108241 | 0.517719 | Negative | Segmental |
ORUFI11G04310/ORUFI12G04820 | OrCBSCBSPB2/OrCBSCBSPB4 | 0.155928 | 0.646651 | 0.241132 | Negative | Segmental |
ORUFI02G21700/ORUFI04G14940 | OrCBSCLC3/OrCBSCLC10 | 0.078198 | 0.750899 | 0.104139 | Negative | Segmental |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomar, S.; Subba, A.; Bala, M.; Singh, A.K.; Pareek, A.; Singla-Pareek, S.L. Genetic Conservation of CBS Domain Containing Protein Family in Oryza Species and Their Association with Abiotic Stress Responses. Int. J. Mol. Sci. 2022, 23, 1687. https://doi.org/10.3390/ijms23031687
Tomar S, Subba A, Bala M, Singh AK, Pareek A, Singla-Pareek SL. Genetic Conservation of CBS Domain Containing Protein Family in Oryza Species and Their Association with Abiotic Stress Responses. International Journal of Molecular Sciences. 2022; 23(3):1687. https://doi.org/10.3390/ijms23031687
Chicago/Turabian StyleTomar, Surabhi, Ashish Subba, Meenu Bala, Anil Kumar Singh, Ashwani Pareek, and Sneh Lata Singla-Pareek. 2022. "Genetic Conservation of CBS Domain Containing Protein Family in Oryza Species and Their Association with Abiotic Stress Responses" International Journal of Molecular Sciences 23, no. 3: 1687. https://doi.org/10.3390/ijms23031687
APA StyleTomar, S., Subba, A., Bala, M., Singh, A. K., Pareek, A., & Singla-Pareek, S. L. (2022). Genetic Conservation of CBS Domain Containing Protein Family in Oryza Species and Their Association with Abiotic Stress Responses. International Journal of Molecular Sciences, 23(3), 1687. https://doi.org/10.3390/ijms23031687