Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects
Abstract
:1. Introduction
2. Fundamentals of Optogenetics
2.1. Overviews of Opsins
2.2. Light Delivery Systems
3. Optogenetics Applied to Brain Injury
3.1. Optogenetics in Brain Monitoring
3.2. Optogenetics in Analyzing Neural Circuitry
3.3. Optogenetics in Protecting Neural Cells
3.4. Optogenetics in Promoting Regeneration
4. Clinical Perspectives and Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1P | One-photon |
2P | Two-photon |
AAV | Adeno-associated virus |
ABI | Acute brain injury |
Arch | Archaerhodopsin |
BiPOLES | Bidirectional pair of opsins for light-induced excitation and silencing |
ChETA | Channelrhodopsin-2 with E123T mutation |
ChR2 | Channelrhodopsin-2 |
ChRs | Channelrhodopsins |
eNpHR | Enhanced NpHR |
GAP43 | Growth-associated factor 43 |
iM1 | Ipsilesional primary motor cortex |
LCN | Lateral cerebellar nucleus |
LED | Light-emitting diode |
mTBI | Mild traumatic brain injury |
NHP | Non-human primates |
NpHR | Halorhodopsins |
ReaChR | Red-activatable channelrhodopsin |
RSC | Retrosplenial cortex |
SCI | Spinal cord injury |
TBI | Traumatic brain injury |
VChR1 | Volvox carteri channelrhodopsin-1 |
References
- Kim, C.K.; Adhikari, A.; Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 2017, 18, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Miesenböck, G. The Optogenetic Catechism. Science 2009, 326, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Magno, L.A.V.; Tenza-Ferrer, H.; Collodetti, M.; Aguiar, M.F.G.; Rodrigues, A.P.C.; da Silva, R.S.; Silva, J.D.P.; Nicolau, N.F.; Rosa, D.V.F.; Birbrair, A.; et al. Optogenetic Stimulation of the M2 Cortex Reverts Motor Dysfunction in a Mouse Model of Parkinson’s Disease. J. Neurosci. 2019, 39, 3234–3248. [Google Scholar] [CrossRef] [PubMed]
- Berglind, F.; Andersson, M.; Kokaia, M. Dynamic interaction of local and transhemispheric networks is necessary for progressive intensification of hippocampal seizures. Sci. Rep. 2018, 8, 5669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Tang, Y.; Xing, Y.; Kramer, P.; Bellinger, L.; Tao, F. Potential Application of Optogenetic Stimulation in the Treatment of Pain and Migraine Headache: A Perspective from Animal Studies. Brain Sci. 2019, 9, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donzis, E.J.; Estrada-Sánchez, A.M.; Indersmitten, T.; Oikonomou, K.; Tran, C.H.; Wang, C.; Latifi, S.; Golshani, P.; Cepeda, C.; Levine, M.S. Cortical Network Dynamics Is Altered in Mouse Models of Huntington’s Disease. Cereb. Cortex 2020, 30, 2372–2388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Kim, J.; Tonegawa, S. Amygdala Reward Neurons Form and Store Fear Extinction Memory. Neuron 2020, 105, 1077–1093.e7. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Tang, B.; Jiang, H. Optogenetic investigation of neuropsychiatric diseases. Int. J. Neurosci. 2013, 123, 7–16. [Google Scholar] [CrossRef]
- GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef] [Green Version]
- Joy, M.T.; Ben Assayag, E.; Shabashov-Stone, D.; Liraz-Zaltsman, S.; Mazzitelli, J.; Arenas, M.; Abduljawad, N.; Kliper, E.; Korczyn, A.D.; Thareja, N.S.; et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell 2019, 176, 1143–1157.e13. [Google Scholar] [CrossRef] [Green Version]
- Hyder, A.A.; Wunderlich, C.A.; Puvanachandra, P.; Gururaj, G.; Kobusingye, O.C. The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation 2007, 22, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 2017, 66, 1–16. [Google Scholar] [CrossRef]
