Tracking the Molecular Fingerprint of Head and Neck Cancer for Recurrence Detection in Liquid Biopsies
Abstract
:1. Introduction
2. ctDNA as Liquid Biopsy Markers Suitable for Longitudinal Surveillance in HNSCC
2.1. Detection of HPV ctDNA in Biologic Fluids
2.2. Analysis of EBV ctDNA during HNSCC Surveillance
2.3. ctDNA in Carcinogen-Driven HNSCC
3. The Value of ctRNA in Cancer Monitoring
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carlander, A.; Jakobsen, K.; Bendtsen, S.; Garset-Zamani, M.; Lynggaard, C.; Jensen, J.; Grønhøj, C.; Buchwald, C. A Contemporary Systematic Review on Repartition of HPV-Positivity in Oropharyngeal Cancer Worldwide. Viruses 2021, 13, 1326. [Google Scholar] [CrossRef] [PubMed]
- Giraldi, L.; Collatuzzo, G.; Hashim, D.; Franceschi, S.; Herrero, R.; Chen, C.; Schwartz, S.M.; Smith, E.; Kelsey, K.; McClean, M.; et al. Infection with Human Papilloma Virus (HPV) and risk of subsites within the oral cancer. Cancer Epidemiol. 2021, 75, 102020. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Galvis, M.; Loveless, R.; Kowalski, L.; Teng, Y. Impacts of Environmental Factors on Head and Neck Cancer Pathogenesis and Progression. Cells 2021, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Roman, B.R.; Aragones, A. Epidemiology and incidence of HPV-related cancers of the head and neck. J. Surg. Oncol. 2021, 124, 920–922. [Google Scholar] [CrossRef]
- Wong, K.C.W.; Hui, E.P.; Lo, K.-W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.-F.; King, A.D.; et al. Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol. 2021, 18, 679–695. [Google Scholar] [CrossRef]
- Bs, K.R.D.; Little, J.A.; Zafereo, M.; Lung, M.; Wei, Q.; Sturgis, E.M. Squamous cell carcinoma of the head and neck in never smoker–never drinkers: A descriptive epidemiologic study. Head Neck 2007, 30, 75–84. [Google Scholar] [CrossRef]
- Adeoye, J.; Tan, J.Y.; Ip, C.M.; Choi, S.; Thomson, P. “Fact or fiction?”: Oral cavity cancer in nonsmoking, nonalcohol drinking patients as a distinct entity—Scoping review. Head Neck 2021, 43, 3662–3680. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts & Figures 2022; American Cancer Society: Atlanta, GA, USA, 2022; Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2022/2022-cancer-facts-and-figures.pdf (accessed on 16 February 2022).
- Boysen, M.E.; Zätterström, U.K.; Evensen, J.F. Self-reported Symptoms to Monitor Recurrent Head and Neck Cancer-Analysis of 1678 Cases. Anticancer Res. 2016, 36, 2849–2854. [Google Scholar]
- Chin, R.-I.; Chen, K.; Usmani, A.; Chua, C.; Harris, P.K.; Binkley, M.S.; Azad, T.D.; Dudley, J.C.; Chaudhuri, A.A. Detection of Solid Tumor Molecular Residual Disease (MRD) Using Circulating Tumor DNA (ctDNA). Mol. Diagn. Ther. 2019, 23, 311–331. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat. Rev. Clin. Oncol. 2019, 16, 409–424. [Google Scholar] [CrossRef]
- Ladefoged, C.N.; E Hansen, A.; Keller, S.H.; Fischer, B.M.; Rasmussen, J.H.; Law, I.; Kjaer, A.; Højgaard, L.; Lauze, F.; Beyer, T.; et al. Dental artifacts in the head and neck region: Implications for Dixon-based attenuation correction in PET/MR. EJNMMI Phys. 2015, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chockattu, S.J.; Suryakant, D.B.; Thakur, S. Unwanted effects due to interactions between dental materials and magnetic resonance imaging: A review of the literature. Restor. Dent. Endod. 2018, 43, e39. [Google Scholar] [CrossRef] [PubMed]
- Swiecicki, P.L.; Brennan, J.R.; Mierzwa, M.; Spector, M.E.; Brenner, J.C. Head and Neck Squamous Cell Carcinoma Detection and Surveillance: Advances of Liquid Biomarkers. Laryngoscope 2019, 129, 1836–1843. [Google Scholar] [CrossRef]
- Meng, Y.; Bian, L.; Zhang, M.; Bo, F.; Lu, X.; Li, D. Liquid biopsy and their application progress in head and neck cancer: Focus on biomarkers CTCs, cfDNA, ctDNA and EVs. Biomarkers Med. 2020, 14, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Leethanakul, C.; Knezevic, V.; Patel, V.; Amornphimoltham, P.; Gillespie, J.; Shillitoe, E.; Emko, P.; Park, M.; Emmert-Buck, M.; Strausberg, R.; et al. Gene discovery in oral squamous cell carcinoma through the Head and Neck Cancer Genome Anatomy Project: Confirmation by microarray analysis. Oral Oncol. 2003, 39, 248–258. [Google Scholar] [CrossRef]
- Yarbrough, W.G.; Slebos, R.J.C.; Liebler, D. Proteomics: Clinical applications for head and neck squamous cell carcinoma. Head Neck 2006, 28, 549–558. [Google Scholar] [CrossRef]
- Capková, M.; Sachova, J.; Strnad, H.; Kolar, M.; Hroudová, M.; Chovanec, M.; Čada, Z.; Šteffl, M.; Valach, J.; Kastner, J.; et al. Microarray Analysis of Serum mRNA in Patients with Head and Neck Squamous Cell Carcinoma at Whole-Genome Scale. BioMed Res. Int. 2014, 2014, 408683. [Google Scholar] [CrossRef]
- Stucky, A.; Sedghizadeh, P.; Mahabady, S.; Chen, X.; Zhang, C.; Zhang, G.; Zhang, X.; Zhong, J.F. Single-cell genomic analysis of head and neck squamous cell carcinoma. Oncotarget 2017, 8, 73208–73218. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.S.; Robinson, A.; Shon, W.; Laury, A.; Raedschelders, K.; Venkatraman, V.; Holewinski, R.; Zhang, Y.; Shiao, S.L.; Chen, M.M.; et al. Comparative Proteomic Analysis of HPV(+) Oropharyngeal Squamous Cell Carcinoma Recurrence. J. Proteome Res. 2021, 21, 200–208. [Google Scholar] [CrossRef]
- Stampe, H.; Jakobsen, K.K.; Bendtsen, S.K.; Grønhøj, C.; von Buchwald, C. Systematic review on the current knowledge and use of single-cell RNA sequencing in head and neck cancer. APMIS 2021, 129, 619–625. [Google Scholar] [CrossRef]
- Chuang, A.Y.; Chuang, T.C.; Chang, S.; Zhou, S.; Begum, S.; Westra, W.H.; Ha, P.K.; Koch, W.M.; Califano, J.A. Presence of HPV DNA in convalescent salivary rinses is an adverse prognostic marker in head and neck squamous cell carcinoma. Oral Oncol. 2008, 44, 915–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.M.; Chan, J.Y.K.; Zhang, Z.; Wang, H.; Khan, Z.; Bishop, J.A.; Westra, W.; Koch, W.M.; Califano, J.A. Saliva and Plasma Quantitative Polymerase Chain Reaction–Based Detection and Surveillance of Human Papillomavirus–Related Head and Neck Cancer. JAMA Otolaryngol. Neck Surg. 2014, 140, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Springer, S.; Mulvey, C.L.; Silliman, N.; Schaefer, J.; Sausen, M.; James, N.; Rettig, E.M.; Guo, T.; Pickering, C.R.; et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci. Transl. Med. 2015, 7, 293ra104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmedillas-López, S.; Olivera-Salazar, R.; García-Arranz, M.; García-Olmo, D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol. Diagn. Ther. 2021, 26, 61–87. [Google Scholar] [CrossRef] [PubMed]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Kiess, A.; Chung, C.H. Emerging biomarkers in head and neck cancer in the era of genomics. Nat. Rev. Clin. Oncol. 2015, 12, 11–26. [Google Scholar] [CrossRef]
- Khatami, F.; Larijani, B.; Nasiri, S.; Tavangar, S.M. Liquid Biopsy as a Minimally Invasive Source of Thyroid Cancer Genetic and Epigenetic Alterations. Int. J. Mol. Cell. Med. 2019, 8, 19–29. [Google Scholar] [CrossRef]
- Van Paemel, R.; De Koker, A.; Vandeputte, C.; van Zogchel, L.; Lammens, T.; Laureys, G.; Vandesompele, J.; Schleiermacher, G.; Chicard, M.; Van Roy, N.; et al. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: A proof-of-principle study. Epigenetics 2021, 16, 196–208. [Google Scholar] [CrossRef]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [Green Version]
- The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Isaac, A.; Kostiuk, M.; Zhang, H.; Lindsay, C.; Makki, F.; O’Connell, D.A.; Harris, J.R.; Cote, D.W.J.; Seikaly, H.; Biron, V.L. Ultrasensitive detection of oncogenic human papillomavirus in oropharyngeal tissue swabs. J. Otolaryngol.—Head Neck Surg. 2017, 46, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chera, B.S.; Kumar, S.; Shen, C.; Amdur, R.; Dagan, R.; Green, R.; Goldman, E.; Weiss, J.; Grilley-Olson, J.; Patel, S.; et al. Plasma Circulating Tumor HPV DNA for the Surveillance of Cancer Recurrence in HPV-Associated Oropharyngeal Cancer. J. Clin. Oncol. 2020, 38, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Gerndt, S.P.; Ramirez, R.J.; Wahle, B.M.; Kuperwasser, C.; Gunning, A.; A Chaudhuri, A.; Zevallos, J.P. Evaluating a clinically validated circulating tumor HPV DNA assay in saliva as a proximal biomarker in HPV+ oropharyngeal squamous cell carcinoma. J. Clin. Oncol. 2021, 39, 6063. [Google Scholar] [CrossRef]
- Tsao, S.W.; Tsang, C.M.; Lo, K.W. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160270. [Google Scholar] [CrossRef]
- She, Y.; Nong, X.; Zhang, M.; Wang, M. Epstein-Barr virus infection and oral squamous cell carcinoma risk: A meta-analysis. PLoS ONE 2017, 12, e0186860. [Google Scholar] [CrossRef] [Green Version]
- Yoshizaki, T.; Kondo, S.; Wakisaka, N.; Murono, S.; Endo, K.; Sugimoto, H.; Nakanishi, S.; Tsuji, A.; Ito, M. Pathogenic role of Epstein-Barr virus latent membrane protein-1 in the development of nasopharyngeal carcinoma. Cancer Lett. 2013, 337, 1–7. [Google Scholar] [CrossRef]
- Yarza, R.; Bover, M.; Agulló-Ortuño, M.T.; Iglesias-Docampo, L.C. Current approach and novel perspectives in nasopharyngeal carcinoma: The role of targeting proteasome dysregulation as a molecular landmark in nasopharyngeal cancer. J. Exp. Clin. Cancer Res. 2021, 40, 202. [Google Scholar] [CrossRef]
- Lo, Y.M.; Chan, L.Y.; Chan, A.T.; Leung, S.F.; Lo, K.W.; Zhang, J.; Lee, J.C.; Hjelm, N.M.; Johnson, P.J.; Huang, D.P. Quan-titative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyn-geal carcinoma. Cancer Res. 1999, 59, 5452–5455. [Google Scholar]
- Mäkitie, A.A.; Reis, P.P.; Irish, J.; Zhang, T.; Chin, S.F.; Chen, X.; Marriott, C.; Keller, A.; Perez-Ordoñez, B.; Kamel-Reid, S.; et al. Correlation of Epstein-Barr virus DNA in cell-free plasma, functional imaging and clinical course in locally advanced nasopharyngeal cancer: A pilot study. Head Neck 2004, 26, 815–822. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Twu, C.-W.; Lin, W.-Y.; Jiang, R.-S.; Liang, K.-L.; Chen, K.-W.; Wu, C.-T.; Shih, Y.-T.; Lin, J.-C. Plasma Epstein-Barr virus DNA screening followed by 18F-fluoro-2-deoxy-D-glucose positron emission tomography in detecting posttreatment failures of nasopharyngeal carcinoma. Cancer 2011, 117, 4452–4459. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Chan, S.-C.; Chang, K.-P.; Lin, T.-L.; Lin, C.-Y.; Hsieh, C.-H.; Huang, S.-F.; Tsang, N.-M.; Lee, L.-Y.; Ng, S.-H.; et al. Clinical scenario of EBV DNA follow-up in patients of treated localized nasopharyngeal carcinoma. Oral Oncol. 2013, 49, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-F.; Zhang, Y.; Huang, X.-B.; Du, X.-J.; Tang, L.-L.; Chen, L.; Peng, H.; Guo, R.; Sun, Y.; Ma, J. Prognostic value of plasma Epstein-Barr virus DNA level during posttreatment follow-up in the patients with nasopharyngeal carcinoma having undergone intensity-modulated radiotherapy. Chin. J. Cancer 2017, 36, 87. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, X.; Lv, J.; Wen, D.; Zhou, G.; Lin, L.; Kou, J.; Wu, C.; Chen, Y.; Zheng, Z.; et al. Prognostic potential of liquid biopsy tracking in the posttreatment surveillance of patients with nonmetastatic nasopharyngeal carcinoma. Cancer 2020, 126, 2163–2173. [Google Scholar] [CrossRef] [PubMed]
- Bossi, P.; Chan, A.; Licitra, L.; Trama, A.; Orlandi, E.; Hui, E.; Halámková, J.; Mattheis, S.; Baujat, B.; Hardillo, J.; et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.F.; Lin, L.; Mao, Y.P.; Deng, B.; Lv, J.W.; Zheng, W.H.; Wen, D.W.; Kou, J.; Chen, F.P.; Yang, X.L.; et al. Liquid biopsy posttreatment surveillance in endemic nasopharyngeal carcinoma: A cost-effective strategy to integrate circulating cell-free Epstein-Barr virus DNA. BMC Med. 2021, 19, 193. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.-Q.; Lv, J.-W.; Tang, L.-L.; Mao, Y.-P.; Guo, R.; Ma, J.; Sun, Y. Evaluation of the National Comprehensive Cancer Network and European Society for Medical Oncology Nasopharyngeal Carcinoma Surveillance Guidelines. Front. Oncol. 2020, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Frederick, M.J.; Pickering, C.R.; Bettegowda, C.; Chang, K.; Li, R.J.; Fakhry, C.; Xie, T.-X.; Zhang, J.; Wang, J.; et al. Exome Sequencing of Head and Neck Squamous Cell Carcinoma Reveals Inactivating Mutations in NOTCH1. Science 2011, 333, 1154–1157. [Google Scholar] [CrossRef] [Green Version]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.; Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The Mutational Landscape of Head and Neck Squamous Cell Carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef] [Green Version]
- Perdomo, S.; Avogbe, P.H.; Foll, M.; Abedi-Ardekani, B.; Facciolla, V.L.; Anantharaman, D.; Chopard, P.; Le Calvez-Kelm, F.; Vilensky, M.; Polesel, J.; et al. Circulating tumor DNA detection in head and neck cancer: Evaluation of two different detection approaches. Oncotarget 2017, 8, 72621–72632. [Google Scholar] [CrossRef] [Green Version]
- Schwaederle, M.; Chattopadhyay, R.; Kato, S.; Fanta, P.T.; Banks, K.; Choi, I.S.; Piccioni, D.E.; Ikeda, S.; Talasaz, A.; Lanman, R.B.; et al. Genomic Alterations in Circulating Tumor DNA from Diverse Cancer Patients Identified by Next-Generation Sequencing. Cancer Res. 2017, 77, 5419–5427. [Google Scholar] [CrossRef] [Green Version]
- van Ginkel, J.H.; Huibers, M.M.H.; van Es, R.J.J.; de Bree, R.; Willems, S.M. Droplet digital PCR for detection and quantification of circulating tumor DNA in plasma of head and neck cancer patients. BMC Cancer 2017, 17, 428. [Google Scholar] [CrossRef]
- Schirmer, M.A.; Beck, J.; Leu, M.; Oellerich, M.; Rave-Fränk, M.; Walson, P.D.; Schütz, E.; Canis, M. Cell-Free Plasma DNA for Disease Stratification and Prognosis in Head and Neck Cancer. Clin. Chem. 2018, 64, 959–970. [Google Scholar] [CrossRef]
- Galot, R.; van Marcke, C.; Helaers, R.; Mendola, A.; Goebbels, R.-M.; Caignet, X.; Ambroise, J.; Wittouck, K.; Vikkula, M.; Limaye, N.; et al. Liquid biopsy for mutational profiling of locoregional recurrent and/or metastatic head and neck squamous cell carcinoma. Oral Oncol. 2020, 104, 104631. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas. Available online: https://portal.gdc.cancer.gov/ (accessed on 16 February 2022).
- Cui, Y.; Kim, H.-S.; Cho, E.S.; Han, D.; Park, J.A.; Park, J.Y.; Nam, W.; Kim, H.J.; Cha, I.-H.; Cha, Y.H. Longitudinal detection of somatic mutations in saliva and plasma for the surveillance of oral squamous cell carcinomas. PLoS ONE 2021, 16, e0256979. [Google Scholar] [CrossRef]
- Mes, S.W.; Brink, A.; Sistermans, E.A.; Straver, R.; Oudejans, C.B.; Poell, J.B.; Leemans, C.R.; Brakenhoff, R.H. Comprehensive multiparameter genetic analysis improves circulating tumor DNA detection in head and neck cancer patients. Oral Oncol. 2020, 109, 104852. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, G.P.; McCormick, S.A.; Mo, J.; Datta, B.; Mahimkar, M.; Lazarus, P.; Schäffer, A.A.; Desper, R.; Schantz, S.P. Genetic differences detected by comparative genomic hybridization in head and neck squamous cell carcinomas from different tumor sites: Construction of oncogenetic trees for tumor progression. Genes Chromosom. Cancer 2002, 34, 224–233. [Google Scholar] [CrossRef]
- Smeets, S.J.; Braakhuis, B.J.M.; Abbas, S.; Snijders, P.J.F.; Ylstra, B.; Van De Wiel, M.A.; Meijer, G.A.; Leemans, C.R.; Brakenhoff, R.H. Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene 2005, 25, 2558–2564. [Google Scholar] [CrossRef] [Green Version]
- Roman, E.; Meza-Zepeda, L.A.; Kresse, S.H.; Myklebost, O.; Vasstrand, E.N.; Ibrahim, S.O. Chromosomal aberrations in head and neck squamous cell carcinomas in Norwegian and Sudanese populations by array comparative genomic hybridization. Oncol. Rep. 1994, 20, 825–843. [Google Scholar] [CrossRef] [Green Version]
- Van Ginkel, J.H.; De Leng, W.W.; De Bree, R.; Van Es, R.J.; Willems, S.M. Targeted sequencing reveals TP53 as a potential diagnostic biomarker in the post-treatment surveillance of head and neck cancer. Oncotarget 2016, 7, 61575–61586. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Swanton, C.; Seiden, M.V. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 2020, 31, 745–759. [Google Scholar] [CrossRef]
- Biron, V.L.; Mohamed, A.; Hendzel, M.J.; Underhill, D.A.; Seikaly, H. Epigenetic differences between human papilloma-virus-positive and –negative oropharyngeal squamous cell carcinomas. J. Otolaryngol. Head Neck Surg. 2012, 41 (Suppl. 1), S65–S70. [Google Scholar] [CrossRef] [PubMed]
- Camuzi, D.; Simão, T.D.A.; Dias, F.; Pinto, L.F.R.; Soares-Lima, S.C. Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers 2021, 13, 5630. [Google Scholar] [CrossRef] [PubMed]
- Degli Esposti, D.; Sklias, A.; Lima, S.C.; Beghelli-de la Forest Divonne, S.; Cahais, V.; Fernandez-Jimenez, N.; Cros, M.-P.; Ecsedi, S.; Cuenin, C.; Bouaoun, L.; et al. Unique DNA methylation signature in HPV-positive head and neck squamous cell carcinomas. Genome Med. 2017, 9, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostareli, E.; Holzinger, D.; Bogatyrova, O.; Hielscher, T.; Wichmann, G.; Keck, M.; Lahrmann, B.; Grabe, N.; Flechtenmacher, C.; Schmidt, C.R.; et al. HPV-related methylation signature predicts survival in oropharyngeal squamous cell carcinomas. J. Clin. Investig. 2013, 123, 2488–2501. [Google Scholar] [CrossRef] [Green Version]
- Schröck, A.; