Comprehensive Review Regarding Mercury Poisoning and Its Complex Involvement in Alzheimer’s Disease
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Hg Availability
3.1.1. Hg0
3.1.2. Hg2+
3.1.3. Organic Hg
3.2. Toxicological Effects of Hg
Clinical Studies on Toxicological Effects of Hg
3.3. Hg Poisoning Implications in AD
3.3.1. Causes of AD
OS
Apoptosis
Autophagy
3.3.2. Does Hg Poisoning Induce Symptoms for AD?
3.4. The Gut Microbiota as a Modulator of Hg Neurotoxicity
3.5. Hg’s Associations with Fertility Potential
4. Hg-Mechanisms of Action
5. Protective Compounds against Hg-Induced Neurotoxicity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, J.-D.; Zheng, W. Human Exposure and Health Effects of Inorganic and Elemental Mercury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, T.W.; Magos, L. The Toxicology of Mercury and Its Chemical Compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef] [PubMed]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low Dose Mercury Toxicity and Human Health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P. Mercury Exposure and Alzheimer’s Disease in India—An Imminent Threat? Sci. Total Environ. 2017, 589, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-F.; Li, Y.-W.; Liu, Z.-H.; Chen, Q.-L. Exposure to Mercuric Chloride Induces Developmental Damage, Oxidative Stress and Immunotoxicity in Zebrafish Embryos-Larvae. Aquat. Toxicol. 2016, 181, 76–85. [Google Scholar] [CrossRef]
- Fernandes Azevedo, B.; Barros Furieri, L.; Peçanha, F.M.; Wiggers, G.A.; Frizera Vassallo, P.; Ronacher Simões, M.; Fiorim, J.; Rossi de Batista, P.; Fioresi, M.; Rossoni, L.; et al. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems. J. Biomed. Biotechnol. 2012, 2012, 949048. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, Q.; Pan, X. Photochemical Behaviors of Mercury (Hg) Species in Aquatic Systems: A Systematic Review on Reaction Process, Mechanism, and Influencing Factor. Sci. Total Environ. 2020, 720, 137540. [Google Scholar] [CrossRef]
- Ekino, S.; Susa, M.; Ninomiya, T.; Imamura, K.; Kitamura, T. Minamata Disease Revisited: An Update on the Acute and Chronic Manifestations of Methyl Mercury Poisoning. J. Neurol. Sci. 2007, 262, 131–144. [Google Scholar] [CrossRef]
- Miyamoto, Y. Environmental Violence in Minamata: Responsibility, Resistance, and Religiosity in the Case of Ogata Masato and Hongan no Kai. Religions 2018, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- James, A.K.; Nehzati, S.; Dolgova, N.V.; Sokaras, D.; Kroll, T.; Eto, K.; O’Donoghue, J.L.; Watson, G.E.; Myers, G.J.; Krone, P.H.; et al. Rethinking the Minamata Tragedy: What Mercury Species Was Really Responsible? Environ. Sci. Technol. 2020, 54, 2726–2733. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Mercury and Health—Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health (accessed on 7 July 2021).
- United States Environmental Protection Agency. Minamata Convention on Mercury. Available online: https://www.epa.gov/international-cooperation/minamata-convention-mercury (accessed on 7 July 2021).
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.G.; Rinklebe, J. Mercury Speciation, Transformation, and Transportation in Soils, Atmospheric Flux, and Implications for Risk Management: A Critical Review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, S.; Piacentino, D.; Fineschi, V.; Frati, P.; D’Errico, S.; Aromatario, M. Mercuric Chloride Poisoning: Symptoms, Analysis, Therapies, and Autoptic Findings. A Review of the Literature. Crit. Rev. Toxicol. 2019, 49, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Strungaru, S.-A.; Plavan, G.; Ciobica, A.; Nicoara, M.; Robea, M.A.; Solcan, C.; Petrovici, A. Toxicity and Chronic Effects of Deltamethrin Exposure on Zebrafish (Danio rerio) as a Reference Model for Freshwater Fish Community. Ecotoxicol. Environ. Saf. 2019, 171, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Korbas, M.; Pereira, V.; Cappello, T.; Maisano, M.; Canário, J.; Almeida, A.; Pacheco, M. A Multidimensional Concept for Mercury Neuronal and Sensory Toxicity in Fish—From Toxicokinetics and Biochemistry to Morphometry and Behavior. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 129298. [Google Scholar] [CrossRef]
- Franco, J.L.; de Campos Braga, H.; Nunes, A.K.C.; Ribas, C.M.; Stringari, J.; Silva, A.P.; Garcia Pomblum, S.C.; Moro, Â.M.; Bohrer, D.; Santos, A.R.S.; et al. Lactational Exposure to Inorganic Mercury: Evidence of Neurotoxic Effects. Neurotoxicol. Teratol. 2007, 29, 360–367. [Google Scholar] [CrossRef]
- Berntssen, M.H.G.; Aatland, A.; Handy, R.D. Chronic Dietary Mercury Exposure Causes Oxidative Stress, Brain Lesions, and Altered Behaviour in Atlantic Salmon (Salmo salar) parr. Aquat. Toxicol. 2003, 65, 55–72. [Google Scholar] [CrossRef]
- Ma, M.; Du, H.; Wang, D.; Kang, S.; Sun, T. Biotically Mediated Mercury Methylation in the Soils and Sediments of Nam Co Lake, Tibetan Plateau. Environ. Pollut. 2017, 227, 243–251. [Google Scholar] [CrossRef]
- Bjørklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular Interaction Between Mercury and Selenium in Neurotoxicity. Coord. Chem. Rev. 2017, 332, 30–37. [Google Scholar] [CrossRef]
- O’Donoghue, J.L.; Watson, G.E.; Brewer, R.; Zareba, G.; Eto, K.; Takahashi, H.; Marumoto, M.; Love, T.; Harrington, D.; Myers, G.J. Neuropathology Associated with Exposure to Different Concentrations and Species of Mercury: A Review of Autopsy Cases and the Literature. Neurotoxicology 2020, 78, 88–98. [Google Scholar] [CrossRef]
- Broussard, L.A.; Hammett-Stabler, C.A.; Winecker, R.E.; Ropero-Miller, J.D. The Toxicology of Mercury. Lab. Med. 2002, 33, 614–625. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Liu, Z.; Chen, Q. Environmentally Relevant Concentrations of Mercury Exposure Alter Thyroid Hormone Levels and Gene Expression in the Hypothalamic–Pituitary–Thyroid Axis of Zebrafish Larvae. Fish Physiol. Biochem. 2018, 44, 1175–1183. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Mohd Sata, N.S.A.; Ramlan, N.F.; Wan Ibrahim, W.N.; Zulkifli, S.Z.; Che Abdullah, C.A.; Ahmad, S.; Amal, M.N.A. Evaluation of the Neurotoxic Effects of Chronic Embryonic Exposure with Inorganic Mercury on Motor and Anxiety-Like Responses in Zebrafish (Danio rerio) Larvae. Neurotoxicol. Teratol. 2017, 59, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Cariccio, V.L.; Samà, A.; Bramanti, P.; Mazzon, E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol. Trace Elem. Res. 2019, 187, 341–356. [Google Scholar] [CrossRef] [PubMed]
- López-Berenguer, G.; Peñalver, J.; Martínez-López, E. A Critical Review about Neurotoxic Effects in Marine Mammals of Mercury and other Trace Elements. Chemosphere 2020, 246, 125688. [Google Scholar] [CrossRef] [PubMed]
