The Catestatin-Derived Peptides Are New Actors to Fight the Development of Oral Candidosis
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Most Active Peptide against Candida albicans
2.2. Antimicrobial Activity of L- and D-bCtl against C. tropicalis and C. glabrata
2.3. TEM Analysis of L- and D-bCtl against “S” and “R” C. albicans
2.4. Antimicrobial Activity of L-bCtl Combined with Albumin against C. albicans
2.5. Biophysical Study of the Interaction Cts-Albumin
3. Discussion
4. Materials and Methods
4.1. Preparation and Characterization of Synthetic Cts and Its Derived-Peptides
4.2. Antimicrobial Assays against the Different Strains of Candida
4.3. Cells Viability
4.4. Samples Preparation for Transmission Electron Microscopy
4.5. Transmission Electron Microscopy
4.6. Quartz Crystal Microbalance Analysis
4.7. Statistical Analysis
4.8. Data Availability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, D.S.; Carlisle, P.L.; Kadosh, D. Coevolution of morphology and virulence in Candida species. Eukaryot. Cell 2011, 10, 1173–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muadcheingka, T.; Tantivitayakul, P. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: Correlation between cell surface hydrophobicity and biofilm forming activities. Arch. Oral Biol. 2015, 60, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; He, C.; Zhao, C.; Chen, X.; Hua, H.; Yan, Z. Characterization of oral candidiasis and the Candida species profile in patients with oral mucosal diseases. Microb. Pathog. 2019, 134, 103575. [Google Scholar] [CrossRef]
- Siopi, M.; Tarpatzi, A.; Kalogeropoulou, E.; Damianidou, S.; Vasilakopoulou, A.; Vourli, S.; Pournaras, S.; Meletiadis, J. Epidemiological Trends of Fungemia in Greece with a Focus on Candidemia during the Recent Financial Crisis: A 10-Year Survey in a Tertiary Care Academic Hospital and Review of Literature. Antimicrob. Agents Chemother. 2020, 64, e01516-19. [Google Scholar] [CrossRef]
- Zakhem, A.E.; Istambouli, R.; Alkozah, M.; Gharamti, A.; Tfaily, M.A.; Jabbour, J.F.; Araj, G.F.; Tamim, H.; Kanj, S.S. Predominance of Candida Glabrata among Non-albicans Candida Species in a 16-Year Study of Candidemia at a Tertiary Care Center in Lebanon. Pathogens 2021, 10, 82. [Google Scholar] [CrossRef]
- Kmeid, J.; Jabbour, J.F.; Kanj, S.S. Epidemiology and burden of invasive fungal infections in the countries of the Arab League. J. Infect. Public Health 2020, 13, 2080–2086. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Maraolo, A.E.; Simeon, V.; Magnè, F.; Pace, M.C.; Gentile, I.; Chiodini, P.; Viscoli, C.; Sanguinetti, M.; Mikulska, M.; et al. Changes in the relative prevalence of candidaemia due to non-albicans Candida species in adult in-patients: A systematic review, meta-analysis and meta-regression. Mycoses 2020, 63, 334–342. [Google Scholar] [CrossRef]
- Puig-Asensio, M.; Padilla, B.; Garnacho-Montero, J.; Zaragoza, O.; Aguado, J.M.; Zaragoza, R.; Montejo, M.; Muñoz, P.; Ruiz-Camps, I.; Cuenca-Estrella, M.; et al. Epidemiology and predictive factors for early and late mortality in Candida bloodstream infections: A population-based surveillance in Spain. Clin. Microbiol. Infect. 2014, 20, O245–O254. [Google Scholar] [CrossRef] [Green Version]
- Chapman, B.; Slavin, M.; Marriott, D.; Halliday, C.; Kidd, S.; Arthur, I.; Bak, N.; Heath, C.H.; Kennedy, K.; Morrissey, C.O.; et al. Changing epidemiology of candidaemia in Australia. J. Antimicrob. Chemother. 2017, 72, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Arendrup, M.C.; Dzajic, E.; Jensen, R.H.; Johansen, H.K.; Kjaeldgaard, P.; Knudsen, J.D.; Kristensen, L.; Leitz, C.; Lemming, L.; Nielsen, L.; et al. Epidemiological changes with potential implication for antifungal prescription recommendations for fungaemia: Data from a nationwide fungaemia surveillance programme. Clin. Microbiol. Infect. 2013, 19, E343–E353. [Google Scholar] [CrossRef] [Green Version]
- WHO. Available online: https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/ (accessed on 25 April 2019).
- Afacan, N.J.; Yeung, A.T.; Pena, O.M.; Hancock, R.E. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr. Pharm. Des. 2012, 18, 807–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, T.K.; Bevins, C.L.; Hulett, M.D. Editorial: Advances in the Immunology of Host Defense Peptide: Mechanisms and Applications of Antimicrobial Functions and Beyond. Front. Immunol. 2021, 12, 637641. [Google Scholar] [CrossRef] [PubMed]
- Metz-Boutigue, M.-H.; Goumon, Y.; Strub, J.M.; Lugardon, K.; Aunis, D. Antimicrobial chromogranins and proenkephalin-A-derived peptides: Antibacterial and antifungal activities of chromogranins and proenkephalin-A-derived peptides. Ann. N. Y. Acad. Sci. 2003, 992, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Shooshtarizadeh, P.; Zhang, D.; Chich, J.F.; Gasnier, C.; Schneider, F.; Haïkel, Y.; Aunis, D.; Metz-Boutigue, M.-H. The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity. Regul. Pept. 2010, 165, 102–110. [Google Scholar] [CrossRef]
- Aslam, R.; Atindehou, M.; Lavaux, T.; Haïkel, Y.; Schneider, F.; Metz-Boutigue, M.-H. Chromogranin A-derived peptides are involved in innate immunity. Curr. Med. Chem. 2012, 19, 4115–4123. [Google Scholar] [CrossRef]
- Briolat, J.; Wu, S.D.; Mahata, S.K.; Gonthier, B.; Bagnard, D.; Chasserot-Golaz, S.; Helle, K.B.; Aunis, D.; Metz-Boutigue, M.-H. New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell. Mol. Life Sci. 2005, 62, 377–385. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, H.; Wang, T.; Liu, S.; Rausch-Fan, X.; Yang, P. Salivary chromogranin A and myeloid-related protein-8/14 from periondontitis patients with type 2 diabetes. Quintessence Int. 2019, 50, 808–814. [Google Scholar]
- Mahata, S.K.; O–Connor, D.T.; Mahata, M.; Yoo, S.H.; Taupenot, L.; Wu, H.; Gill, B.M.; Parmer, R.J. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J. Clin. Investig. 1997, 100, 1623–1633. [Google Scholar] [CrossRef] [Green Version]
- Rocca, C.; De Bartolo, A.; Grande, F.; Rizzuti, B.; Pasqua, T.; Giordano, F.; Granieri, M.C.; Occhiuzzi, M.A.; Garofalo, A.; Amodio, N.; et al. Cateslytin abrogates lipopolysaccharide-induced cardiomyocyte injury by reducing inflammation and oxidative stress through toll like receptor 4 interaction. Int. Immunopharmacol. 2021, 94, 107487. [Google Scholar] [CrossRef]
- Zhang, D.; Shooshtarizadeh, P.; Laventie, B.J.; Colin, D.A.; Chich, J.F.; Vidic, J.; de Barry, J.; Chasserot-Golaz, S.; Delalande, F.; Van Dorsselaer, A.; et al. Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS ONE 2009, 4, e4501. [Google Scholar] [CrossRef] [Green Version]
- Eissa, N.; Hussein, H.; Mesgna, R.; Bonin, S.; Hendy, G.N.; Metz-Boutigue, M.-H.; Bernstein, C.N.; Ghia, J.E. Catestatin Regulates Epithelial Cell Dynamics to Improve Intestinal Inflammation. Vaccines 2018, 6, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntjewerff, E.M.; Dunkel, G.; Nicolasen, M.J.T.; Mahata, S.K.; van den Bogaart, G. Catestatin as a target for treatment of inflammatory diseases. Front. Immunol. 2018, 9, 2199–2208. [Google Scholar] [CrossRef] [Green Version]
- Aslam, R.; Marban, C.; Corazzol, C.; Jehl, F.; Delalande, F.; Van Dorsselaer, A.; Prévost, G.; Haïkel, Y.; Taddei, C.; Schneider, F.; et al. Cateslytin, a chromogranin A derived peptide is active against Staphylococcus aureus and resistant to degradation by its proteases. PLoS ONE 2013, 8, e68993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cado, G.; Aslam, R.; Séon, L.; Garnier, T.; Fabre, R.; Parat, A.; Chassepot, A.; Voegel, J.-C.; Senger, B.; Schneider, F.; et al. Self-Defensive Biomaterial Coating against Bacteria and Yeasts: Polysaccharide Multilayer Film with Embedded Antimicrobial Peptide. Funct. Mater. 2013, 23, 4801–4809. [Google Scholar] [CrossRef]
- Mateescu, M.; Baixe, S.; Garnier, T.; Jierry, L.; Ball, V.; Haikel, Y.; Metz-Boutigue, M.-H.; Nardin, M.; Schaaf, P.; Etienne, O.; et al. Antibacterial Peptide-Based Gel for Prevention of Medical Implanted-Device Infection. PLoS ONE 2015, 10, e0145143. [Google Scholar] [CrossRef] [PubMed]
- Zaet, A.; Dartevelle, P.; Daouad, F.; Ehlinger, C.; Quilès, F.; Francius, G.; Boehler, C.; Bergthold, C.; Frisch, B.; Prévost, G.; et al. D-Cateslytin, a new antimicrobial peptide with therapeutic potential. Sci. Rep. 2017, 7, 15199. [Google Scholar] [CrossRef] [PubMed]
- Dartevelle, P.; Ehlinger, C.; Zaet, A.; Boehler, C.; Rabineau, M.; Westermann, B.; Strub, J.M.; Cianferani, S.; Haïkel, Y.; Metz-Boutigue, M.-H.; et al. D-Cateslytin: A new antifungal agent for the treatment of oral Candida albicans associated infections. Sci. Rep. 2018, 8, 9235. [Google Scholar] [CrossRef]
- Scavello, F.; Mutschler, A.; Hellé, S.; Schneider, F.; Chasserot-Golaz, S.; Strub, J.M.; Cianferani, S.; Haikel, Y.; Metz-Boutigue, M.-H. Catestatin in innate immunity and Cateslytin-derived peptides against superbugs. Sci. Rep. 2021, 11, 15615. [Google Scholar] [CrossRef]
- Austermeier, S.; Pekmezovic, M.; Porschitz, P.; Lee, S.; Kichik, N.; Moyes, D.L.; Ho, J.; Ketowicz, N.K.; Naglik, J.R.; Hube, B.; et al. Albumin neutralizes hydrophobic toxins and modulates Candida albicans Pathogenecity. mBio 2021, 12, e0053121. [Google Scholar] [CrossRef]
- Schneider, F.; Dureau, A.F.; Hellé, S.; Betscha, C.; Senger, B.; Cremel, G.; Boulmedais, F.; Strub, J.M.; Corti, A.; Meyer, N.; et al. A Pilot Study on Continuous Infusion of 4% Albumin in Critically Ill Patients: Impact on Nosocomial Infection via a Reduction Mechanism for Oxidized Substrates. Crit. Care Explor. 2019, 1, e0044. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, M.; Lai, R.; Zhang, Z. Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides 2021, 146, 170666. [Google Scholar] [CrossRef] [PubMed]
- Akaddar, A.; Doderer-Lang, C.; Marzahn, M.R.; Delalande, F.; Mousli, M.; Helle, K.; Van Dorsselaer, A.; Aunis, D.; Dunn, B.M.; Metz-Boutigue, M.H.; et al. Catestatin, an endogenous chromogranin A-derived peptide, inhibits in vitro growth of Plasmodium falciparum. Cell. Mol. Life Sci. 2010, 67, 1005–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, M.; Resende, J.M.; Moraes, C.M.; Marquette, A.; Chich, J.F.; Metz-Boutigue, M.H.; Bechinger, B. Membrane structure and interactions of human catestatin by multidimensional solution and solid-state NMR spectroscopy. FASEB J. 2010, 24, 1737–1746. [Google Scholar] [CrossRef] [Green Version]
- Maget-Dana, R.; Metz-Boutigue, M.H.; Helle, K.B. The N_terminal domain of chromogranin A interacts with monolayers of membrane lipids of fungal and mammalian compositions. Ann. N. Y. Acad. Sci. 2002, 971, 352–354. [Google Scholar] [CrossRef]
- Sivertsen, A.; Isaksson, J.; Leiros, H.K.; Svenson, J.; Svendsen, J.S.; Brandsdal, B.O. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Struct. Biol. 2014, 14, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Svenson, J.; Brandsdal, B.O.; Stensen, W.; Svendsen, J.S. Albumin binding of short cationic antimicrobial micropeptides and its influence on the in vitro bactericidal effect. J. Med. Chem. 2007, 50, 3334–3339. [Google Scholar] [CrossRef]
- Gallo, M.; Vanni, D.; Esposito, S.; Alaimo, N.; Orvieto, F.; Rulli, F.; Missineo, A.; Caretti, F.; Bonelli, F.; Veneziano, M.; et al. Oligomerization, albumin binding and catabolism of therapeutic peptides in the subcutaneous compartment: An investigation on lipidated GLP-1 analogs. J. Pharm. Biomed. Anal. 2022, 210, 114566. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Zhu, S.; Zeng, Q.; Lang, L.; Ma, Y.; Kiesewetter, D.O.; Liu, Y.; Fu, X.; Lau, J.; Zhu, G.; et al. An Albumin Sandwich Enhances in Vivo Circulation and Stability of Metabolically Labile Peptides. Bioconjug. Chem. 2019, 30, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Lambert, R.J.; Pearson, J. Susceptibility testing: Accurate and reproducible minimum inhibitory concentration (MIC) and noninhibitory concentration (NIC) values. J. Appl. Microbiol. 2000, 88, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrey, G. Use of quartz crystal vibrator for weighting thin films on a microbalance. Z. Physik. 1959, 155, 206–222. [Google Scholar] [CrossRef]
Strain | Amphotericin B | Fluconazole | Voriconazole | Caspofungin |
---|---|---|---|---|
MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | |
C. albicans “S” | 0.19 “S” | 0.125 “S” | 0.002 “S” | 0.094 “S” |
C. albicans “R” | 0.125 “S” | >256 “R” | >32 “R” | 0.047 “S” |
C. tropicalis “S” | 0.125 “S” | 0.5 “S” | 0.047 “S” | 0.125 “S” |
C. tropicalis “R” | 0.125 “S” | 96 “R” | 1.5 “R” | 0.125 “S” |
C. glabrata “S” | 0.125 “S” | 3 “I” | 0.032 “S” | 0.25 “I” |
C. glabrata “R” | 0.5 “S” | >256 “R” | 8 “R” | 0.25 “I” |
C. lusitaniae “S” | 0.75 “S” | 0.38 “S” | 0.012 “S” | 0.125 “S” |
(a) | ||||
Peptide | Sequence | MIC (µg/mL) C. albicans | ||
“S” | “R” | |||
bCts | bCgA344–364 | R S M R L S F R A R G Y G F R G P G L Q L | 30 | 50 |
bCtl | L-bCgA344–358 | R S M R L S F R A R G Y G F R | 7.9 * | 9.6 |
P1 | D-bCgA344–358 | R S M R L S F R A R G Y G F R | 5.5 * | 9.6 |
P2 | L-bCgA344–351 | R S M R L S F R | 50 | 100 |
P3 | L-bCgA344–351 | Ac-R S M R L S F R | >100 | >100 |
P4 | L-bCgA344–351 | Pa-R S M R L S F R | >100 | >100 |
P5 | L-bCgA347–352 | R L S F R A-W | >100 | >100 |
P6 | D-bCgA347–352 | R L S F R A-W | >100 | >100 |
P7 | L-bCgA348–353 | Ac-L S F R A R | >100 | >100 |
P8 | L-bCgA348–351 | L S F R | >100 | >100 |
P9 | D-bCgA348–351 | L S F R | >100 | >100 |
P10 | L-bCgA348–351 | Ac-L S F R | >100 | >100 |
P11 | L-bCgA348–351 | Pa-L S F R | >100 | >100 |
(b) | ||||
Peptide | Sequence | MIC (µg/mL) C. albicans | ||
“S” | “R” | |||
hCts | hCgA352–372 | S S M K L S F R A R A Y G F R G P G P Q L | >240 | >240 |
hCtl | L-hCgA352–366 | S S M K L S F R A R A Y G F R | 50 | 50 |
P12 | L-hCgA352–366 | Ac-S S M K L S F R A R G Y G F R | >100 | >100 |
P13 | L-hCgA352–366 | Pa-S S M K L S F R A R G Y G F R | >100 | >100 |
P14 | L-hCgA352–359 | S S M K L S F R | >100 | >100 |
P15 | L-hCgA352–359 | Ac-S S M K L S F R | >100 | >100 |
P16 | L-hCgA352–359 | Pa-S S M K L S F R | >100 | >100 |
P17 | L-hCgA355–360 | Ac-K L S F R A | >100 | >100 |
P18 | L-hCgA354–359 | M K L S F R | >100 | >100 |
P19 | L-hCgA354–359 | Pa-M K L S F R | >100 | >100 |
Candida Strain. | Candida albicans “S” | Candida albicans “R” | Candida tropicalis “S” | Candida tropicalis “R” | Candida glabrata “S” | Candida glabrata “R” |
---|---|---|---|---|---|---|
MIC of L-bCts (µg/mL) | 30 | 50 | 50 | 20 | >100 | >100 |
MIC of L-hCts (µg/mL) | >240 | >240 | >240 | >240 | >240 | >240 |
MIC of L-bCtl (µg/mL) | 7.9 * | 9.6 | 9.8 | 2.0 | 38.2 | 61.4 |
MIC of D-bCtl (µg/mL) | 5.5 * | 9.6 | 8.1 | 2.0 | 13.4 | 15.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancino, D.; Kharouf, N.; Scavello, F.; Hellé, S.; Salloum-Yared, F.; Mutschler, A.; Mathieu, E.; Lavalle, P.; Metz-Boutigue, M.-H.; Haïkel, Y. The Catestatin-Derived Peptides Are New Actors to Fight the Development of Oral Candidosis. Int. J. Mol. Sci. 2022, 23, 2066. https://doi.org/10.3390/ijms23042066
Mancino D, Kharouf N, Scavello F, Hellé S, Salloum-Yared F, Mutschler A, Mathieu E, Lavalle P, Metz-Boutigue M-H, Haïkel Y. The Catestatin-Derived Peptides Are New Actors to Fight the Development of Oral Candidosis. International Journal of Molecular Sciences. 2022; 23(4):2066. https://doi.org/10.3390/ijms23042066
Chicago/Turabian StyleMancino, Davide, Naji Kharouf, Francesco Scavello, Sophie Hellé, Fouad Salloum-Yared, Angela Mutschler, Eric Mathieu, Philippe Lavalle, Marie-Hélène Metz-Boutigue, and Youssef Haïkel. 2022. "The Catestatin-Derived Peptides Are New Actors to Fight the Development of Oral Candidosis" International Journal of Molecular Sciences 23, no. 4: 2066. https://doi.org/10.3390/ijms23042066
APA StyleMancino, D., Kharouf, N., Scavello, F., Hellé, S., Salloum-Yared, F., Mutschler, A., Mathieu, E., Lavalle, P., Metz-Boutigue, M. -H., & Haïkel, Y. (2022). The Catestatin-Derived Peptides Are New Actors to Fight the Development of Oral Candidosis. International Journal of Molecular Sciences, 23(4), 2066. https://doi.org/10.3390/ijms23042066