General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action
Abstract
:1. General Anesthesia and Neurodevelopment
Impairment of Neuronal Networks Caused by an Early Exposure of the Developing Brain to General Anesthesia
2. Neuroactive Steroids as Promising Therapeutic Agents
3. Neuroactive Steroids: Endogenous and Synthetic Compounds with Hypnotic Properties but without Neurotoxic Effects
3.1. Chemical Structure and Related Functions of Neuroactive Steroids; Insights from Presently Available Structure-Activity Studies
- -
- 3β-OH ((3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile);
- -
- CDNC24 ((3α,5α)-3-hydroxy-13,24-cyclo-18,21-dinorchol-22-en-24-ol); and
- -
- Alphaxalone (5α-pregnan-3α-ol-11,20-dione) (Figure 1).
3.2. Lack of Neurotoxicity after Prolonged Exposure Following Sufficient Depth of Hypnosis
3.3. Lack of Long-Term Consequences in Cognitive Development
4. Novel Cellular Targets of Neuroactive Steroid Analogues Considered to Be Promising General Anesthetics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jevtović-Todorović, V.; Todorović, S.M.; Mennerick, S.; Powell, S.; Dikranian, K.; Benshoff, N.; Zorumski, C.F.; Olney, J.W. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat. Med. 1998, 4, 460–463. [Google Scholar] [CrossRef]
- Jevtovic-Todorovic, V.; Hartman, R.E.; Izumi, Y.; Benshoff, N.D.; Dikranian, K.; Zorumski, C.F.; Olney, J.W.; Wozniak, D.F. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci. 2003, 23, 876–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yon, J.H.; Daniel-Johnson, J.; Carter, L.B.; Jevtovic-Todorovic, V. Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 2005, 135, 815–827. [Google Scholar] [CrossRef]
- Young, C.; Jevtovic-Todorovic, V.; Qin, Y.Q.; Tenkova, T.; Wang, H.; Labruyere, J.; Olney, J.W. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br. J. Pharm. 2005, 146, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzi, S.; Carter, L.B.; Ori, C.; Jevtovic-Todorovic, V. Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol. 2008, 18, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Schenning, K.J.; Noguchi, K.K.; Martin, L.D.; Manzella, F.M.; Cabrera, O.H.; Dissen, G.A.; Brambrink, A.M. Isoflurane exposure leads to apoptosis of neurons and oligodendrocytes in 20- and 40-day old rhesus macaques. Neurotoxicol. Teratol. 2017, 8, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creeley, C.; Dikranian, K.; Dissen, G.A.; Martin, L.; Olney, J.; Brambrink, A.M. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br. J. Anaesth. 2013, 110 (Suppl. S1), i29–i38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jevtovic-Todorovic, V. Pediatric anesthesia neurotoxicity: An overview of the 2011 SmartTots panel. Anesth. Analg. 2011, 113, 965–968. [Google Scholar] [CrossRef]
- Glavis-Bloom, C.; Alvarado, M.C.; Bachevalier, J. Neonatal hippocampal damage impairs specific food/place associations in adult macaques. Behav. Neurosci. 2013, 127, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Raper, J.; Alvarado, M.C.; Murphy, K.L.; Baxter, M.G. Multiple Anesthetic Exposure in Infant Monkeys Alters Emotional Reactivity to an Acute Stressor. Anesthesiology 2015, 123, 1084–1092. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, M.C.; Murphy, K.L.; Baxter, M.G. Visual recognition memory is impaired in rhesus monkeys repeatedly exposed to sevoflurane in infancy. Br. J. Anaesth. 