- Rajsic, S.; Gothe, H.; Borba, H.H.; Sroczynski, G.; Vujicic, J.; Toell, T.; Siebert, U. Economic burden of stroke: A systematic review on post-stroke care. Eur. J. Health Econ. 2019, 20, 107–134. [Google Scholar] [CrossRef]
- Algattas, H.; Huang, J.H. Traumatic Brain Injury pathophysiology and treatments: Early, intermediate, and late phases post-injury. Int. J. Mol. Sci. 2013, 15, 309–341. [Google Scholar] [CrossRef]
- Blennow, K.; Hardy, J.; Zetterberg, H. The neuropathology and neurobiology of traumatic brain injury. Neuron 2012, 76, 886–899. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.P.; Yoon, Y.S.; Lee, J.G.; Oh, J.S.; Lee, J.S.; Seog, T.; Lee, H.Y. Effects of Electric Cortical Stimulation (ECS) and Transcranial Direct Current Stimulation (tDCS) on Rats With a Traumatic Brain Injury. Ann. Rehabil. Med. 2018, 42, 502–513. [Google Scholar] [CrossRef]
- Lu, H.; Kobilo, T.; Robertson, C.; Tong, S.; Celnik, P.; Pelled, G. Transcranial magnetic stimulation facilitates neurorehabilitation after pediatric traumatic brain injury. Sci. Rep. 2015, 5, 14769. [Google Scholar] [CrossRef]
- Zare-Shahabadi, A.; Ataei, A.; Rezaei, N. Proteins brighten the brain. Life Sci. 2016, 167, 1–5. [Google Scholar] [CrossRef]
- Pushkarev, A.; Inoue, K.; Larom, S.; Flores-Uribe, J.; Singh, M.; Konno, M.; Tomida, S.; Ito, S.; Nakamura, R.; Tsunoda, S.P.; et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 2018, 558, 595–599. [Google Scholar] [CrossRef]
- Shihoya, W.; Inoue, K.; Singh, M.; Konno, M.; Hososhima, S.; Yamashita, K.; Ikeda, K.; Higuchi, A.; Izume, T.; Okazaki, S.; et al. Crystal structure of heliorhodopsin. Nature 2019, 574, 132–136. [Google Scholar] [CrossRef]
- Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Lin, M.Z.; Steinbach, P.; Tsien, R.Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 2009, 96, 1803–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunaydin, L.A.; Yizhar, O.; Berndt, A.; Sohal, V.S.; Deisseroth, K.; Hegemann, P. Ultrafast optogenetic control. Nat. Neurosci. 2010, 13, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Prigge, M.; Beyrière, F.; Tsunoda, S.P.; Mattis, J.; Yizhar, O.; Hegemann, P.; Deisseroth, K. Red-shifted optogenetic excitation: A tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 2008, 11, 631–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hososhima, S.; Yuasa, H.; Ishizuka, T.; Hoque, M.R.; Yamashita, T.; Yamanaka, A.; Sugano, E.; Tomita, H.; Yawo, H. Near-infrared (NIR) up-conversion optogenetics. Sci. Rep. 2015, 5, 16533. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.; Knutsen, P.M.; Muller, A.; Kleinfeld, D.; Tsien, R.Y. ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 2013, 16, 1499–1508. [Google Scholar] [CrossRef] [Green Version]
- Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 2003, 100, 13940–13945. [Google Scholar] [CrossRef] [Green Version]
- Gradinaru, V.; Thompson, K.R.; Deisseroth, K. eNpHR: A Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 2008, 36, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Ferenczi, E.; Deisseroth, K. When the electricity (and the lights) go out: Transient changes in excitability. Nat. Neurosci. 2012, 15, 1058–1060. [Google Scholar] [CrossRef]
- Chow, B.Y.; Han, X.; Dobry, A.S.; Qian, X.; Chuong, A.S.; Li, M.; Henninger, M.A.; Belfort, G.M.; Lin, Y.; Monahan, P.E.; et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010, 463, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Marshel, J.H.; Kim, Y.S.; Machado, T.A.; Quirin, S.; Benson, B.; Kadmon, J.; Raja, C.; Chibukhchyan, A.; Ramakrishnan, C.; Inoue, M.; et al. Cortical layer-specific critical dynamics triggering perception. Science 2019, 365, eaaw5202. [Google Scholar] [CrossRef]