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and its Toxic Effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Milioni, A.L.V.; Nagy, B.V.; Moura, A.L.A.; Zachi, E.C.; Barboni, M.T.S.; Ventura, D.F. Neurotoxic Impact of Mercury on the Central Nervous System Evaluated by Neuropsychological Tests and on the Autonomic Nervous System Evaluated by Dynamic Pupillometry. Neurotoxicology 2017, 59, 263–269. [Google Scholar] [CrossRef]
- Dórea, J.G. Multiple Low-Level Exposures: Hg Interactions with Co-Occurring Neurotoxic Substances in Early Life. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 129243. [Google Scholar] [CrossRef]
- Ehnert-Russo, S.L.; Gelsleichter, J. Mercury Accumulation and Effects in the Brain of the Atlantic Sharpnose Shark (Rhizoprionodon terraenovae). Arch. Environ. Contamin. Toxicol. 2020, 78, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa-Silva, H.T.; Panzenhagen, A.C.; Schmidtt, V.; Teixeira, A.A.; Espitia-Pérez, P.; de Oliveira Franco, A.; Mignori, M.; Torres-Ávila, J.F.; Schnorr, C.E.; Hermann, P.R.S.; et al. Hepatic and Neurobiological Effects of Foetal and Breastfeeding and Adulthood Exposure to Methylmercury in Wistar Rats. Chemosphere 2020, 244, 125400. [Google Scholar] [CrossRef]
- Ceccatelli, S.; Daré, E.; Moors, M. Methylmercury-Induced Neurotoxicity and Apoptosis. Chem. Biol. Interact. 2010, 188, 301–308. [Google Scholar] [CrossRef]
- Bridges, C.C.; Battle, J.R.; Zalups, R.K. Transport of Thiol-Conjugates of Inorganic Mercury in Human Retinal Pigment Epithelial Cells. Toxicol. Appl. Pharmacol. 2007, 221, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Rahman Khan, F.; Sulaiman Alhewairini, S. Zebrafish (Danio rerio) as a Model Organism. Curr. Trends Cancer Manag. 2019, 2019, 81517. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Ho, N.Y.; Müller, F.; Strähle, U. Methyl Mercury Suppresses the Formation of the Tail Primordium in Developing Zebrafish Embryos. Toxicol. Sci. 2010, 115, 379–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, S.A.; Moussa, E.A.; Abbott, L.C. The Effect of Methylmercury Exposure on Early Central Nervous System Development in The Zebrafish (Danio rerio) Embryo. J. Appl. Toxicol. 2011, 32, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.F.; Leite, C.E.; Pereira, T.C.B.; Bogo, M.R.; Bonan, C.D.; Battastini, A.M.O.; Campos, M.M.; Morrone, F.B. Assessment of Mercury Chloride-Induced Toxicity and the Relevance of P2X7 Receptor Activation in Zebrafish Larvae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2013, 158, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.C.; Moussa, E.A.M.; Carl, T.L.; Cortez, D.; Clayton, H.L.; Holland, C.S.; Lindsay, K.; Hassan, S.A.H. Early Exposure to Mercuric Chloride or Methylmercury Alters Zebrafish Embryo (Danio rerio) Development. Poult. Fish. Wildl. Sci. 2017, 5, 1–10. [Google Scholar] [CrossRef]
- Kusik, B.W.; Carvan, M.J., III; Udvadia, A.J. Detection of Mercury in Aquatic Environments Using EPRE Reporter Zebrafish. Mar. Biotechnol. 2008, 10, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Strungaru, S.-A.; Robea, M.A.; Plavan, G.; Todirascu-Ciornea, E.; Ciobica, A.; Nicoara, M. Acute Exposure to Methylmercury Chloride Induces Fast Changes in Swimming Performance, Cognitive Processes and Oxidative Stress of Zebrafish (Danio rerio) as Reference Model for Fish Community. J. Trace Elem. Med. Biol. 2018, 47, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Macirella, R.; Brunelli, E. Morphofunctional Alterations in Zebrafish (Danio rerio) Gills after Exposure to Mercury Chloride. Int. J. Mol. Sci. 2017, 18, 824. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, C.; Gao, X.; Zhu, J.; Wang, L.; Cao, S.; Wu, Q.; Qiao, S.; Zhang, Z.; Li, L. Comparative Effects of Mercury Chloride and Methylmercury Exposure on Early Neurodevelopment in Zebrafish Larvae. RSC Adv. 2019, 9, 10766–10775. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Puga, S.; Cardoso, V.; Pinto-Ribeiro, F.; Raimundo, J.; Barata, M.; Pousão-Ferreira, P.; Pacheco, M.; Almeida, A. Inorganic Mercury Accumulation in Brain Following Waterborne Exposure Elicits a Deficit on the Number of Brain Cells and Impairs Swimming Behavior in Fish (White Seabream—Diplodus sargus). Aquat. Toxicol. 2016, 170, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Wei, L.; Jingfeng, Y.; Chernick, M.; Hinton, D. Developmental Toxicity from Exposure to Various Forms of Mercury Compounds in Medaka Fish (Oryzias latipes) Embryos. PeerJ 2016, 4, e2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guardiola, F.A.; Chaves-Pozo, E.; Espinosa, C.; Romero, D.; Meseguer, J.; Cuesta, A.; Esteban, M.A. Mercury Accumulation, Structural Damages, and Antioxidant and Immune Status Changes in the Gilthead Seabream (Sparus aurata L.) Exposed to Methylmercury. Arch. Environ. Contam. Toxicol. 2016, 70, 734–746. [Google Scholar] [CrossRef]
- Aragão, W.A.B.; Teixeira, F.B.; Fagundes, N.C.F.; Fernandes, R.M.; Fernandes, L.M.P.; da Silva, M.C.F.; Amado, L.L.; Espírito Santo Sagica, F.; Oliveira, E.H.C.; Crespo-Lopez, M.E.; et al. Hippocampal Dysfunction Provoked by Mercury Chloride Exposure: Evaluation of Cognitive Impairment, Oxidative Stress, Tissue Injury and Nature of Cell Death. Oxid. Med. Cell. Longev. 2018, 2018, 7878050. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, F.B.; de Oliveira, A.C.A.; Leão, L.K.R.; Fagundes, N.C.F.; Fernandes, R.M.; Fernandes, L.M.P.; da Silva, M.C.F.; Amado, L.L.; Sagica, F.E.S.; de Oliveira, E.H.C.; et al. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex. Front. Mol. Neurosci. 2018, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, F.B.; Fernandes, R.M.; Farias-Junior, P.M.A.; Costa, N.M.M.; Fernandes, L.M.P.; Santana, L.N.S.; Silva-Junior, A.F.; Silva, M.C.F.; Maia, C.S.F.; Lima, R.R. Evaluation of the Effects of Chronic Intoxication with Inorganic Mercury on Memory and Motor Control in Rats. Int. J. Environ. Res. Public Health 2014, 11, 9171–9185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Wang, L.; Langlois, P.; Mironov, G.; Chan, H.M. Proteome Changes in Methylmercury-Exposed Mouse Primary Cerebellar Granule Neurons and Astrocytes. Toxicol. In Vitro 2019, 57, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Kakita, A.; Wakabayashi, K.; Su, M.; Yoneoka, Y.; Sakamoto, M.; Ikuta, F.; Takahashi, H. Intrauterine Methylmercury Intoxication. Consequence of the Inherent Brain Lesions and Cognitive Dysfunction in Maturity. Brain Res. 2000, 877, 322–330. [Google Scholar] [CrossRef]
- Goering, P.L.; Morgan, D.L.; Ali, S.F. Effects of Mercury Vapor Inhalation on Reactive Oxygen Species and Antioxidant Enzymes in Rat Brain and Kidney Are Minimal. J. Appl. Toxicol. 2002, 22, 167–172. [Google Scholar] [CrossRef]