2017, 119, 517–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Liu, Y.; Xu, S.; Zhao, Q.; Guo, X.; Shen, R.; Wang, F. Early life exposure to sevoflurane impairs adulthood spatial memory in the rat. Neurotoxicology 2013, 39, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Diana, P.; Joksimovic, S.M.; Faisant, A.; Jevtovic-Todorovic, V. Early exposure to general anesthesia impairs social and emotional development in rats. Mol. Neurobiol. 2020, 57, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Rossi, M.G.; Anghelescu, D.L.; Liu, W.; Breazeale, A.M.; Reddick, W.E.; Glass, J.O.; Phillips, N.S.; Jacola, L.M.; Sabin, N.D.; et al. Association Between Anesthesia Exposure and Neurocognitive and Neuroimaging Outcomes in Long-term Survivors of Childhood Acute Lymphoblastic Leukemia. JAMA Oncol. 2019, 5, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.E.; Creeley, C.E.; Hartman, R.E.; Yuede, C.M.; Zorumski, C.F.; Jevtovic-Todorovic, V.; Dikranian, K.; Noguchi, K.K.; Farber, N.B.; Wozniak, D.F. Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment. Neurobiol. Learn Mem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Huttenlocher, P.R.; Arun, S.D. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 1997, 387, 167–178. [Google Scholar] [CrossRef]
- Fan, C.H.; Peng, B.; Zhang, F.C. The postoperative effect of sevoflurane inhalational anesthesia on cognitive function and inflammatory response of pediatric patients. Eur. Rev. Med. Pharm. Sci. 2018, 22, 3971–3975. [Google Scholar] [CrossRef]
- Wilder, R.T.; Flick, R.P.; Sprung, J.; Katusic, S.K.; Barbaresi, W.J.; Mickelson, C.; Gleich, S.J.; Schroeder, D.R.; Weaver, A.L.; Warner, D.O. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 2009, 110, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Wilder, R.T.; Voigt, R.G.; Olson, M.D.; Sprung, J.; Weaver, A.L.; Schroeder, D.R.; Warner, D.O. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 2011, 128, e1053-61. [Google Scholar] [CrossRef] [Green Version]
- FDA Review Results in New Warnings about Using General Anesthetics and Sedation Drugs in Young Children and Pregnant Women. 2016. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-review-results-new-warnings-about-using-general-anesthetics-and (accessed on 20 January 2022).
- Sanchez, V.; Feinstein, S.D.; Lunardi, N.; Joksovic, P.M.; Boscolo, A.; Todorovic, S.M.; Jevtovic-Todorovic, V. General Anesthesia Causes Long-term Impairment of Mitochondrial Morphogenesis and Synaptic Transmission in Developing Rat Brain. J. Am. Soc. Anesthesiol. 2011, 115, 992–1002. [Google Scholar] [CrossRef] [Green Version]
- Boscolo, A.; Milanovic, D.; Starr, J.A.; Sanchez, V.; Oklopcic, A.; Moy, L.; Ori, C.C.; Erisir, A.; Jevtovic-Todorovic, V. Early exposure to general anesthesia disturbs mitochondrial fission and fusion in the developing rat brain. Anesthesiology 2013, 118, 1086–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunardi, N.; Ori, C.; Erisir, A.; Jevtovic-Todorovic, V. General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox. Res. 2010, 17, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, T.J.; Timic Stamenic, T.; Todorovic, S.M. Neonatal general anesthesia causes lasting alterations in excitatory and inhibitory synaptic transmission in the ventrobasal thalamus of adolescent female rats. Neurobiol. Dis. 2019, 127, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.L.; Perez, P.J.; Wang, M.; Gray, C.; Krall, C.; Sun, X.; Hunter, E.; Skinner, J.; Johns, R.A. Neonatal Isoflurane Anesthesia or Disruption of Postsynaptic Density-95 Protein Interactions Change Dendritic Spine Densities and Cognitive Function in Juvenile Mice. Anesthesiology 2020, 133, 812–823. [Google Scholar] [CrossRef]
