Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines
Abstract
:1. Introduction
2. Adipokines in Sleep Physiology and Disorders
2.1. Leptin
2.2. Adiponectin
2.3. Chemerin
2.4. Vaspin
2.5. Omentin
2.6. Visfatin
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AdiopoR1/2 | adiponectin receptors 1/2 |
AgRP | agouti-related peptide |
AHI | apnea hypopnea index |
AMPK | AMP-activated protein kinase |
APPL1 | adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 |
AUC | area under the curve |
BCAMS | the Beijing child and adolescent metabolic syndrome study |
BMI | body mass index |
CART | cocaine and amphetamine regulated transcript |
CCrL2 | C-C motif chemokine receptor like 2 |
CFS | the Cleveland family study |
CMKLR1 | chemerin chemokine-like receptor 1 |
CPAP | continuous positive airway pressure |
CRH | corticotropin- releasing hormone |
CRP | C-reactive portein |
DIO | diet-induced obesity |
DM2 | diabetes mellitus type 2 |
eNOS | endothelial nitric oxide synthase |
ERK1/2 | extracellular signal-regulated kinase |
GPR1 | G protein coupled receptor 1 |
HLA-DR | human leukocyte antigen–DR isotype |
HMW | high molecular weight |
HNF1β | hepatocyte nuclear factor-1 β |
HNF4α | hepatocyte nuclear factor-4α |
HOMA-IR | homeostatic model assessment for insulin resistance |
HTN | hypertension |
IGF1 | insulin-like growth factor 1 |
JAK | Janus kinase |
LH | luteinizing hormone |
MAPK | mitogen-activated protein kinase |
NAD | nicotinamide adenine dinucleotide |
NF-κB | nuclear factor κ B |
NPY | neuropeptide Y |
OBR | obstructive sleep apnea syndrome |
OSAHS | obstructive sleep apnea hypopnea syndrome |
OSAS | obstructive sleep apnea syndrome |
PI3K | phosphoinositide 3-kinase |
POMC | pro-opiomelanocortin |
PPARα | peroxisome proliferator-activated receptor-α |
REM | rapid eye movement |
STAT | signal transducer and activator of transcription |
TNF-α | tumor necrosis factor-α |
References
- Lehr, S.; Hartwig, S.; Sell, H. Adipokines: A treasure trove for the discovery of biomarkers for metabolic disorders. Proteom. Clin. Appl. 2012, 6, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Funcke, J.B.; Scherer, P.E. Beyond adiponectin and leptin: Adipose tissue-derived mediators of inter-organ communication. J. Lipid Res. 2019, 60, 1648–1684. [Google Scholar] [CrossRef]
- Grandner, M.A. Sleep, Health, and Society. Sleep Med. Clin. 2017, 12, 1–22. [Google Scholar] [CrossRef]
- Ruan, H.; Xun, P.; Cai, W.; He, K.; Tang, Q. Habitual Sleep Duration and Risk of Childhood Obesity: Systematic Review and Dose-response Meta-analysis of Prospective Cohort Studies. Sci. Rep. 2015, 5, 16160. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, K.; Tasali, E.; Leproult, R.; Van Cauter, E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat. Rev. Endocrinol. 2009, 5, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, F.P.; Miller, M.A. Sleep and Cardio-Metabolic Disease. Curr. Cardiol. Rep. 2017, 19, 110. [Google Scholar] [CrossRef] [Green Version]
- Primack, C. Obesity and Sleep. Nurs. Clin. N. Am. 2021, 56, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Kovács, D.; Fazekas, F.; Oláh, A.; Törőcsik, D. Adipokines in the Skin and in Dermatological Diseases. Int. J. Mol. Sci. 2020, 21, 9048. [Google Scholar] [CrossRef]
- Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr. Physiol. 2018, 9, 1–58. [Google Scholar] [CrossRef]
- Azamar-Llamas, D.; Hernández-Molina, G.; Ramos-Ávalos, B.; Furuzawa-Carballeda, J. Adipokine Contribution to the Pathogenesis of Osteoarthritis. Mediat. Inflamm. 2017, 2017, 5468023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Chen, Y.; Heiman, M.; Dimarchi, R. Leptin: Structure, function and biology. Vitam. Horm. 2005, 71, 345–372. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Ahima, R.S. Physiology of leptin: Energy homeostasis, neuroendocrine function and metabolism. Metabolism 2015, 64, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Fu, J.; Yu, X.T.; Li, G.; Xu, L.; Yin, J.; Cheng, H.; Hou, D.; Zhao, X.; Gao, S.; et al. Sleep Duration and Cardiometabolic Risk Among Chinese School-aged Children: Do Adipokines Play a Mediating Role? Sleep 2017, 40, zsx042. [Google Scholar] [CrossRef] [PubMed]