- Behzadfar, L.; Hassani, S.; Feizpour, H.; Abbasian, N.; Salek Maghsoudi, A.; Taghizadeh, G.; Pourahmad, J.; Sharifzadeh, M. Effects of Mercuric Chloride on Spatial Memory Deficit-Induced by Beta-Amyloid and Evaluation of Mitochondrial Function Markers in the Hippocampus of Rats. Metallomics 2020, 12, 144–153. [Google Scholar] [CrossRef]
- Celikoglu, E.; Aslanturk, A.; Kalender, Y. Vitamin E and Sodium Selenite Against Mercuric Chloride-Induced Lung Toxicity in the Rats. Braz. Arch. Biol. Technol. 2015, 58, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-K.; Park, J.-D.; Choi, B.-S. Mercury-Induced Amyloid-Beta (Aβ) Accumulation in the Brain is Mediated by Disruption of Aβ Transport. J. Toxicol. Sci. 2014, 39, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Koopsamy Naidoo, S.V.; Bester, M.J.; Arbi, S.; Venter, C.; Dhanraj, P.; Oberholzer, H.M. Oral Exposure to Cadmium and Mercury Alone and in Combination Causes Damage to the Lung Tissue of Sprague-Dawley Rats. Environ. Toxicol. Pharmacol. 2019, 69, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Venter, C.; Olivier, A.; Taute, H.; Oberholzer, H.M. Histological Analysis of the Effects of Cadmium, Chromium and Mercury Alone and in Combination on the Spleen of Male Sprague-Dawley Rats. J. Environ. Sci. Health Part A 2020, 55, 925–934. [Google Scholar] [CrossRef]
- Merlo, E.; Schereider, I.R.G.; Simões, M.R.; Vassallo, D.V.; Graceli, J.B. Mercury Leads to Features of Polycystic Ovary Syndrome in Rats. Toxicol. Lett. 2019, 312, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.F.; Rodrigues, L.D.; Cardillo, G.M.; Nejm, M.B.; Guimarães-Marques, M.; Reyes-Garcia, S.Z.; Zuqui, K.; Vassallo, D.V.; Fiorini, A.C.; Scorza, C.A.; et al. Deleterious Effects of Chronic Mercury Exposure on in Vitro LTP, Memory Process, and Oxidative Stress. Environ. Sci. Pollut. Res. Int. 2019, 27, 7559–7569. [Google Scholar] [CrossRef]
- Venkatesan, R.S.; Sadiq, A.M.M. Effect of Morin-5’-Sulfonic Acid Sodium Salt on the Expression of Apoptosis Related Proteins Caspase 3, Bax and Bcl 2 Due to the Mercury Induced Oxidative Stress in Albino Rats. Biomed. Pharmacother. 2017, 85, 202–208. [Google Scholar] [CrossRef]
- Altunkaynak, B.Z.; Akgül, N.; Yahyazedeh, A.; Makaracı, E.; Akgül, H.M. A Stereological Study of the Effects of Mercury Inhalation on the Cerebellum. Biotech. Histochem. 2019, 94, 42–47. [Google Scholar] [CrossRef]
- Fujimura, M.; Usuki, F. In Situ Different Antioxidative Systems Contribute to the Site-Specific Methylmercury Neurotoxicity in Mice. Toxicology 2017, 392, 55–63. [Google Scholar] [CrossRef]
- Fujimura, M.; Usuki, F. Site-Specific Neural Hyperactivity Via the Activation of MAPK and PKA/CREB Pathways Triggers Neuronal Degeneration in Methylmercury-Intoxicated Mice. Toxicol. Lett. 2017, 271, 66–73. [Google Scholar] [CrossRef]
- De Oliveira Lopes, G.; Aragão, W.; Bittencourt, L.O.; Puty, B.; Lopes, A.P.; Dos Santos, S.M.; Monteiro, M.C.; de Oliveira, E.; da Silva, M.; Lima, R.R. Imaging Microstructural Damage and Alveolar Bone Loss in Rats Systemically Exposed to Methylmercury: First Experimental Evidence. Biol. Trace Elem. Res. 2021, 199, 3707–3717. [Google Scholar] [CrossRef]
- Hersi, M.; Irvine, B.; Gupta, P.; Gomes, J.; Birkett, N.; Krewski, D. Risk Factors Associated with the Onset and Progression of Alzheimer’s Disease: A systematic review of the evidence. Neurotoxicology 2017, 61, 143–187. [Google Scholar] [CrossRef] [PubMed]
- Siblerud, R.; Mutter, J.; Moore, E.; Naumann, J.; Walach, H. A Hypothesis and Evidence That Mercury May be an Etiological Factor in Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2019, 16, 5152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallin, C.; Friedemann, M.; Sholts, S.B.; Noormägi, A.; Svantesson, T.; Jarvet, J.; Roos, P.M.; Palumaa, P.; Gräslund, A.; Wärmländer, S.K.T.S. Mercury and Alzheimer’s Disease: Hg (II) Ions Display Specific Binding to the Amyloid-β Peptide and Hinder Its Fibrillization. Biomolecules 2020, 10, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.-W.; Liou, S.-H.; Hsueh, Y.-M.; Lyu, W.-S.; Liu, C.-S.; Liu, H.-J.; Chung, M.-C.; Hung, P.-H.; Chung, C.-J. Risk of Alzheimer’s Disease with Metal Concentrations in Whole Blood and Urine: A Case-Control Study Using Propensity Score Matching. Toxicol. App. Pharmacol. 2018, 356, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Oxidative Stress and Neurodegeneration: Where Are We Now? J. Neurochem. 2006, 97, 1634–1658. [Google Scholar] [CrossRef]
- Praticò, D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: Lights and shadows. Ann. N. Y. Acad. Sci. 2008, 1147, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.; Zhu, X. Oxidative Stress and Mitochondrial Dysfunction in Alzheimer’s Disease. Biochim. Biophys. Acta 2014, 1842, 1240–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salinaro, A.T.; Pennisi, M.; Di Paola, R.; Scuto, M.; Crupi, R.; Cambria, M.T.; Ontario, M.L.; Tomasello, M.; Uva, M.; Maiolino, L. Neuroinflammation and Neurohormesis in the Pathogenesis of Alzheimer’s Disease and Alzheimer-Linked Pathologies: Modulation by Nutritional Mushrooms. Immun. Ageing 2018, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Dumont, M.; Lin, M.T.; Beal, M.F. Mitochondria and Antioxidant Targeted Therapeutic Strategies for Alzheimer’s Disease. J. Alzheimers Dis. 2010, 20 (Suppl. 2), S633–S643. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-J.; Zhang, X.; Chen, W.-W. Role of Oxidative Stress in Alzheimer’s Disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farina, M. Ebselen Protects Against Methylmercury-Induced Inhibition of Glutamate Uptake by Cortical Slices from Adult Mice. Toxicol. Lett. 2003, 144, 351–357. [Google Scholar] [CrossRef]
- Augusti, P.R.; Conterato, G.M.M.; Somacal, S.; Sobieski, R.; Spohr, P.R.; Torres, J.V.; Charão, M.F.; Moro, A.M.; Rocha, M.P.; Garcia, S.C.; et al. Effect of Astaxanthin on Kidney Function Impairment and Oxidative Stress induced by Mercuric Chloride in Rats. Food Chem. Toxicol. 2008, 46, 212–219. [Google Scholar] [CrossRef]
- Ascher, M.; Syversen, T. Methylmercury: Recent Advances in the Understanding of its Neurotoxicity. Ther. Drug. Monit. 2005, 27, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Crespo-López, M.E.; de Sá, A.L.; Herculano, A.M.; Rodríguez Burbano, R.; Martins do Nascimento, J.L. Methylmercury Genotoxicity: A Novel Effect in Human Cell Lines of the Central Nervous System. Environ. Int. 2007, 33, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Grotto, D.; Maria, L.S.; Valentini, J.; Paniz, C.; Schmitt, G.; Garcia, S.C.; Pomblum, V.J.; Rocha, J.B.T.; Farina, M. Importance of the Lipid Peroxidation Biomarkers and Methodological Aspects for Malondialdehyde Quantification. Quím. Nova 2009, 32, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Shenker, B.J.; Pankoski, L.; Zekavat, A.; Shapiro, I.M. Mercury-Induced Apoptosis in Human Lymphocytes: Caspase Activation is Linked to Redox Status. Antioxid. Redox Signal. 2002, 4, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Jiang, H.; Syversen, T.; Rocha, J.B.T.; Farina, M.; Aschner, M. The Methylmercury-L-cysteine Conjugate is a Substrate for the L-type Large Neutral Amino Acid Transporter. J. Neurochem. 2008, 107, 1083–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohren, H.; Bornhorst, J.; Fitkau, R.; Pohl, G.; Galla, H.-J.; Schwerdtle, T. Effects on and Transfer Across the Blood-Brain Barrier in Vitro-Comparison of Organic and Inorganic Mercury Species. BMC Pharmacol. Toxicol. 2016, 17, 63. [Google Scholar] [CrossRef] [Green Version]