- Wan, J.; Shen, C.M.; Wang, Y.; Wu, Q.Z.; Wang, Y.L.; Liu, Q.; Sun, Y.M.; Cao, J.P.; Wu, Y.Q. Repeated exposure to propofol in the neonatal period impairs hippocampal synaptic plasticity and the recognition function of rats in adulthood. Brain Res. Bull 2021, 169, 63–72. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, F.; Shi, J. Neonatal exposure to sevoflurane caused cognitive deficits by dysregulating SK2 channels and GluA2-lacking AMPA receptors in juvenile rat hippocampus. Neuropharmacology 2018, 141, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, Y.; Zhang, C.; Tang, C.; Wang, Y.; Ren, J.; Chen, X.; Zhang, Y.; Zhu, Z. Effect of repeated neonatal sevoflurane exposure on the learning, memory and synaptic plasticity at juvenile and adult age. Am. J. Transl. Res. 2017, 9, 4974–4983. [Google Scholar]
- Milanovic, D.; Pesic, V.; Loncarevic-Vasiljkovic, N.; Avramovic, V.; Tesic, V.; Jevtovic-Todorovic, V.; Kanazir, S.; Ruzdijic, S. Neonatal propofol anesthesia changes expression of synaptic plasticity proteins and increases stereotypic and anxyolitic behavior in adult rats. Neurotox. Res. 2017, 32, 247–263. [Google Scholar] [CrossRef]
- Jevtovic-Todorovic, V.; Brambrick, A.M. General Anesthesia and Young Brain: What is New? J. Neurosurg. Anesth. 2018, 30, 217–222. [Google Scholar] [CrossRef]
- Antkowiak, B. How do general anaesthetics work? Naturwissenschaften 2001, 88, 201–213. [Google Scholar] [CrossRef]
- Ishimaru, M.J.; Ikonomidou, C.; Tenkova, T.I.; Der, T.C.; Dikranian, K.; Sesma, M.A.; Olney, J.W. Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J. Comp. Neurol. 1999, 408, 461–476. [Google Scholar] [CrossRef]
- Chastain-Potts, S.E.; Tesic, V.; Tat, Q.L.; Cabrera, O.H.; Quillinan, N.; Jevtovic-Todorovic, V. Sevoflurane Exposure Results in Sex-Specific Transgenerational Upregulation of Target IEGs in the Subiculum. Mol. Neurobiol. 2020, 57, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Atluri, N.; Joksimovic, S.M.; Oklopcic, A.; Milanovic, D.; Klawitter, J.; Eggan, P.; Krishnan, K.; Covey, D.F.; Todorovic, S.M.; Jevtovic-Todorovic, V. A neurosteroid analogue with T-type calcium channel blocking properties is an effective hypnotic, but is not harmful to neonatal rat brain. Br. J. Anaesth. 2018, 120, 768–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesic, V.; Joksimovic, S.M.; Quillinan, N.; Krishnan, K.; Covey, D.F.; Todorovic, S.M.; Jevtovic-Todorovic, V. Neuroactive steroids alphaxalone and CDNC24 are effective hypnotics and potentiators of GABAA currents, but are not neurotoxic to the developing rat brain. Br. J. Anaesth. 2020, 124, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Melcangi, R.C.; Panzica, G.; Garcia-Segura, L.M. Neuroactive steroids: Focus on human brain. Neuroscience 2011, 191, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rupprecht, R.; Holsboer, F. Neuroactive steroids: Mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 1999, 22, 410–416. [Google Scholar] [CrossRef]
- Belelli, D.; Hogenkamp, D.; Gee, K.W.; Lambert, J.J. Realising the therapeutic potential of neuroactive steroid modulators of the GABAA receptor. Neurobiol. Stress 2019, 12, 100207. [Google Scholar] [CrossRef]
- Manzella, F.M.; Covey, D.F.; Jevtovic-Todorovic, V.; Todorovic, S.M. Synthetic neuroactive steroids as new sedatives and anesthetics: Back to the future. J. Neuroendocrinol. 2021, e13086. [Google Scholar] [CrossRef]