- Berndt, A.; Lee, S.Y.; Ramakrishnan, C.; Deisseroth, K. Structure-Guided Transformation of Channelrhodopsin into a Light-Activated Chloride Channel. Science 2014, 344, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Mendoza-Halliday, D.; Ting, J.T.; Kaiser, T.; Sun, X.Y.; Bastos, A.M.; Wimmer, R.D.; Guo, B.L.; Chen, Q.; Zhou, Y.; et al. An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques. Neuron 2020, 107, 38–51.e8. [Google Scholar] [CrossRef]
- Zabelskii, D.; Alekseev, A.; Kovalev, K.; Rankovic, V.; Balandin, T.; Soloviov, D.; Bratanov, D.; Savelyeva, E.; Podolyak, E.; Volkov, D.; et al. Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat. Commun. 2020, 11, 5707. [Google Scholar] [CrossRef]
- Ganjawala, T.H.; Lu, Q.; Fenner, M.D.; Abrams, G.W.; Pan, Z.H. Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions. Mol. Ther. 2019, 27, 1195–1205. [Google Scholar] [CrossRef]
- Stujenske, J.M.; Spellman, T.; Gordon, J.A. Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics. Cell Rep. 2015, 12, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Vierock, J.; Rodriguez-Rozada, S.; Dieter, A.; Pieper, F.; Sims, R.; Tenedini, F.; Bergs, A.C.F.; Bendifallah, I.; Zhou, F.M.; Zeitzschel, N.; et al. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons. Nat. Commun. 2021, 12, 4527. [Google Scholar] [CrossRef]
- Taslimi, A.; Zoltowski, B.; Miranda, J.G.; Pathak, G.P.; Hughes, R.M.; Tucker, C.L. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase. Nat. Chem. Biol. 2016, 12, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lohman, A.W.; Zhuravlova, Y.; Lu, X.C.; Wiens, M.D.; Hoi, H.; Yaganoglu, S.; Mohr, M.A.; Kitova, E.N.; Klassen, J.S.; et al. Optogenetic control with a photocleavable protein, PhoCl. Nat. Methods 2017, 14, 391–394. [Google Scholar] [CrossRef]
- Zayner, J.P.; Sosnick, T.R. Factors That Control the Chemistry of the LOV Domain Photocycle. PLoS ONE 2014, 9, e87074. [Google Scholar] [CrossRef] [Green Version]
- Berglund, K.; Clissold, K.; Li, H.F.E.; Wen, L.; Park, S.Y.; Gleixner, J.; Klein, M.E.; Lu, D.Y.; Barter, J.W.; Rossi, M.A.; et al. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. Proc. Natl. Acad. Sci. USA 2016, 113, E358–E367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- English, A.W.; Berglund, K.; Carrasco, D.; Goebel, K.; Gross, R.E.; Isaacson, R.; Mistretta, O.C.; Wynans, C. Bioluminescent Optogenetics: A Novel Experimental Therapy to Promote Axon Regeneration after Peripheral Nerve Injury. Int. J. Mol. Sci. 2021, 22, 7217. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.H.; Park, J.H.; Kim, Y.H.; Min, J.; Hwang, E.; Lee, C.J.; Suh, J.K.; Hwang, O.; Jeon, S.R. Optogenetic inactivation of the subthalamic nucleus improves forelimb akinesia in a rat model of Parkinson disease. Neurosurgery 2014, 74, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Pisanello, M.; Pisano, F.; Sileo, L.; Maglie, E.; Bellistri, E.; Spagnolo, B.; Mandelbaum, G.; Sabatini, B.L.; De Vittorio, M.; Pisanello, F. Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers. Sci. Rep. 2018, 8, 4467. [Google Scholar] [CrossRef] [Green Version]
- Ji, B.W.; Guo, Z.J.; Wang, M.H.; Yang, B.; Wang, X.L.; Li, W.; Liu, J.Q. Flexible polyimide-based hybrid optoelectric neural interface with 16 channels of micro-LEDs and electrodes. Microsyst. Nanoeng. 2018, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Baffou, G.; Quidant, R. Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 2013, 7, 171–187. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Xu, W.; Luo, W.; Li, M.; Chu, F.; Xu, L.; Cao, A.; Guan, J.; Tang, S.; et al. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Nano Lett. 2018, 18, 2903–2911. [Google Scholar] [CrossRef]
- Bansal, A.; Liu, H.C.; Jayakumar, M.K.G.; Andersson-Engels, S.; Zhang, Y. Quasi-Continuous Wave Near-Infrared Excitation of Upconversion Nanoparticles for Optogenetic Manipulation of C-elegans. Small 2016, 12, 1732–1743. [Google Scholar] [CrossRef]
- Ai, X.; Lyu, L.; Zhang, Y.; Tang, Y.; Mu, J.; Liu, F.; Zhou, Y.; Zuo, Z.; Liu, G.; Xing, B. Remote Regulation of Membrane Channel Activity by Site-Specific Localization of Lanthanide-Doped Upconversion Nanocrystals. Angew. Chem. Int. Ed. 2017, 56, 3031–3035. [Google Scholar] [CrossRef]
- Chen, S.; Weitemier, A.Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A.J.Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Krukowski, K.; Nolan, A.; Becker, M.; Picard, K.; Vernoux, N.; Frias, E.S.; Feng, X.; Tremblay, M.E.; Rosi, S. Novel microglia-mediated mechanisms underlying synaptic loss and cognitive impairment after traumatic brain injury. Brain Behav. Immun. 2021, 98, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Al-Juboori, M.H.; Walerstein, J.; Xiong, W.; Jin, X. Impaired Glutamate Receptor Function Underlies Early Activity Loss of Ipsilesional Motor Cortex after Closed-Head Mild Traumatic Brain Injury. J. Neurotrauma 2021, 38, 2018–2029. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.J.; Li, P.; Ning, Y.L.; Zhao, Y.; Peng, Y.; Yang, N.; Xu, Y.W.; Chen, J.F.; Zhou, Y.G. A(2A)R inhibition in alleviating spatial recognition memory impairment after TBI is associated with improvement in autophagic flux in RSC. J. Cell. Mol. Med. 2020, 24, 7000–7014. [Google Scholar] [CrossRef] [PubMed]
- Mester, J.R.; Bazzigaluppi, P.; Dorr, A.; Beckett, T.; Burke, M.; McLaurin, J.; Sled, J.G.; Stefanovic, B. Attenuation of tonic inhibition prevents chronic neurovascular impairments in a Thy1-ChR2 mouse model of repeated, mild traumatic brain injury. Theranostics 2021, 11, 7685–7699. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.; Bazzigaluppi, P.; Beckett, T.L.; Bishay, J.; Weisspapir, I.; Dorr, A.; Mester, J.R.; Steinman, J.; Hirschler, L.; Warnking, J.M.; et al. Neurogliovascular dysfunction in a model of repeated traumatic brain injury. Theranostics 2018, 8, 4824–4836. [Google Scholar] [CrossRef]
- Ndode-Ekane, X.E.; Puigferrat Pérez, M.D.M.; Di Sapia, R.; Lapinlampi, N.; Pitkänen, A. Reorganization of Thalamic Inputs to Lesioned Cortex Following Experimental Traumatic Brain Injury. Int. J. Mol. Sci. 2021, 22, 6329. [Google Scholar] [CrossRef]
- Zhao, M.L.; Chen, S.J.; Li, X.H.; Wang, L.N.; Chen, F.; Zhong, S.J.; Yang, C.; Sun, S.K.; Li, J.J.; Dong, H.J.; et al. Optical Depolarization of DCX-Expressing Cells Promoted Cognitive Recovery and Maturation of Newborn Neurons via the Wnt/beta-Catenin Pathway. J. Alzheimers Dis. 2018, 63, 303–318. [Google Scholar] [CrossRef]
- Singla, S.; Garcia, G.E.; Rovenolt, G.E.; Soto, A.L.; Gilmore, E.J.; Hirsch, L.J.; Blumenfeld, H.; Sheth, K.N.; Omay, S.B.; Struck, A.F.; et al. Detecting Seizures and Epileptiform Abnormalities in Acute Brain Injury. Curr. Neurol. Neurosci. Rep. 2020, 20, 42. [Google Scholar] [CrossRef]