- Boeke, C.E.; Storfer-Isser, A.; Redline, S.; Taveras, E.M. Childhood sleep duration and quality in relation to leptin concentration in two cohort studies. Sleep 2014, 37, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Taheri, S.; Lin, L.; Austin, D.; Young, T.; Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004, 1, e62. [Google Scholar] [CrossRef]
- Stern, J.H.; Grant, A.S.; Thomson, C.A.; Tinker, L.; Hale, L.; Brennan, K.M.; Woods, N.F.; Chen, Z. Short sleep duration is associated with decreased serum leptin, increased energy intake and decreased diet quality in postmenopausal women. Obesity 2014, 22, E55–E61. [Google Scholar] [CrossRef]
- Chaput, J.P.; Després, J.P.; Bouchard, C.; Tremblay, A. Short sleep duration is associated with reduced leptin levels and increased adiposity: Results from the Quebec family study. Obesity 2007, 15, 253–261. [Google Scholar] [CrossRef]
- Hayes, A.L.; Xu, F.; Babineau, D.; Patel, S.R. Sleep duration and circulating adipokine levels. Sleep 2011, 34, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Mullington, J.M.; Chan, J.L.; Van Dongen, H.P.; Szuba, M.P.; Samaras, J.; Price, N.J.; Meier-Ewert, H.K.; Dinges, D.F.; Mantzoros, C.S. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol. 2003, 15, 851–854. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, K.; Tasali, E.; Penev, P.; Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 2004, 141, 846–850. [Google Scholar] [CrossRef]
- Omisade, A.; Buxton, O.M.; Rusak, B. Impact of a.acute sleep restriction on cortisol and leptin levels in young women. Physiol. Behav. 2010, 99, 651–656. [Google Scholar] [CrossRef]
- Simpson, N.S.; Banks, S.; Dinges, D.F. Sleep restriction is associated with increased morning plasma leptin concentrations, especially in women. Biol. Res. Nurs. 2010, 12, 47–53. [Google Scholar] [CrossRef]
- Pejovic, S.; Vgontzas, A.N.; Basta, M.; Tsaoussoglou, M.; Zoumakis, E.; Vgontzas, A.; Bixler, E.O.; Chrousos, G.P. Leptin and hunger levels in young healthy adults after one night of sleep loss. J. Sleep Res. 2010, 19, 552–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, A.C.; Dorrian, J.; Liu, P.Y.; Van Dongen, H.P.; Wittert, G.A.; Harmer, L.J.; Banks, S. Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men. PLoS ONE 2012, 7, e41218. [Google Scholar] [CrossRef] [Green Version]
- Hirota, T.; Morioka, T.; Yoda, K.; Toi, N.; Hayashi, N.; Maruo, S.; Yamazaki, Y.; Kurajoh, M.; Motoyama, K.; Yamada, S.; et al. Positive association of plasma leptin with sleep quality in obese type 2 diabetes patients. J. Diabetes Investig. 2018, 9, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, N.; Virkkunen, M.; Tani, P.; Appelberg, B.; Rimón, R.; Porkka-Heiskanen, T. Growth hormone-insulin-like growth factor-1 axis, leptin and sleep in anorexia nervosa patients. Neuropsychobiology 2003, 47, 78–85. [Google Scholar] [CrossRef]
- Littman, A.J.; Vitiello, M.V.; Foster-Schubert, K.; Ulrich, C.M.; Tworoger, S.S.; Potter, J.D.; Weigle, D.S.; McTiernan, A. Sleep, ghrelin, leptin and changes in body weight during a 1-year moderate-intensity physical activity intervention. Int J. Obes. 2007, 31, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Ciftci, T.U.; Kokturk, O.; Bukan, N.; Bilgihan, A. Leptin and ghrelin levels in patients with obstructive sleep apnea syndrome. Respiration 2005, 72, 395–401. [Google Scholar] [CrossRef]
- Harsch, I.A.; Koebnick, C.; Wallaschofski, H.; Schahin, S.P.; Hahn, E.G.; Ficker, J.H.; Lohmann, T.; Konturek, P.C. Resistin levels in patients with obstructive sleep apnoea syndrome--the link to subclinical inflammation? Med. Sci. Monit. 2004, 10, CR510–CR515. [Google Scholar]