- Green, P.S.; Yang, S.H.; Nilsson, K.R.; Kumar, A.S.; Covey, D.F.; Simpkins, J.W. The nonfeminizing enantiomer of 17β-estradiol exerts protective effects in neuronal cultures and a rat model of cerebral ischemia. Endocrinology 2001, 142, 400–406. [Google Scholar] [CrossRef]
- Raghava, N.; Das, B.C.; Ray, S.K. Neuroprotective effects of estrogen in CNS injuries: Insights from animal models. Neurosci. Neuroecon. 2017, 6, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Short, K.L.; Hooper, S.B. The science of steroids. Semin. Fetal. Neonatal. Med. 2019, 24, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. Anesthetic effects of steroid hormones. Proc. Soc. Exper. Biol. Med. 1941, 46, 116–121. [Google Scholar] [CrossRef]
- Lambert, J.J.; Belelli, D.; Hill-Venning, C.; Peters, J.A. Neurosteroids and GABAA receptor function. Trends Pharmacol. Sci. 1995, 16, 295–303. [Google Scholar] [CrossRef]
- Lambert, J.J.; Belelli, D.; Harney, S.C.; Peters, J.A.; Frenguelli, B.G. Modulation of native and recombinant GABAA receptors by endogenous and synthetic neuroactive steroids. Brain Res. Rev. 2001, 37, 68–80. [Google Scholar] [CrossRef]
- Reddy, D.S.; Carver, M.C.; Clossen, B.; Wu, X. Extrasynaptic GABA-A receptor-mediated sex differences in the antiseizure activity of neurosteroids in status epilepticus and complex partial seizures. Epilepsia 2019, 60, 730–743. [Google Scholar] [CrossRef]
- Todorovic, S.M.; Lingle, C.J. Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: Effects of anticonvulsant and anesthetic agents. J. Neurophysiol. 1998, 79, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Strous, R.D.; Maayan, R.; Weizman, A. The relevance of neurosteroids to clinical psychiatry: From the laboratory to the bedside. Eur. Neuropsychopharmacol. 2006, 16, 155–169. [Google Scholar] [CrossRef]
- Zorumski, C.F.; Mennerick, S. Neurosteroids as therapeutic leads in psychiatry. JAMA Psychiatry 2013, 70, 659–660. [Google Scholar] [CrossRef]
- Zinder, O.; Dar, D.E. Neuroactive steroids: Their mechanism of action and their function in the stress response. Acta Physiol. Scand. 1999, 167, 181–188. [Google Scholar] [CrossRef]
- Prange-Kiel, J.; Rune, G.M. Direct and indirect effects of estrogen on rat hippocampus. Neuroscience 2006, 138, 765–772. [Google Scholar] [CrossRef]
- Zhou, L.; Fester, L.; von Blittersdorff, B.; Hassu, B.; Nogens, H.; Prange-Kiel, J.; Jarry, H.; Wegscheider, K.; Rune, G.M. Aromatase inhibitors induce spine synapse loss in the hippocampus of ovariectomized mice. Endocrinology 2010, 151, 1153–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fester, L.; Prange-Kiel, J.; Zhou, L.; Blittersdorf, B.v.; Böhm, J.; Jarry, H.; Schumacher, M.; Rune, G.M. Estrogen-regulated synaptogenesis in the hippocampus: Sexual dimorphism in vivo but not in vitro. J. Steroid Biochem. Mol. Biol. 2012, 131, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.T.; Manzella, F.M.; Huffman, J.; Cabrera, O.H.; Hoffman, J. Cognition in female rats after blocking conversion of androgens to estrogens. Horm. Behav. 2017, 90. [Google Scholar] [CrossRef] [PubMed]
- Penning, D.; Hong, X.; Cazacu, S.L.; Brodie, C. Neurotoxicity of Ketamine and the Neuroprotective Effects of Neurosteroids on Human Cultured Neurons. Anesthesiology 2019. Available online: http://www.asaabstracts.com/strands/asaabstracts/abstract.htm?year=2019&index=10&absnum=1299 (accessed on 20 January 2022).