- Petroni, D.; Tsai, J.; Agrawal, K.; Mondal, D.; George, W. Low-Dose Methylmercury-Induced Oxidative Stress, Cytotoxicity, and Tau-Hyperphosphorylation in Human Neuroblastoma (SH-SY5Y) Cells. Environ. Toxicol. 2012, 27, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Carocci, A.; Rovito, N.; Sinicropi, M.S.; Genchi, G. Mercury Toxicity and Neurodegenerative Effects. Rev. Environ. Contam. Toxicol. 2014, 220, 1–18. [Google Scholar] [CrossRef]
- Lee, J.-H.; Cheon, Y.-H.; Woo, R.-S.; Song, D.-Y.; Moon, C.; Baik, T.-K. Evidence of early involvement of apoptosis inducing factor-induced neuronal death in Alzheimer brain. Anat. Cell. Biol. 2012, 45, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-Y.; Kim, J.-H.; Choi, D.-W.; Lee, D.-W.; Park, J.-H.; Yoon, H.-J.; Pyo, H.-S.; Kwon, H.-P.; Park, K.-S. The Association of Heavy Metal of Blood and Serum in the Alzheimer’s Diseases. Toxicol. Res. 2012, 28, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, J.; Nakamachi, T.; Ohtaki, H.; Naganuma, A.; Shioda, S.; Nakajo, S. Low Dose of Methylmercury (MeHg) Exposure Induces Caspase Mediated-Apoptosis in Cultured Neural Progenitor Cells. J. Toxicol. Sci. 2013, 38, 931–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva Raposo, R.; Pinto, D.V.; Moreira, R.; Dias, R.P.; Fontes Ribeiro, C.A.; Oriá, R.B.; Malva, J.O. Methylmercury Impact on Adult Neurogenesis: Is the Worst Yet to Come from Recent Brazilian Environmental Disasters? Front. Aging Neurosci. 2020, 12, 591601. [Google Scholar] [CrossRef] [PubMed]
- Sing, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress; A key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [Green Version]
- Matěj, R.; Rohan, Z.; Holada, K.; Olejár, T. The Contribution of Proteinase-Activated Receptors to Intracellular Signaling, Transcellular Transport and Autophagy in Alzheimer’s Disease. Curr. Alzheimer Res. 2015, 12, 2–12. [Google Scholar] [CrossRef]
- Jiang, P.; Mizushima, N. Autophagy and Human Diseases. Cell Res. 2014, 24, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numan, M.; Brown, J.; Michou, L. Impact of Air Pollutants on Oxidative Stress in Common Autophagy-Mediated Aging Diseases. Int. J. Environ. Res. Public Health 2015, 12, 2289–2305. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Miah, M.; Culbreth, M.; Aschner, M. Autophagy in Neurodegenerative Diseases and Metal Neurotoxicity. Neurochem. Res. 2016, 41, 409–422. [Google Scholar] [CrossRef]
- Zare-Shahabadi, A.; Masliah, E.; Johnson, G.V.W.; Rezaei, N. Autophagy in Alzheimer’s Disease. Rev. Neurosci. 2015, 26, 385–395. [Google Scholar] [CrossRef]
- Schneider, J.L.; Cuervo, A.M. Autophagy and Human Disease: Emerging Themes. Curr. Opin. Genet. Dev. 2014, 26, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Giordano, S.; Darley-Usmar, V.; Zhang, J. Autophagy as an Essential Cellular Antioxidant Pathway in Neurodegenerative Disease. Redox Biol. 2014, 2, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Wu, J.; Wang, F.; Liu, B.; Huang, C.; Wei, Y. Deconvoluting the Role of Reactive Oxygen Species and Autophagy in Human Diseases. Free Radic. Biol. Med. 2013, 65, 402–410. [Google Scholar] [CrossRef]
- Chang, S.-H.; Lee, H.J.; Kang, B.; Yu, K.-N.; Minai-Tehrani, A.; Lee, S.; Kim, S.U.; Cho, M.-H. Methylmercury Induces Caspase-Dependent Apoptosis and Autophagy in Human Neural Stem Cells. J. Toxicol. Sci. 2013, 38, 823–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Sayed, N.S.; Ghoneum, M.H. Antia, a Natural Antioxidant Product, Attenuates Cognitive Dysfunction in Streptozotocin-Induced Mouse Model of Sporadic Alzheimer’s Disease by Targeting the Amyloidogenic, Inflammatory, Autophagy, and Oxidative Stress Pathways. Oxid. Med. Cell. Longev. 2020, 2020, 4386562. [Google Scholar] [CrossRef] [PubMed]
- Yuntao, F.; Chenjia, G.; Panpan, Z.; Wenjun, A.; Suhua, W.; Guangwei, X.; Haifeng, S.; Jian, L.; Wanxin, P.; Yun, F.; et al. Role of Autophagy in Methylmercury-Induced Neurotoxicity in Rat Primary Astrocytes. Arch. Toxicol. 2013, 90, 333–345. [Google Scholar] [CrossRef]
- Li, X.; Long, J.; He, T.; Belshaw, R.; Scott, J. Integrated Genomic Approaches Identify Major Pathways and Upstream Regulators in Late Onset Alzheimer’s Disease. Sci. Rep. 2015, 5, 12393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meleleo, D.; Notarachille, G.; Mangini, V.; Arnesano, F. Concentration-Dependent Effects of Mercury and Lead on Aβ42: Possible Implications for Alzheimer’s Disease. Eur. Biophys. J. 2019, 48, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Ruha, A.M.; Tanen, D.A.; Suchard, J.R. Combined Ingestion and Subcutaneous Injection of Elemental Mercury. J. Emerg. Med. 2001, 20, 39–42. [Google Scholar] [CrossRef]
- Sarikaya, S.; Karcioglu, O.; Ay, D.; Cetin, A.; Aktas, C.; Serinken, M. Acute Mercury Poisoning: A Case Report. BMC Emerg. Med. 2010, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildirim, R.; Erdem, F.; Gündoğdu, M.; Bilen, Y.; Koca, E.; Yillikoğlu, Y.; Sahin, Y.N. Mercury Toxicity: A Family Case Report. Turk. J. Hematol. 2011, 29, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Alhamad, T.; Rooney, J.; Nwosu, A.; Maccombs, J.; Kim, Y.-S. Lessons Learned from a Fatal Case of Mercury Intoxication. Int. Urol. Nephrol. 2012, 44, 647–651. [Google Scholar] [CrossRef]
- Katsuma, A.; Hinoshita, F.; Masumoto, S.; Hagiwara, A.; Kimura, A. Acute Renal Failure Following Exposure to Metallic Mercury. Clin. Nephrol. 2014, 82, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Vahabzadeh, M.; Balali-Mood, M. Occupational Metallic Mercury Poisoning in Gilders. Int. J. Occup. Environ. Med. 2016, 7, 116–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feitosa-Santana, C.; Bimler, D.L.; Paramei, G.V.; Oiwa, N.N.; Barboni, M.T.S.; Costa, M.F.; Silveira, L.C.; Ventura, D.F. Color-space Distortions Following Long-Term Occupational Exposure to Mercury Vapor. Ophthal. Physiol. Opt. 2010, 30, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Kayias, E.H.; Drosos, G.I.; Hapsas, D.; Anagnostopoulou, G.A. Elemental mercury-induced subcutaneous granuloma. A case report and review of the literature. Acta. Orthop. Belg. 2003, 69, 280–284. [Google Scholar]
- Givica-Pérez, A.; Santana-Montesdeoca, J.; Díaz-Sánchez, M.; Martínez-Lagares, F.J. Deliberate, Repeated Self-Administration of Metallic Mercury Injection: Case Report and Review of the Literature. Eur. Radiol. 2001, 11, 1351–1354. [Google Scholar] [CrossRef]
- De Souza, A.C.; de Carvalho, A.M. Metallic Mercury Embolism to the Hand. N. Engl. J. Med. 2009, 360, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, Y.; Wu, C.; Guo, X.; Xu, Z.; Xing, C.; Cao, H.; Zhang, C.; Hu, G.; Liu, P. High Doses of Copper and Mercury Changed Cecal Microbiota in Female Mice. Biol. Trace Elem. Res. 2019, 189, 134–144. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, C.; Guo, X.; Hu, G.; Li, G.; Zhuang, Y.; Cao, H.; Li, L.; Xing, C.; Zhang, C.; et al. Exposed to Mercury-Induced Oxidative Stress, Changes of Intestinal Microflora, and Association between them in Mice. Biol. Trace Elem. Res. 2021, 199, 1900–1907. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhou, C.; Wu, C.; Guo, X.; Hu, G.; Wu, Q.; Xu, Z.; Li, G.; Cao, H.; Li, L.; et al. Subchronic Oral Mercury Caused Intestinal Injury and Changed Gut Microbiota in Mice. Sci. Total Environ. 2020, 721, 137639. [Google Scholar] [CrossRef]
- Zhang, B.-B.; Liu, Y.-M.; Hu, A.-L.; Xu, S.-F.; Fan, L.-D.; Cheng, M.-L.; Li, C.; Wei, L.-X.; Liu, J. HgS and Zuotai Differ from HgCl2 and Methyl Mercury in Intestinal Hg Absorption, Transporter Expression and Gut Microbiome in Mice. Toxicol. Appl. Pharmacol. 2019, 379, 114615. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Gu, S.; Liu, D.; Zhao, L.; Xia, S.; He, X.; Chen, H.; Ge, J. Lactobacillus brevis 23017 Relieves Mercury Toxicity in the Colon by Modulation of Oxidative Stress and Inflammation Through the Interplay of MAPK and NF-κB Signaling Cascades. Front. Microbiol. 2018, 9, 2425. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Xiayu, X.; Shi, C.; Chen, W.; Song, N.; Fu, X.; Zhou, R.; Xu, Y.-F.; Huang, L.; et al. Altered Gut Microbiota in a Mouse Model of Alzheimer’s Disease. J. Alzheimers Dis. 2017, 60, 1241–1257. [Google Scholar] [CrossRef]
- Tran, T.T.T.; Corsini, S.; Kellingray, L.; Hegarty, C.; Le Gall, G.; Narbad, A.; Müller, M.; Tejera, N.; O’Toole, P.W.; Minihane, A.-M.; et al. APOE Genotype Influences the Gut Microbiome Structure and Function in Humans and Mice: Relevance for Alzheimer’s Disease Pathophysiology. FASEB J. 2019, 33, 8221–8231. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.S.; Alber, B.E. Transcriptional Regulation by the Short-Chain Fatty Acyl Coenzyme A Regulator (ScfR) PccR Controls Propionyl Coenzyme A Assimilation by Rhodobacter sphaeroides. J. Bacteriol. 2015, 197, 3048–3056. [Google Scholar] [CrossRef] [Green Version]
- Nouha, K.; Kumar, R.S.; Tyagi, R.D. Heavy Metals Removal from Wastewater Using Extracellular Polymeric Substances Produced by Cloacibacterium normanense in Wastewater Sludge Supplemented with Crude Glycerol and Study of Extracellular Polymeric Substances Extraction by Different Methods. Bioresour. Technol. 2016, 212, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Bridges, K.N.; Zhang, Y.; Curran, T.E.; Magnuson, J.T.; Venables, B.J.; Durrer, K.E.; Allen, M.S.; Roberts, A.P. Alterations to the Intestinal Microbiome and Metabolome of Pimephales promelas and Mus musculus Following Exposure to Dietary Methylmercury. Environ. Sci. Technol. 2018, 52, 8774–8784. [Google Scholar] [CrossRef]
- Jadán-Piedra, C.; Crespo, Á.; Monedero, V.; Vélez, D.; Devesa, V.; Zúñiga, M. Effect of Lactic Acid Bacteria on Mercury Toxicokinetics. Food Chem. Toxicol. 2019, 128, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, W.; He, L.; Xie, H.; Feng, B.; Zhu, H.; Zhao, J.; Cui, L.; Li, B.; Li, Y.-F. Understanding the Hepatoxicity of Inorganic Mercury Through Guts: Perturbance to Gut Microbiota, Alteration of Gut-Liver Axis Related Metabolites and Damage to Gut Integrity. Ecotoxicol. Environ. Saf. 2021, 225, 112791. [Google Scholar] [CrossRef] [PubMed]
- Athari Nik Azm, S.; Djazayeri, A.; Safa, M.; Azami, K.; Ahmadvand, B.; Sabbaghziarani, F.; Sharifzadeh, M.; Vafa, M. Lactobacilli and Bifidobacteria Ameliorate Memory and Learning Deficits and Oxidative Stress in β-Amyloid (1–42) Injected Rats. Appl. Physiol. Nutr. Metab. 2018, 43, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Bonfili, L.; Cecarini, V.; Cuccioloni, M.; Angeletti, M.; Berardi, S.; Scarpona, S.; Rossi, G.; Eleuteri, A.M. SLAB51 Probiotic Formulation Activates SIRT1 Pathway Promoting Antioxidant and Neuroprotective Effects in an AD Mouse Model. Mol. Neurobiol. 2018, 55, 7987–8000. [Google Scholar] [CrossRef] [Green Version]
- Seki, N.; Akiyama, M.; Yamakawa, H.; Hase, K.; Kumagai, Y.; Kim, Y.-G. Adverse Effects of Methylmercury on Gut Bacteria and Accelerated Accumulation of Mercury in Organs due to Disruption of Gut Microbiota. J. Toxicol. Sci. 2021, 46, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Farina, M.; Rocha, J.B.T.; Aschner, M. Mechanisms of Methylmercury-Induced Neurotoxicity: Evidence from Experimental Studies. Life Sci. 2011, 89, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Zhao, J.; Zhang, W.; He, L.; Wang, L.; Chang, D.; Cui, L.; Gao, Y.; Li, B.; Chen, C.; et al. Acute Oral Methylmercury Exposure Perturbs the Gut Microbiome and Alters Gut-brain axis Related Metabolites in Rats. Ecotoxicol. Environ. Saf. 2020, 190, 110130. [Google Scholar] [CrossRef]
- Claus, S.P.; Guillou, H.; Ellero-Simatos, S. The Gut Microbiota: A Major Player in the Toxicity of Environmental Pollutants? NPJ Biofilms Microbiomes 2016, 2, 16003. [Google Scholar] [CrossRef] [PubMed]
- Parks, J.M.; Johs, A.; Podar, M.; Bridou, R.; Hurt, R.A.; Smith, S.D.; Tomanicek, S.J.; Qian, Y.; Brown, S.D.; Brandt, C.C.; et al. The Genetic Basis for Bacterial Mercury Methylation. Science 2013, 339, 133–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, G.; Yumvihoze, E.; Poulain, A.J.; Man Chan, H. Monomethylmercury Degradation by the Human Gut Microbiota is Stimulated by Protein Amendments. J. Toxicol. Sci. 2018, 43, 717–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schalk, I.J.; Hannauer, M.; Braud, A. New Roles for Bacterial Siderophores in Metal Transport and Tolerance. Environ. Microbiol. 2011, 13, 2844–2854. [Google Scholar] [CrossRef]
- Lopez, C.A.; Skaar, E.P. The Impact of Dietary Transition Metals on Host-Bacterial Interactions. Cell Host Microbe 2018, 23, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Yorifuji, T.; Kashima, S.; Suryadhi, M.A.H.; Abudureyimu, K. Temporal Trends of Infant and Birth Outcomes in Minamata After Severe Methylmercury Exposure. Environ. Pollut. 2017, 231, 1586–1592. [Google Scholar] [CrossRef] [PubMed]
- Butts, C.D.; Bloom, M.S.; McGough, A.; Lenhart, N.; Wong, R.; Mok-Lin, E.; Parsons, P.J.; Galusha, A.L.; Yucel, R.M.; Feingold, B.J.; et al. Seafood Consumption is Associated with Higher Follicular Fluid Arsenic (As) and Mercury (Hg) Concentrations in Women Undergoing in vitro Fertilization (IVF). Environ. Res. 2020, 188, 109753. [Google Scholar] [CrossRef]