- Haque, A.; Ray, S.K.; Cox, A.; Banik, N.L. Neuron specific enolase: A promising therapeutic target in acute spinal cord injury. Metab. Brain Dis. 2016, 31, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- Bouzat, P.; Marques-Vidal, P.; Zerlauth, J.B.; Sala, N.; Suys, T.; Schoettker, P.; Bloch, J.; Daniel, R.T.; Levivier, M.; Meuli, R.; et al. Accuracy of brain multimodal monitoring to detect cerebral hypoperfusion after traumatic brain injury*. Crit. Care Med. 2015, 43, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Aries, M.J.; Czosnyka, M.; Budohoski, K.P.; Steiner, L.A.; Lavinio, A.; Kolias, A.G.; Hutchinson, P.J.; Brady, K.M.; Menon, D.K.; Pickard, J.D.; et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit. Care Med. 2012, 40, 2456–2463. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Huang, C.; Li, J.Z.; Grewe, B.F.; Zhang, Y.; Eismann, S.; Schnitzer, M.J. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 2015, 350, 1361–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, G.; Platisa, J.; Pieribone, V.A.; Raccuglia, D.; Kunst, M.; Nitabach, M.N. Genetically Targeted Optical Electrophysiology in Intact Neural Circuits. Cell 2013, 154, 904–913. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Schwartzbauer, G.; Jia, X.F. Brain Monitoring in Critically Neurologically Impaired Patients. Int. J. Mol. Sci. 2017, 18, 43. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakash, N.; Wang, Z.; Hoeynck, B.; Krueger, N.; Kramer, A.; Balle, E.; Wheeler, D.S.; Wheeler, R.A.; Blackmore, M.G. Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord. J. Neurosci. 2016, 36, 5877–5890. [Google Scholar] [CrossRef]
- Butler, C.R.; Boychuk, J.A.; Pomerleau, F.; Alcala, R.; Huettl, P.; Ai, Y.; Jakobsson, J.; Whiteheart, S.W.; Gerhardt, G.A.; Smith, B.N.; et al. Modulation of epileptogenesis: A paradigm for the integration of enzyme-based microelectrode arrays and optogenetics. Epilepsy Res. 2020, 159, 106244. [Google Scholar] [CrossRef]
- Roy, D.S.; Arons, A.; Mitchell, T.I.; Pignatelli, M.; Ryan, T.J.; Tonegawa, S. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 2016, 531, 508–512. [Google Scholar] [CrossRef] [Green Version]
- Howe, M.W.; Dombeck, D.A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 2016, 535, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Gritton, H.J.; Howe, W.M.; Romano, M.F.; DiFeliceantonio, A.G.; Kramer, M.A.; Saligrama, V.; Bucklin, M.E.; Zemel, D.; Han, X. Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement. Nat. Neurosci. 2019, 22, 586–597. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Wang, E.H.; Woodson, W.J.; Wang, S.; Sun, G.H.; Lee, A.G.; Arac, A.; Fenno, L.E.; Deisseroth, K.; Steinberg, G.K. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc. Natl. Acad. Sci. USA 2014, 111, 12913–12918. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.M.; Ishizaka, S.; Cheng, M.Y.; Wang, E.H.; Bautista, A.R.; Levy, S.; Smerin, D.; Sun, G.; Steinberg, G.K. Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. Sci. Rep. 2017, 7, 46612. [Google Scholar] [CrossRef] [Green Version]
- Pendharkar, A.V.; Smerin, D.; Gonzalez, L.; Wang, E.H.; Levy, S.; Wang, S.; Ishizaka, S.; Ito, M.; Uchino, H.; Chiang, T.; et al. Optogenetic Stimulation Reduces Neuronal Nitric Oxide Synthase Expression After Stroke. Transl. Stroke Res. 2021, 12, 347–356. [Google Scholar] [CrossRef]
- Dias, D.O.; Kim, H.; Holl, D.; Werne Solnestam, B.; Lundeberg, J.; Carlén, M.; Göritz, C.; Frisén, J. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell 2018, 173, 153–165.e22. [Google Scholar] [CrossRef] [Green Version]
- Tennant, K.A.; Taylor, S.L.; White, E.R.; Brown, C.E. Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain. Nat. Commun. 2017, 8, 15879. [Google Scholar] [CrossRef] [Green Version]
- Conti, E.; Mascaro, A.L.A.; Scaglione, A.; de Vito, G.; Calugi, F.; Pasquini, M.; Pizzorusso, T.; Micera, S.; Pavone, F.S. Restoration of motor-evoked cortical activity is a distinguishing feature of the most effective rehabilitation therapy after stroke. bioRxiv 2021. Available online: https://www.biorxiv.org/content/10.1101/2020.03.05.974972v3.full (accessed on 18 October 2021).
- Akamatsu, Y.; Hanafy, K.A. Cell Death and Recovery in Traumatic Brain Injury. Neurotherapeutics 2020, 17, 446–456. [Google Scholar] [CrossRef]
- Luo, C.L.; Li, B.X.; Li, Q.Q.; Chen, X.P.; Sun, Y.X.; Bao, H.J.; Dai, D.K.; Shen, Y.W.; Xu, H.F.; Ni, H.; et al. Autophagy Is Involved in Traumatic Brain Injury-Induced Cell Death and Contributes to Functional Outcome Deficits in Mice. Neuroscience 2011, 184, 54–63. [Google Scholar] [CrossRef]
- Marmarou, A. Intracellular acidosis in human and experimental brain injury. J. Neurotrauma 1992, 9 (Suppl. 2), S551–S562. [Google Scholar]
- Bo, B.; Li, Y.; Li, W.L.; Wang, Y.T.; Tong, S.B. Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia. Brain Stimul. 2020, 13, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Pires Monteiro, S.; Voogd, E.; Muzzi, L.; De Vecchis, G.; Mossink, B.; Levers, M.; Hassink, G.; Van Putten, M.; Le Feber, J.; Hofmeijer, J.; et al. Neuroprotective effect of hypoxic preconditioning and neuronal activation in a in vitro human model of the ischemic penumbra. J. Neural Eng. 2021, 18, 036016. [Google Scholar] [CrossRef]
- Lanshakov, D.A.; Drozd, U.S.; Dygalo, N.N. Optogenetic Stimulation Increases Level of Antiapoptotic Protein Bcl-xL in Neurons. Biochemistry 2017, 82, 340–344. [Google Scholar] [CrossRef]
- Beppu, K.; Sasaki, T.; Tanaka, K.F.; Yamanaka, A.; Fukazawa, Y.; Shigemoto, R.; Matsui, K. Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 2014, 81, 314–320. [Google Scholar] [CrossRef] [Green Version]
- De Feo, D.; Merlini, A.; Laterza, C.; Martino, G. Neural stem cell transplantation in central nervous system disorders: From cell replacement to neuroprotection. Curr. Opin. Neurol. 2012, 25, 322–333. [Google Scholar] [CrossRef]
- Giusto, E.; Donegà, M.; Cossetti, C.; Pluchino, S. Neuro-immune interactions of neural stem cell transplants: From animal disease models to human trials. Exp. Neurol. 2014, 260, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Ceto, S.; Sekiguchi, K.J.; Takashima, Y.; Nimmerjahn, A.; Tuszynski, M.H. Neural Stem Cell Grafts Form Extensive Synaptic Networks that Integrate with Host Circuits after Spinal Cord Injury. Cell Stem Cell 2020, 27, 430–440.e5. [Google Scholar] [CrossRef]
- Yu, S.P.; Tung, J.K.; Wei, Z.Z.; Chen, D.; Berglund, K.; Zhong, W.; Zhang, J.Y.; Gu, X.; Song, M.; Gross, R.E.; et al. Optochemogenetic Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke. J. Neurosci. 2019, 39, 6571–6594. [Google Scholar] [CrossRef] [Green Version]
- Wahl, A.S.; Büchler, U.; Brändli, A.; Brattoli, B.; Musall, S.; Kasper, H.; Ineichen, B.V.; Helmchen, F.; Ommer, B.; Schwab, M.E. Optogenetically stimulating intact rat corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nat. Commun. 2017, 8, 1187. [Google Scholar] [CrossRef] [Green Version]
- Daadi, M.M.; Klausner, J.Q.; Bajar, B.; Goshen, I.; Lee-Messer, C.; Lee, S.Y.; Winge, M.C.; Ramakrishnan, C.; Lo, M.; Sun, G.; et al. Optogenetic Stimulation of Neural Grafts Enhances Neurotransmission and Downregulates the Inflammatory Response in Experimental Stroke Model. Cell Transplant. 2016, 25, 1371–1380. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, E.; Palmero-Canton, D.; Martinez-Rojas, B.; Sánchez-Martín, M.D.; Moreno-Manzano, V. Optogenetic Modulation of Neural Progenitor Cells Improves Neuroregenerative Potential. Int. J. Mol. Sci. 2021, 22, 365. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, L.; Li, W.; Qu, M.; Song, Y.; He, X.; Zhang, Z.; Yang, G.Y.; Wang, Y. Optogenetic Inhibition of Striatal Neuronal Activity Improves the Survival of Transplanted Neural Stem Cells and Neurological Outcomes after Ischemic Stroke in Mice. Stem Cells Int. 2017, 2017, 4364302. [Google Scholar] [CrossRef] [Green Version]
- Tseng, T.C.; Tao, L.; Hsieh, F.Y.; Wei, Y.; Chiu, I.M.; Hsu, S.H. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. Adv. Mater. 2015, 27, 3518–3524. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.Y.; Lin, H.H.; Hsu, S.H. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 2015, 71, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.Y.; Han, H.W.; Chen, X.R.; Yang, C.S.; Wei, Y.; Hsu, S.H. Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials 2018, 174, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Sahel, J.A.; Boulanger-Scemama, E.; Pagot, C.; Arleo, A.; Galluppi, F.; Martel, J.N.; Esposti, S.D.; Delaux, A.; Aubert, J.B.D.; de Montleau, C.; et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 2021, 27, 1223–1229. [Google Scholar] [CrossRef]
- Alilain, W.J.; Li, X.; Horn, K.P.; Dhingra, R.; Dick, T.E.; Herlitze, S.; Silver, J. Light-induced rescue of breathing after spinal cord injury. J. Neurosci. 2008, 28, 11862–11870. [Google Scholar] [CrossRef]
- Yohn, D.C.; Miles, G.B.; Rafuse, V.F.; Brownstone, R.M. Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy. J. Neurosci. 2008, 28, 12409–12418. [Google Scholar] [CrossRef] [Green Version]
- Awad, B.I.; Gutierrez, D.V.; Alilain, W.; Steinmetz, M.P. Optogenetic Photostimulation to Control Bladder Function After Experimental Spinal Cord Injury. Spine J. 2013, 13, S12. [Google Scholar] [CrossRef]
- Gutruf, P.; Rogers, J.A. Implantable, wireless device platforms for neuroscience research. Curr. Opin. Neurobiol. 2018, 50, 42–49. [Google Scholar] [CrossRef]
- Donadon, I.; Bussani, E.; Riccardi, F.; Licastro, D.; Romano, G.; Pianigiani, G.; Pinotti, M.; Konstantinova, P.; Evers, M.; Lin, S.; et al. Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids Res. 2019, 47, 7618–7632. [Google Scholar] [CrossRef]
- Gardner, M.R.; Fellinger, C.H.; Kattenhorn, L.M.; Davis-Gardner, M.E.; Weber, J.A.; Alfant, B.; Zhou, A.S.; Prasad, N.R.; Kondur, H.R.; Newton, W.A.; et al. AAV-delivered eCD4-Ig protects rhesus macaques from high-dose SIVmac239 challenges. Sci. Transl. Med. 2019, 11, eaau5409. [Google Scholar] [CrossRef]
- Leng, Y.; Li, P.; Zhou, L.; Xiao, L.; Liu, Y.; Zheng, Z.; Qin, F.; Hao, Q.; Xu, H.; Yao, S.; et al. Long-Term Correction of Copper Metabolism in Wilson’s Disease Mice with AAV8 Vector Delivering Truncated ATP7B. Hum. Gene Ther. 2019, 30, 1494–1504. [Google Scholar] [CrossRef]
- Kaiser, J. Virus used in gene therapies may pose cancer risk, dog study hints. Science 2020, 10. [Google Scholar] [CrossRef]
- Galvan, A.; Stauffer, W.R.; Acker, L.; El-Shamayleh, Y.; Inoue, K.I.; Ohayon, S.; Schmid, M.C. Nonhuman Primate Optogenetics: Recent Advances and Future Directions. J. Neurosci. 2017, 37, 10894–10903. [Google Scholar] [CrossRef] [Green Version]
- Maimon, B.E.; Diaz, M.; Revol, E.C.M.; Schneider, A.M.; Leaker, B.; Varela, C.E.; Srinivasan, S.; Weber, M.B.; Herr, H.M. Optogenetic Peripheral Nerve Immunogenicity. Sci. Rep. 2018, 8, 14076. [Google Scholar] [CrossRef]
- Adamczyk, A.K.; Zawadzki, P. The Memory-Modifying Potential of Optogenetics and the Need for Neuroethics. NanoEthics 2020, 14, 207–225. [Google Scholar] [CrossRef]
Opsins | Description | Mode | Properties | Reference |
---|---|---|---|---|
ChR2 | Cation channel responsive to blue light; commonly used for optogenetics | Excitatory | Millisecond temporal precision; a high risk of desensitization | Boyden et al., 2005 [21] |