- Howland, W.S.; Boyan, P.C.; Wang, K.-C. The use of a steroid (Viadril) as an anesthetic agent. Anesthesiology 1956, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Harbord, R.P.; Wild, W.N. Observations on steroid anaesthesia; a preliminary report. Proc. R Soc. Med. 1956, 49, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Watt, J.M. Anaphylactic Reactions after use of CT 1341 (Althesin). Br. Med. J. 1975, 7, 205–206. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.M. Severe histamine mediated reactions to althesin. Anaesth. Intensive Care 1976, 4, 33–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyermek, L.; Iriarte, J.; Crabbé, P. Steroids. CCCX. Structure-Activity Relationship of Some Steroidal Hypnotic Agents. J. Med. Chem. 1968, 11, 117–125. [Google Scholar] [CrossRef]
- Phillipps, G.H. Structure-activity relationships in steroidal anaesthetics. J. Steroid Biochem. 1975, 6, 607–613. [Google Scholar] [CrossRef]
- Han, M.; Zorumski, C.F.; Covey, D.F. Neurosteroid analogues. 4. The effect of methyl substitution at the C-5 and C-10 positions of neurosteroids on electrophysiological activity at GABAA receptors. J. Med. Chem. 1996, 39, 4218–4232. [Google Scholar] [CrossRef]
- Hosie, A.M.; Wilkins, M.E.; Smart, T.G. Neurosteroid binding sites on GABAA receptors. Pharm. Ther. 2007, 116, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Carver, M.C.; Reddy, D.S. Neurosteroid interactions with synaptic and extrasynaptic GABAA receptors: Regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. J. Investig. Derm. 2015, 135, 612–615. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ari, Y. Excitatory actions of gaba during development: The nature of the nurture. Nat. Rev. Neurosci. 2002, 3, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, O.H.; Tesic, V.; Tat, Q.L.; Chastain, S.; Quillinan, N.; Jevtovic-Todorovic, V. Sevoflurane-Induced Dysregulation of Cation-Chloride Cotransporters NKCC1 and KCC2 in Neonatal Mouse Brain. Mol. Neurobiol. 2020, 57, 1–10. [Google Scholar] [CrossRef]
- Todorovic, S.M.; Prakriya, M.; Nakashima, Y.M.; Nilsson, K.R.; Han, M.; Zorumski, C.F.; Covey, D.F.; Lingle, C.J. Enantioselective blockade of T-type Ca2+ current in adult rat sensory neurons by a steroid that lacks gamma-aminobutyric acid-modulatory activity. Mol. Pharm. 1998, 54, 918–927. [Google Scholar] [CrossRef] [Green Version]
- Orestes, P.; Todorovic, S.M. Are neuronal voltage-gated calcium channels valid cellular targets for general anesthetics? Channels 2010, 4, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Pathirathna, S.; Brimelow, B.C.; Jagodic, M.M.; Krishnan, K.; Jiang, X.; Zorumski, C.F.; Mennerick, S.; Covey, D.F.; Todorovic, S.M.; Jevtovic-Todorovic, V. New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5α-reduced neuroactive steroids. Pain 2005, 114, 429–443. [Google Scholar] [CrossRef]
- Joksovic, P.M.; Covey, D.F.; Todorovic, S.M. Inhibition of T-type calcium current in the reticular thalamic nucleus by a novel neuroactive steroid. Ann. N. Y. Acad. Sci. 2007, 1122, 83–94. [Google Scholar] [CrossRef]
- Leresche, N.; Lambert, R.C. T-type calcium channels in synaptic plasticity. Channels 2017, 11, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Perez-Reyes, E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 2003, 83, 117–161. [Google Scholar] [CrossRef] [Green Version]
- Joksimovic, S.L.; Covey, D.F.; Jevtovic-Todorovic, V.; Todorovic, S.M. Neurosteroids in Pain Management: A New Perspective on an Old Player. Front Pharm. 2018, 9, 1127. [Google Scholar] [CrossRef] [Green Version]
- Orestes, P.; Bojadzic, D.; Chow, R.M.; Todorovic, S.M. Mechanisms and functional significance of inhibition of neuronal T-Type calcium channels by isoflurane. Mol. Pharm. 2009, 75, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Todorovic, S.M.; Jevtovic-Todorovic, V. T-type voltage-gated calcium channels as targets for the development of novel pain therapies. Br. J. Pharm. 2011, 163, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, Y.M.; Todorovic, S.M.; Covey, D.F.; Lingle, C.J. The anesthetic steroid (+)-3α-hydroxy-5α-androstane-17β-carbonitrile blocks N-, Q-, and R-type, but Not L- and P-Type, high voltage-activated Ca2+ current in hippocampal and dorsal root ganglion neurons of the rat. Mol. Pharm. 1998, 54, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Eckle, V.S.; DiGruccio, M.R.; Uebele, V.N.; Renger, J.J.; Todorovic, S.M. Inhibition of T-type calcium current in rat thalamocortical neurons by isoflurane. Neuropharmacology 2012, 63, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Joksovic, P.M.; Brimelow, B.C.; Murbartián, J.; Perez-Reyes, E.; Todorovic, S.M. Contrasting anesthetic sensitivities of T-type Ca2+ channels of reticular thalamic neurons and recombinant Ca v3.3 channels. Br. J. Pharm. 2005, 144, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Timic Stamenic, T.; Feseha, S.; Manzella, F.M.; Wallace, D.; Wilkey, D.; Corrigan, T.; Fiedler, H.; Doerr, P.; Krishnan, K.; Raol, Y.H.; et al. The T-type calcium channel isoform Cav3.1 is a target for the hypnotic effect of the anaesthetic neurosteroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile. Br. J. Anaesth. 2021, 126, 245–255. [Google Scholar] [CrossRef]
- Joksimovic, S.M.; Izumi, Y.; Joksimovic, S.L.; Tesic, V.; Krishnan, K.; Asnake, B.; Jevtovic-Todorovic, V.; Covey, D.F.; Zorumski, C.F.; Todorovic, S.M. Novel neurosteroid hypnotic blocks T-type calcium channel-dependent rebound burst firing and suppresses long-term potentiation in the rat subiculum. Br. J. Anaesth. 2019, 122, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.V.; Chandra, D.; Homanics, G.E. GABAA-R α4 subunits are required for the low dose locomotor stimulatory effect of alphaxalone, but not for several other behavioral responses to alphaxalone, etomidate or propofol. Neurochem. Res. 2014, 39, 1048–1056. [Google Scholar] [CrossRef] [Green Version]
- Serrao, J.M.; Goodchild, C.S. Alfaxalone activates Human Pregnane-X Receptors with greater efficacy than Allopregnanolone: An in-vitro study with implications for neuroprotection during anesthesia. bioRxiv 2020. [Google Scholar] [CrossRef]
- Lamba, V.; Yasuda, K.; Lamba, J.K.; Assem, M.; Davila, J.; Strom, S.; Schuetz, E.G. PXR (NR1I2): Splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicol. Appl. Pharm. 2004, 199, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Wnuk, A.; Kajta, M. Steroid and xenobiotic receptor signalling in apoptosis and autophagy of the nervous system. Int. J. Mol. Sci. 2017, 18, 2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Ye, G.; Wang, Z.; Luo, J.; Hao, X. Sub-anesthetic doses of ketamine exert antidepressant-like effects and upregulate the expression of glutamate transporters in the hippocampus of rats. Neurosci. Lett. 2017, 639, 132–137. [Google Scholar] [CrossRef]
- Do, S.H.; Kamatchi, G.L.; Washington, J.M.; Zuo, Z. Effects of volatile anesthetics on glutamate transporter, excitatory amino acid transporter type 3: The role of protein kinase C. J. Am. Soc. Anesthesiol. 2002, 96, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimovic, S.; Useinovic, N.; Quillinan, N.; Covey, D.F.; Todorovic, S.M.; Jevtovic-Todorovic, V. General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1889. https://doi.org/10.3390/ijms23031889
Maksimovic S, Useinovic N, Quillinan N, Covey DF, Todorovic SM, Jevtovic-Todorovic V. General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. International Journal of Molecular Sciences. 2022; 23(3):1889. https://doi.org/10.3390/ijms23031889
Chicago/Turabian StyleMaksimovic, Stefan, Nemanja Useinovic, Nidia Quillinan, Douglas F. Covey, Slobodan M. Todorovic, and Vesna Jevtovic-Todorovic. 2022. "General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action" International Journal of Molecular Sciences 23, no. 3: 1889. https://doi.org/10.3390/ijms23031889
APA StyleMaksimovic, S., Useinovic, N., Quillinan, N., Covey, D. F., Todorovic, S. M., & Jevtovic-Todorovic, V. (2022). General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. International Journal of Molecular Sciences, 23(3), 1889. https://doi.org/10.3390/ijms23031889