- Mínguez-Alarcón, L.; Afeiche, M.C.; Williams, P.L.; Arvizu, M.; Tanrikut, C.; Amarasiriwardena, C.J.; Ford, J.B.; Hauser, R.; Chavarro, J.E. Hair Mercury (Hg) Levels, Fish Consumption and Semen Parameters Among Men Attending a Fertility Center. Int. J. Hyg. Environ. Health 2018, 221, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Butts, C.D.; Bloom, M.S.; McGough, A.; Lenhart, N.; Wong, R.; Mok-Lin, E.; Parsons, P.J.; Galusha, A.L.; Browne, R.W.; Yucel, R.M.; et al. Toxic Elements in Follicular Fluid Adversely Influence the Likelihood of Pregnancy and Live Birth in Women Undergoing IVF. Hum. Reprod. Open 2021, 2021, hoab023. [Google Scholar] [CrossRef]
- Nassan, F.L.; Williams, P.L.; Gaskins, A.J.; Braun, J.M.; Ford, J.B.; Calafat, A.M.; Hauser, R. Correlation and Temporal Variability of Urinary Biomarkers of Chemicals Among Couples: Implications for Reproductive Epidemiological Studies. Environ. Int. 2019, 123, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Sukhn, C.; Awwad, J.; Ghantous, A.; Zaatari, G. Associations of Semen Quality with Non-Essential Heavy Metals in Blood and Seminal Fluid: Data from the Environment and Male Infertility (EMI) Study in Lebanon. J. Assist. Reprod. Genet. 2018, 35, 1691–1701. [Google Scholar] [CrossRef] [PubMed]
- Mikalsen, S.M.; Bjørke-Monsen, A.-L.; Flaten, T.P.; Whist, J.E.; Aaseth, J. Cadmium, Lead and Mercury in Norwegian Obese Patients Before and 12 Months after Bariatric Surgery. J. Trace Elem. Med. Biol. 2019, 54, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Chen, C.; Zhang, Y.; Chen, S.; Huang, X.; Li, J.; Wang, Y.; Liu, X.; Deng, G.; Gao, J. Elevated Blood Mercury Level has a Non-Linear Association with Infertility in U.S. Women: Data from the NHANES 2013–2016. Reprod. Toxicol. 2020, 91, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Chen, Q.; Gong, S.; An, J.; Li, Y.; Lian, X.; Liu, Z.; Shen, Y.; Giesy, J.P. Exposure of Zebrafish to Environmentally Relevant Concentrations of Mercury During Early Life Stages Impairs Subsequent Reproduction in Sdults but can be Recovered in Offspring. Aquat. Toxicol. 2020, 229, 105655. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.S.; Peçanha, F.M.; Brum, D.S.; Santos, F.W.; Franco, J.L.; Zemolin, A.P.P.; Anselmo-Franci, J.A.; Junior, F.B.; Alonso, M.J.; Salaices, M.; et al. Reproductive Dysfunction After Mercury Exposure at Low Levels: Evidence for a Role of Glutathione Peroxidase (GPx) 1 and GPx4 in Male Rats. Reprod. Fertil. Dev. 2017, 29, 1803–1812. [Google Scholar] [CrossRef]
- Mínguez-Alarcón, L.; Williams, P.L.; Souter, I.; Sacha, C.; Amarasiriwardena, C.J.; Ford, J.B.; Hauser, R.; Chavarro, J.E. Hair Mercury Levels, Intake of Omega-3 Fatty Acids and Ovarian Reserve Among Women Attending a Fertility Center. Int. J. Hyg. Environ. Health 2021, 237, 113825. [Google Scholar] [CrossRef]
- García-Fortea, P.; Cohen-Corcia, I.; Córdoba-Doña, J.A.; Reche-Rosado, A.; González-Mesa, E. Toxic Elements in Hair and in vitro Fertilization Outcomes: A Prospective Cohort Study. Reprod. Toxicol. 2018, 77, 43–52. [Google Scholar] [CrossRef]
- Kippler, M.; Gyllenhammar, I.; Glynn, A.; Levi, M.; Lignell, S.; Berglund, M. Total Mercury in Hair as Biomarker for Methylmercury Exposure Among Women in Central Sweden– a 23 Year Long Temporal Trend Study. Environ. Pollut. 2021, 268 Pt A, 115712. [Google Scholar] [CrossRef]
- Bjorke-Monsen, A.-L.; Varsi, K.; Averina, M.; Brox, J.; Huber, S. Perfluoroalkyl Substances (PFASs) and Mercury in Never-Pregnant Women of Fertile Age: Association with Fish Consumption and Unfavorable Lipid Profile. BMJ Nutr. Prev. Health 2020, 3, 277–284. [Google Scholar] [CrossRef]
- Fløtre, C.H.; Varsi, K.; Helm, T.; Bolann, B.; Bjørke-Monsen, A.-L. Predictors of Mercury, Lead, Cadmium and Antimony Status in Norwegian Never-Pregnant Women of Fertile Age. PLoS ONE 2017, 12, e0189169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wainman, B.C.; Kesner, J.S.; Martin, I.D.; Meadows, J.W.; Krieg, E.F.; Nieboer, E.; Tsuji, L.J. Menstrual Cycle Perturbation by Organohalogens and Elements in the Cree of James Bay, Canada. Chemosphere 2016, 149, 190–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammad Abu-Taweel, G. Curcumin Palliative Effects on Sexual Behavior, Fertility and Reproductive Hormones Disorders in Mercuric Chloride Intoxicated Mice Offspring. J. King Saud Univ. Sci. 2020, 32, 1293–1299. [Google Scholar] [CrossRef]
- Abu-Taweel, G.M. Neurobehavioral Protective Properties of Curcumin Against the Mercury Chloride Treated Mice Offspring. Saudi J. Biol. Sci. 2019, 26, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Maeda, E.; Murata, K.; Kumazawa, Y.; Sato, W.; Shirasawa, H.; Iwasawa, T.; Izumo, K.; Tatsuta, N.; Sakamoto, M.; Terada, Y. Associations of Environmental Exposures to Methylmercury and Selenium with Female Infertility: A Case–Control Study. Environ. Res. 2019, 168, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, G.; Brack, C.; Müller-Spahn, F.; Stähelin, H.B.; Herrmann, M.; Renard, P.; Brockhaus, M.; Hock, C. Mercury Induces Cell Cytotoxicity and Oxidative Stress and Increases β-Amyloid Secretion and Tau Phosphorylation in SHSY5Y Neuroblastoma Cells. J. Neurochem. 2001, 74, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Stringari, J.; Meotti, F.C.; Souza, D.O.; Santos, A.R.S.; Farina, M. Postnatal Methylmercury Exposure Induces Hyperlocomotor Activity and Cerebellar Oxidative Stress in Mice: Dependence on the Neurodevelopmental Period. Neurochem. Res. 2006, 31, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, W.-D.; Wang, Y.-D. β-Amyloid: The Key Peptide in the Pathogenesis of Alzheimer’s Disease. Front. Pharmacol. 2015, 6, 221. [Google Scholar] [CrossRef] [Green Version]
- Alattia, J.-R.; Kuraishi, T.; Dimitrov, M.; Chang, I.; Lemaitre, B.; Fraering, P.C. Mercury is a Direct and Potent γ-Secretase Inhibitor Affecting Notch Processing and Development in Drosophila. FASEB J. 2011, 25, 2287–2295. [Google Scholar] [CrossRef]
- Dimitrov, M.; Alattia, J.-R.; Lemmin, T.; Lehal, R.; Fligier, A.; Houacine, J.; Hussain, I.; Radtke, F.; Dal Peraro, M.; Beher, D. Alzheimer’s Disease Mutations in APP but not γ-Secretase Modulators Affect Epsilon-Cleavage-Dependent AICD Production. Nat. Commun. 2013, 4, 2246. [Google Scholar] [CrossRef]
- Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental Pollutants as Risk Factors for Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Front. Cell. Neurosci. 2015, 9, 124. [Google Scholar] [CrossRef] [Green Version]
- Owoeye, O.; Obazie, F.; Atiba, F.A.; Malomo, A.O. Comparative Neuroprotective Effect of Celosia argentea Linn. and Vitamin E on Mercury-Induced Oxidative and Histological Parameters of Rat Brain. Niger. J. Physiol. Sci. 2019, 34, 167–175. [Google Scholar]
- Owoeye, O.; Arinola, G.O. A Vegetable, Launaea taraxacifolia, Mitigated Mercuric Vhloride Alteration of the Microanatomy of Rat Brain. J. Diet. Suppl. 2017, 14, 613–625. [Google Scholar] [CrossRef]
- Owoeye, O.; Akinbami, R.; Thomas, M. Neuroprotective Potential of Citrullus lanatus Seed Extract and Vitamin E Against Mercury Chloride Intoxication in Male Rat Brain. Afr. J. Biomed. Res. 2018, 21, 43–49. [Google Scholar]
- Agarwal, R.; Goel, S.K.; Behari, J.R. Detoxification and Antioxidant Effects of Curcumin in Rats Experimentally Exposed to Mercury. J. Appl. Toxicol. 2010, 30, 457–468. [Google Scholar] [CrossRef]
- Abu-Taweel, G.M.; Al-Fifi, Z. Protective Effects of Curcumin Towards Anxiety and Depression-Like Behaviors Induced Mercury Chloride. Saudi J. Biol. Sci. 2021, 28, 125–134. [Google Scholar] [CrossRef]
- Ansar, S. Pretreatment with Diallylsulphide Modulates Mercury-Induced Neurotoxicity in Male Rats. Acta Biochim. Pol. 2015, 62, 599–603. [Google Scholar] [CrossRef]
- Kim, W.; Kim, D.W.; Yoo, D.Y.; Jung, H.Y.; Kim, J.W.; Kim, D.-W.; Choi, J.H.; Moon, S.M.; Yoon, Y.S.; Hwang, I.K. Antioxidant Effects of Dendropanax morbifera Léveille Extract in the Hippocampus of Mercury-Exposed Rats. BMC Complement. Altern. Med. 2015, 15, 247. [Google Scholar] [CrossRef] [Green Version]
- Sumathi, T.; Shobana, C.; Christinal, J.; Anusha, C. Protective Effect of Bacopa monniera on Methyl Mercury-Induced Oxidative Stress in Cerebellum of Rats. Cell. Mol. Neurobiol. 2012, 32, 979–987. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Liu, W.; Wei, Y.; Deng, Y.; Xu, B. Effect of Grape Seed Proanthocyanidin Extracts on Methylmercury-Induced Neurotoxicity in Rats. Biol. Trace Elem. Res. 2012, 147, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Sakaue, M.; Mori, N.; Okazaki, M.; Kadowaki, E.; Kaneko, T.; Hemmi, N.; Sekiguchi, H.; Maki, T.; Ozawa, A.; Hara, S. Vitamin K has the Potential to Protect Neurons from Methylmercury-Induced Cell Death In Vitro. J. Neurosci. Res. 2011, 89, 1052–1058. [Google Scholar] [CrossRef]
- El Asar, H.M.; Mohammed, E.A.; Aboulhoda, B.E.; Emam, H.Y.; Imam, A.A.-A. Selenium Protection Against Mercury Neurotoxicity: Modulation of Apoptosis and Autophagy in the Anterior Pituitary. Life Sci. 2019, 231, 116578. [Google Scholar] [CrossRef] [PubMed]
- Falluel-Morel, A.; Lin, L.; Sokolowski, K.; McCandlish, E.; Buckley, B.; DiCicco-Bloom, E. N-Acetyl Cysteine Treatment Reduces Mercury-Induced Neurotoxicity in the Developing Rat Hippocampus. J. Neurosci. Res. 2012, 90, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Mittal, D.K.; Shukla, S.; Srivastav, S.K.; Dixit, V.A. Curcuma longa Linn. Extract and Curcumin Protect CYP 2E1 Enzymatic Activity Against Mercuric Chloride-Induced Hepatotoxicity and Oxidative Stress: A Protective Approach. Exp. Toxicol. Pathol. 2017, 69, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, Z.; Li, H.; Guo, M.; Yang, T.; Feng, S.; Xu, B.; Deng, Y. Protective Effects of Curcumin Against Mercury-Induced Hepatic Injuries in Rats, Involvement of Oxidative Stress Antagonism, and Nrf2-ARE Pathway Activation. Hum. Ex. Toxicol. 2017, 36, 949–966. [Google Scholar] [CrossRef] [PubMed]
Exposure Duration | Age of Exposure | Species | Chemical | Concentration | Major Endpoints | Reference |
---|---|---|---|---|---|---|
4–72 h (post fertilization) | embryos | zebrafish | MeHg | 6 μg·L−1 | Impaired development of the fin fold and the tail fin primordium, alterations in transgene expression | [35] |
6–96 h (post fertilization) | embryos | zebrafish | MeHg | 5–1000 μg·L−1 | Delayed hatching, decreased cell proliferation rate within the neural tube, mortality | [36] |
24 h | larvae | zebrafish | Mercury chloride (HgCl2) | 20 μg·L−1 | Decreased catalase (CAT) activity and increased malondialdehyde (MDA) levels | [37] |
24 h | embryos | zebrafish | MeHg, HgCl2 | 100–1000 μg·L−1 | Delayed toxicity, skeletal malformations, changes in morphology, severe morphological defects, mortality | [38] |
24 h | embryos | zebrafish | HgCl2 | 1 μM | [39] | |
32 h | adults | zebrafish | HgCl2 | 1–15 μg·L−1 | Memory loss, aggression, low swimming performances, OS | [40] |
96 h | adults | zebrafish | HgCl2 | 7.7–38.5 μg·L−1 | Degeneration, apoptosis | [41] |
96 h | larvae | zebrafish | HgCl2 | 0–400 nM | A decreased survival rate, shrinking in body length and eye diameter, delayed hatching, reduced locomotor activity | [42] |
7 days | embryos | zebrafish | HgCl2 | 1–16 μg·L−1 | Delayed hatching and increased mortality | [5] |
7−14 days | juvenile | White seabream | Hg2+ | 2 μg·L−1 | Optic tectum cells reduction | [43] |
10 days | embryos | Medaka fish | Methyl mercury chloride (CH3HgCl) | 0.001–10 μM | Skeletal malformations, pericardial oedema | [44] |
30 days | adults | Gilthead Seabream | MeHg | 10 μg·L−1 | OS accumulation in organs | [45] |
Exposure Duration | Age of Exposure | Species | Chemical | Concentration | Major Endpoints | Reference |
---|---|---|---|---|---|---|
24 h | 56 days old | BALB/c mice | MeHg | 0–10,000 µg·kg−1 | Accumulation in brain | [49] |
5 days (pre-gestational), 19 days (pregnancy) | Adult | Female Wistar rats | MeHg | 1000 µg·kg−1/day | Neuron loss in the brain, hippocampus and amygdala | [50] |
11 days (2 h/day) | 61–67 days old | Female Sprague-Dawley rats | Hg vapour Hg0 | 1; 2; 4 mg·m−3 | ROS increase in brain and kidney | [51] |
21 days | 220–250 g | Male albino-Wistar rats | HgCl2 | 400; 800; 1600 µg·kg−1/day | Spatial memory impairments; hippocampal mitochondrial dysfunction | [52] |
28 days | Adult | Male Wistar albino rats | HgCl2 | 1000 µg·kg−1/day | Histopathological changes in the lung tissue; OS | [53] |
28 days | 49 days old | Male Wistar rats | MeHg | 0; 20; 200; 2000 µg·kg−1/day | Accumulation of the Amyloid Beta (Aβ) in the hippocampus | [54] |
28 days | 250–300 g | Male Sprague-Dawley rats | HgCl2 | 1148 µg·kg−1/day | Fibrosis; asthma; OS | [55] |
28 days | 42 days old | Male Sprague-Dawley rats | HgCl2 | 1000 µg·kg−1 | Necrosis; fibrosis in spleen tissue | [56] |
30 days | Adult 84 days old | Female Wistar rats | HgCl2 | First dose 4.6 µg·kg−1, subsequent doses 0.07 µg·kg−1/day | Presence of ovarian cystic follicles; ovarian OS; glucose/insulin intolerance | [57] |
30 days | 56 days old | Male Wistar rats | HgCl2 | First dose 4.6 µg·kg−1, subsequent doses 0.07 µg·kg−1/day | Anxiety; memory impairment | [58] |
30 days | 56 days old | Male Wistar strain albino rats | HgCl2 | 1250 µg·kg−1 | Apoptosis by caspase−3 | [59] |
45 days (9 h/day) | Adult 56–70 days old 150–200 g | Female Wistar albino rats | Hg vapour | 1 mg·m−3 | Loss of Purkinje cells; deleterious effects on the cerebellum structure | [60] |
45 days | 90 days old | Male Wistar rats | HgCl2 | 375 µg·kg−1/day | Cognitive disorders; OS; cytotoxicity; apoptosis induction | [46] |
45 days | 150 days old | Male Wistar rats | HgCl2 | 375 µg·kg−1/day | Short and long-term memory impairments; motor deficits; accumulation in hippocampus and cortex | [48] |
45 days | 90 days old | Male Wistar rats | HgCl2 | 375 µg·kg−1/day | Motor disorders; cellular death; apoptosis; OS | [47] |
7, 14, 28, 42, 56 days | 42 days old | Male C57BL/6NJcl mice | MeHg-gluta-thione 1:1 | 30,000 µg·kg−1 | Reduction of antioxidant enzyme expression | [61] |
56 days | 42 days old | Male C57BL/6NJcl mice | MeHg | 30,000 µg·kg−1 | Neuronal degeneration | [62] |
60 days | 90 days old | Wistar rats | MeHg | 40 µg·kg−1/day | Alveolar bone loss (in height) | [63] |
Exposure Duration | Age of Exposure | Gender | Chemical | Concentration | Major Endpoints | Reference |
---|---|---|---|---|---|---|
2 days | 40 years old | male | metallic Hg | 60 μg·L−1 urine | Schizophrenia and inflammatory soft tissue lesions | [104] |
7 days | 36 years old | male | metallic Hg | 300 μg·L−1 blood | Abdominal pain, diarrhoea and fever | [105] |
14 days | 20 years old | female | liquid Hg | 510 μg·L−1 blood | Fatigue and headache | [106] |
14 days | 22 years old | female | liquid Hg | 129.9 μg·L−1 blood | Headache, gingival pain, and numbness in the arms and legs | [106] |
14 days | 23 years old | female | liquid Hg | 430 μg·L−1 blood | Fatigue and headache | [106] |
14 days | 29 years old | male | liquid Hg | 544 μg·L−1 blood 140 μg·L−1 urine | Headache, gingival pain, and numbness in the arms and legs | [106] |
14 days | 54 years old | female | liquid Hg | 518 μg·L−1 blood | Fever, cough, night sweats, weight loss, and pain in the extremities | [106] |
18 days | 36 years old | male | metallic Hg | 244 μg·L−1 blood | Rash, sore throat, fever, chills, cough and diarrhoea | [107] |
26 days | 67 years old | male | metallic Hg | 1577 μg·L−1 blood | Severe pneumonitis, anuria | [108] |
50 days (8 h/day) | 30 years old | male | metallic Hg | 760 μg·L−1 urine | Weakness, malaise, excessive diaphoresis, coughing, fever, shortness of breath, diarrhoea, dysphasia, and polyuria | [109] |
50 days | 53 years old | male | metallic Hg | 326 μg·L−1 urine | Persistent cough, dyspnoea and insomnia | [109] |
60 days (8 h/day) | 20 years old | male | metallic Hg | 635 μg·L−1 urine | Anorexia | [109] |
2 years | 46 years old | female | metallic Hg | 1929 μg·L−1 blood | Severe pain, ischemia, erythematous lesions, cyanosis of the left hand | [109] |
5 years | 33 years old | male | Hg vapour | 2.4 μg·L−1 urine | Colour vision deficiency | [110] |
6 years | 37 years old | male | Hg vapour | 134.7 μg·L−1 urine | Colour vision deficiency | [110] |
7 years | 42 years old | female | Hg vapour | 50 μg·L−1 urine | Colour vision deficiency | [110] |
8.5 years | 36 years old | female | Hg vapour | 1.2 μg·L−1 urine | Colour vision deficiency | [110] |
9 years | 34 years old | male | Hg vapour | 73.8 μg·L−1 urine | Colour vision deficiency | [110] |
10 years | 43 years old | male | Hg vapour | 9 μg·L−1 urine | Colour vision deficiency | [110] |
12 years | 43 years old | male | Hg vapour | 56.6 μg·L−1 urine | Colour vision deficiency | [110] |
12 years | 43 years old | male | Hg vapour | 66 μg·L−1 urine | Colour vision deficiency | [110] |
12 years | 45 years old | female | Hg vapour | 2 μg·L−1 urine | Colour vision deficiency | [110] |
18 years | 36 years old | male | Hg vapour | 20 μg·L−1 urine | Colour vision deficiency | [110] |
not mentioned | 21 years old | male | metallic Hg | 11,000 μg·L−1 serum | Granuloma in the antecubital fossa | [111] |
not mentioned | 22 years old | male | metallic Hg | 3700 μg·L−1 blood | Arthro-myalgias, fever, weakness, chest pain (multiple punctuates metallic densities in radiographs) | [112] |
Chemically Synthesized or Natural Compound | Hg Type | Experimental Model | Results | Reference |
---|---|---|---|---|
Celosia argentea and vitamin E | HgCl2 | Rats | Protected against the Hg-induced gross, oxidative, cerebral and cerebellar damage | [161] |
Launaea taraxacifolia | HgCl2 | Rats | Mitigated the Hg-induced behavioural changes and alteration of the microanatomy of cerebral cortex, hippocampus and cerebellum | [162] |
Citrullus lanatus seed extract and Vitamin E | HgCl2 | Rats | Protected against the Hg-induced degeneration of frontal cerebral cortical neurons | [163] |
Curcumin | HgCl2 | Rats | Detoxification and antioxidant effects | [164] |
HgCl2 | Rats | Ameliorated the behavioural and biochemical alterations in the offspring | [165] | |
Diallyl sulphide (DAS) | HgCl2 | Rats | Counteracted the oxidative damage and increased the anti-inflammatory response against the Hg-induced neurotoxicity | [166] |
Dendropanax morbifera Léveille | Dimethylmercury-(CH3)2Hg | Rats | Reduced the Hg levels in hippocampal homogenates and increased the activities of antioxidant enzymes | [167] |
Bacopa monniera | MeHg (CH3Hg) | Rats | Protected against the Hg-induced OS | [168] |
Grape Seed Proanthocyanidin Extracts | CH3Hg | Rats | Counteracted the oxidative damage | [169] |
Vitamin K | CH3Hg | Primary cultured neurons from the cerebella of rat pups | Protected the neurons against Hg cytotoxicity | [170] |
Sodium selenite (Na2SeO3) | CH3Hg | Rats | Modulated the autophagic and apoptotic milieu of the cells via inhibiting the ROS-mediated apoptosis | [171] |
NAC | CH3Hg | Rats | Reduced the Hg-induced toxicity in the developing rat hippocampus | [172] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paduraru, E.; Iacob, D.; Rarinca, V.; Rusu, A.; Jijie, R.; Ilie, O.-D.; Ciobica, A.; Nicoara, M.; Doroftei, B. Comprehensive Review Regarding Mercury Poisoning and Its Complex Involvement in Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 1992. https://doi.org/10.3390/ijms23041992
Paduraru E, Iacob D, Rarinca V, Rusu A, Jijie R, Ilie O-D, Ciobica A, Nicoara M, Doroftei B. Comprehensive Review Regarding Mercury Poisoning and Its Complex Involvement in Alzheimer’s Disease. International Journal of Molecular Sciences. 2022; 23(4):1992. https://doi.org/10.3390/ijms23041992
Chicago/Turabian StylePaduraru, Emanuela, Diana Iacob, Viorica Rarinca, Angelica Rusu, Roxana Jijie, Ovidiu-Dumitru Ilie, Alin Ciobica, Mircea Nicoara, and Bogdan Doroftei. 2022. "Comprehensive Review Regarding Mercury Poisoning and Its Complex Involvement in Alzheimer’s Disease" International Journal of Molecular Sciences 23, no. 4: 1992. https://doi.org/10.3390/ijms23041992
APA StylePaduraru, E., Iacob, D., Rarinca, V., Rusu, A., Jijie, R., Ilie, O. -D., Ciobica, A., Nicoara, M., & Doroftei, B. (2022). Comprehensive Review Regarding Mercury Poisoning and Its Complex Involvement in Alzheimer’s Disease. International Journal of Molecular Sciences, 23(4), 1992. https://doi.org/10.3390/ijms23041992