ChETA, ChIEF | Ultrafast opsin, site directed mutation and Chimeric modification of ChR2 | Excitatory | Higher frequency activation and more rapid deactivation than ChR2 | Lin et al., 2009 [22] Gunaydin et al., 2010 [23] |
VChR1 | Redshifted opsin with a similar photocurrent as ChR1 | Excitatory | Slow photocurrent kinetics; low efficiency in high frequency stimulations | Zhang et al., 2008 [24] |
C1V1 | A chimeric combination of ChR1 and VChR2 | Excitatory | High light sensitivity; good expression level on membranes | Hososhima et al., 2015 [25] |
ReaChR | Mutant based on VChR1 | Excitatory | Better opsin expression than VChR1; slow channel closing rate | Lin et al., 2013 [26] |
NpHR | Chloride channel responsive to yellow light | Inhibitory | Millisecond temporal precision; poor trafficking to the membrane; unsuited for long-scale or high-quantity silencing | Nagel et al., 2003 [27] |
eNpHR | Site directed mutation and chimeric modification of NpHR | Inhibitory | High-level expression with augmented inhibitory function; better opsin expression than NpHR; interfere with excitability of neurons | Gradinaru etal., 2008 [28] Ferenczi et al., 2012 [29] |
Arch | Proton pump silences neurons in response to yellow light | Inhibitory | Good for large-scale silencing; high light sensitivity, photocurrents and expression levels | Chow et al., 2010 [30] |
Research Topics | Model | Optogenetic Tools | Area | Reference |
---|---|---|---|---|
Microglia-mediated mechanisms underlying synaptic loss | Controlled cortical impact | Parvalbumin | CA1 hippocampus | Krukowski et al., 2021 [51] |
Longitudinal changes in cortical motor map | Controlled cortical impact | ChR2 | Motor cortex | Nguyen et al., 2021 [52] |
Improvement of spatial recognition memory impairment | Controlled cortical impact | ArCh | RSC | Zeng et al., 2020 [53] |
Response signals from cortical surfaces | Controlled cortical impact | ChR2 | RSC | Zhang et al., 2018 [47] |
Relationship between neuronal and vascular reactivity | Closed head injury | ChR2 | Cortex, arterioles and venules in brain | Mester et al., 2021 [54] |
Neuronal function following TBI | Closed head injury | ChR2 | Peri-contusional brain tissue | Adams et al., 2018 [55] |
The structural reorganization of axonal projection terminals and the functional activity of the thalamocortical network | Fluid percussion injury | ChR2 | S1 | Ndode-Ekane et al., 2021 [56] |
Survival and maturation of newborn neurons during adult neurogenesis | Fluid percussion injury | ChR2 | DG hippocampus | Zhao et al., 2018 [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, M.; Cao, S.; Xu, Y.; Wu, P.; Xu, S.; Pan, Q.; Guo, Y.; Ye, Y.; Wang, Z.; et al. Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects. Int. J. Mol. Sci. 2022, 23, 1800. https://doi.org/10.3390/ijms23031800
Sun Y, Li M, Cao S, Xu Y, Wu P, Xu S, Pan Q, Guo Y, Ye Y, Wang Z, et al. Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects. International Journal of Molecular Sciences. 2022; 23(3):1800. https://doi.org/10.3390/ijms23031800
Chicago/Turabian StyleSun, Yuwen, Manrui Li, Shuqiang Cao, Yang Xu, Peiyan Wu, Shuting Xu, Qian Pan, Yadong Guo, Yi Ye, Zheng Wang, and et al. 2022. "Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects" International Journal of Molecular Sciences 23, no. 3: 1800. https://doi.org/10.3390/ijms23031800
APA StyleSun, Y., Li, M., Cao, S., Xu, Y., Wu, P., Xu, S., Pan, Q., Guo, Y., Ye, Y., Wang, Z., Dai, H., Xie, X., Chen, X., & Liang, W. (2022). Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects. International Journal of Molecular Sciences, 23(3), 1800. https://doi.org/10.3390/ijms23031800