- Radić, R.; Nikolić, V.; Karner, I.; Kosović, P.; Kurbel, S.; Selthofer, R.; Curković, M. Circadian rhythm of blood leptin level in obese and non-obese people. Coll. Antropol. 2003, 27, 555–561. [Google Scholar] [PubMed]
- Scheer, F.A.; Hilton, M.F.; Mantzoros, C.S.; Shea, S.A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA 2009, 106, 4453–4458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota, M.C.; Waterhouse, J.; De-Souza, D.A.; Rossato, L.T.; Silva, C.M.; Araújo, M.B.; Tufik, S.; De Mello, M.T.; Crispim, C.A. Sleep pattern is associated with adipokine levels and nutritional markers in resident physicians. Chronobiol. Int. 2014, 31, 1130–1138. [Google Scholar] [CrossRef]
- Tankersley, C.; Kleeberger, S.; Russ, B.; Schwartz, A.; Smith, P. Modified control of breathing in genetically obese (ob/ob) mice. J. Appl. Physiol. 1996, 81, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Laposky, A.D.; Shelton, J.; Bass, J.; Dugovic, C.; Perrino, N.; Turek, F.W. Altered sleep regulation in leptin-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R894–R903. [Google Scholar] [CrossRef]
- Laposky, A.D.; Bradley, M.A.; Williams, D.L.; Bass, J.; Turek, F.W. Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R2059–R2066. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, C.P.; Schaub, C.D.; Haines, A.S.; Berkowitz, D.E.; Tankersley, C.G.; Schwartz, A.R.; Smith, P.L. Leptin prevents respiratory depression in obesity. Am. J. Respir. Crit. Care Med. 1999, 159, 1477–1484. [Google Scholar] [CrossRef]
- Yao, Q.; Pho, H.; Kirkness, J.; Ladenheim, E.E.; Bi, S.; Moran, T.H.; Fuller, D.D.; Schwartz, A.R.; Polotsky, V.Y. Localizing Effects of Leptin on Upper Airway and Respiratory Control during Sleep. Sleep 2016, 39, 1097–1106. [Google Scholar] [CrossRef]
- Berger, S.; Pho, H.; Fleury-Curado, T.; Bevans-Fonti, S.; Younas, H.; Shin, M.K.; Jun, J.C.; Anokye-Danso, F.; Ahima, R.S.; Enquist, L.W.; et al. Intranasal Leptin Relieves Sleep-disordered Breathing in Mice with Diet-induced Obesity. Am. J. Respir. Crit. Care Med. 2019, 199, 773–783. [Google Scholar] [CrossRef]
- Shapiro, S.D.; Chin, C.H.; Kirkness, J.P.; McGinley, B.M.; Patil, S.P.; Polotsky, V.Y.; Biselli, P.J.; Smith, P.L.; Schneider, H.; Schwartz, A.R. Leptin and the control of pharyngeal patency during sleep in severe obesity. J. Appl. Physiol. 2014, 116, 1334–1341. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.V.; Scherer, P.E. Adiponectin, the past two decades. J. Mol. Cell Biol. 2016, 8, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Hitze, B.; Bosy-Westphal, A.; Bielfeldt, F.; Settler, U.; Plachta-Danielzik, S.; Pfeuffer, M.; Schrezenmeir, J.; Mönig, H.; Müller, M.J. Determinants and impact of sleep duration in children and adolescents: Data of the Kiel Obesity Prevention Study. Eur. J. Clin. Nutr. 2009, 63, 739–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Disi, D.; Al-Daghri, N.; Khanam, L.; Al-Othman, A.; Al-Saif, M.; Sabico, S.; Chrousos, G. Subjective sleep duration and quality influence diet composition and circulating adipocytokines and ghrelin levels in teen-age girls. Endocr. J. 2010, 57, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Shea, S.A.; Hilton, M.F.; Orlova, C.; Ayers, R.T.; Mantzoros, C.S. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J. Clin. Endocrinol. Metab. 2005, 90, 2537–2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotani, K.; Sakane, N.; Saiga, K.; Kato, M.; Ishida, K.; Kato, Y.; Kurozawa, Y. Serum adiponectin levels and lifestyle factors in Japanese men. Heart Vessel. 2007, 22, 291–296. [Google Scholar] [CrossRef]
- Bingol, Z.; Karaayvaz, E.B.; Telci, A.; Bilge, A.K.; Okumus, G.; Kiyan, E. Leptin and adiponectin levels in obstructive sleep apnea phenotypes. Biomark. Med. 2019, 13, 865–874. [Google Scholar] [CrossRef]
- Magnusdottir, S.; Thomas, R.J.; Hilmisson, H. Can improvements in sleep quality positively affect serum adiponectin-levels in patients with obstructive sleep apnea? Sleep Med. 2021, 84, 324–333. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Daniele, T.M.D.C.; Façanha, C.F.S.; Forti, A.C.E.; Bruin, P.F.C.; Bruin, V.M.S. Adiponectin levels and sleep deprivation in patients with endocrine metabolic disorders. Rev. Assoc. Med. Bras. 2018, 64, 1122–1128. [Google Scholar] [CrossRef]
- De Mattos, A.B.; Pinto, M.J.; Oliveira, C.; Biz, C.; Ribeiro, E.B.; Do Nascimento, C.M.; Andersen, M.L.; Tufik, S.; Oyama, L.M. Dietary fish oil did not prevent sleep deprived rats from a reduction in adipose tissue adiponectin gene expression. Lipids Health Dis. 2008, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Khalyfa, A.; Mutskov, V.; Carreras, A.; Khalyfa, A.A.; Hakim, F.; Gozal, D. Sleep fragmentation during late gestation induces metabolic perturbations and epigenetic changes in adiponectin gene expression in male adult offspring mice. Diabetes 2014, 63, 3230–3241. [Google Scholar] [CrossRef] [Green Version]
- Helfer, G.; Wu, Q.F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018, 238, R79–R94. [Google Scholar] [CrossRef] [PubMed]
- Daxer, J.; Herttrich, T.; Zhao, Y.Y.; Vogel, M.; Hiemisch, A.; Scheuermann, K.; Körner, A.; Kratzsch, J.; Kiess, W.; Quante, M. Nocturnal levels of chemerin and progranulin in adolescents: Influence of sex, body mass index, glucose metabolism and sleep. J. Pediatr. Endocrinol. Metab. 2017, 30, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, P.; Zhou, C.; Jia, X.; Kang, J. Elevated levels of serum chemerin in patients with obstructive sleep apnea syndrome. Biomarkers 2012, 17, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Lin, Y.; Sun, S.; Zhang, Q. Changes in four plasma adipokines before and after sleep in OSAS patients. Clin. Respir. J. 2017, 11, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J.; Zieger, K.; Pippel, J.; Heiker, J.T. Molecular Mechanisms of Vaspin Action-From Adipose Tissue to Skin and Bone, from Blood Vessels to the Brain. Adv. Exp. Med. Biol. 2019, 1111, 159–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiskac, M.; Zorlu, M.; Akkoyunlu, M.E.; Kilic, E.; Karatoprak, C.; Cakirca, M.; Yavuz, E.; Ardic, C.; Camli, A.A.; Cikrikcioglu, M.; et al. Vaspin and lipocalin-2 levels in severe obsructive sleep apnea. J. Thorac. Dis. 2014, 6, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhuang, X.; Li, X.; Huang, S.; Zhang, L.; Lou, F.; Chen, S.; Ni, Y. Significance of vaspin in obstructive sleep apnea-hypopnea syndrome. Exp. Ther. Med. 2016, 11, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Ni, Y.; Jiang, D.; Pu, Y.; Liu, X.; Chen, S.; Sun, F.; Sun, A.; Pan, Z. Vaspin as a Risk Factor of Insulin Resistance in Obstructive Sleep Apnea-Hypopnea Syndrome in an Animal Model. Clin. Lab. 2015, 61, 883–889. [Google Scholar] [CrossRef]
- Tan, B.K.; Adya, R.; Randeva, H.S. Omentin: A novel link between inflammation, diabesity, and cardiovascular disease. Trends Cardiovasc. Med. 2010, 20, 143–148. [Google Scholar] [CrossRef]
- Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr. Physiol. 2017, 7, 765–781. [Google Scholar] [CrossRef]
- Zirlik, S.; Hildner, K.M.; Targosz, A.; Neurath, M.F.; Fuchs, F.S.; Brzozowski, T.; Konturek, P.C. Melatonin and omentin: Influence factors in the obstructive sleep apnoea syndrome? J. Physiol. Pharmacol. 2013, 64, 353–360. [Google Scholar]
- Kurt, O.K.; Tosun, M.; Alcelik, A.; Yilmaz, B.; Talay, F. Serum omentin levels in patients with obstructive sleep apnea. Sleep Breath. 2014, 18, 391–395. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, X.; Zhou, C.; Li, P.; Kang, J. Decreased levels of serum omentin-1 in patients with obstructive sleep apnoea syndrome. Ann. Clin. Biochem. 2013, 50, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Uygur, F.; Tanrıverdi, H.; Can, M.; Erboy, F.; Altınsoy, B.; Atalay, F.; Ornek, T.; Damar, M.; Kokturk, F.; Tor, M. Association between continuous positive airway pressure and circulating omentin levels in patients with obstructive sleep apnoea. Sleep Breath. 2016, 20, 939–945. [Google Scholar] [CrossRef]
- Zhang, D.M.; Pang, X.L.; Huang, R.; Gong, F.Y.; Zhong, X.; Xiao, Y. Adiponectin, Omentin, Ghrelin, and Visfatin Levels in Obese Patients with Severe Obstructive Sleep Apnea. Biomed. Res. Int. 2018, 2018, 3410135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Zhang, B.; Hao, C.; Huang, X.; Li, X.; Huang, Y.; Luo, Z. Omentin-A Novel Adipokine in Respiratory Diseases. Int. J. Mol. Sci. 2017, 19, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saddi-Rosa, P.; Oliveira, C.S.; Giuffrida, F.M.; Reis, A.F. Visfatin, glucose metabolism and vascular disease: A review of evidence. Diabetol. Metab. Syndr. 2010, 2, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahmen, N.; Manderscheid, N.; Helfrich, J.; Musholt, P.B.; Forst, T.; Pfützner, A.; Engel, A. Elevated peripheral visfatin levels in narcoleptic patients. PLoS ONE 2008, 3, e2980. [Google Scholar] [CrossRef] [Green Version]
- Trakada, G.; Steiropoulos, P.; Nena, E.; Gkioka, T.; Kouliatsis, G.; Pataka, A.; Sotiriou, I.; Anevlavis, S.; Papanas, N.; Bouros, D. Plasma visfatin levels in severe obstructive sleep apnea-hypopnea syndrome. Sleep Breath. 2009, 13, 349–355. [Google Scholar] [CrossRef]
- Benedict, C.; Shostak, A.; Lange, T.; Brooks, S.J.; Schiöth, H.B.; Schultes, B.; Born, J.; Oster, H.; Hallschmid, M. Diurnal rhythm of circulating nicotinamide phosphoribosyltransferase (Nampt/visfatin/PBEF): Impact of sleep loss and relation to glucose metabolism. J. Clin. Endocrinol. Metab. 2012, 97, E218–E222. [Google Scholar] [CrossRef] [Green Version]
Adipokine | Functions in Sleep and Sleep Disorders |
---|---|
Leptin |
|
Adiponectin |
|
Chemerin |
|
Vaspin |
|
Omentin |
|
Visfatin |
|
Adipokine | Receptor | Major Signaling Pathway | Major Metabolic Functions |
---|---|---|---|
Leptin | Ob receptors (OBRs) | JAK-STAT(↑), POMC and CART (↑), NPY and AgRP (↓) | Promote satiety, decrease feeding, improve reproductive health |
Adiponectin | AdipoR1, AdipoR2, T-cadherin | AMPK (↑), PPARα(↑), interaction with PI3K/Akt signaling via APPL1, gluconeogenic genes (↓) | Decrease hepatic glucose production, increase fatty acid oxidation, improve insulin sensitivity, improve cardiovascular health |
Chemerin | CMKLR1, GPR1, CCrl2 | MAPK(↑), ERK1/2 (↑), PI3K-Akt (↑) | Regulate adipogenesis, angiogenesis, and inflammation, decrease glucose production |
Vaspin | Unknown | Akt (↑), NF-κB(↓), POMC (↑), NPY(↓) | Improve insulin sensitivity, reduce endothelial inflammation, reduce food intake |
Omentin | Unknown | Akt (↑), NF-κB (↓) | Reduce endothelial inflammation, improve insulin sensitivity |
Visfatin | Unknown | Syntaxin 4(↑), HNF4α(↑), HNF1β(↑),ERK1/2 (↑) | Regulate NAD production, insulin secretion, and beta-cell function; Increase endothelial dysfunction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Chen, Y.; Upender, R.P. Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines. Int. J. Mol. Sci. 2022, 23, 1706. https://doi.org/10.3390/ijms23031706
Wei Z, Chen Y, Upender RP. Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines. International Journal of Molecular Sciences. 2022; 23(3):1706. https://doi.org/10.3390/ijms23031706
Chicago/Turabian StyleWei, Zhikui, You Chen, and Raghu P. Upender. 2022. "Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines" International Journal of Molecular Sciences 23, no. 3: 1706. https://doi.org/10.3390/ijms23031706
APA StyleWei, Z., Chen, Y., & Upender, R. P. (2022). Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines. International Journal of Molecular Sciences, 23(3), 1706. https://doi.org/10.3390/ijms23031706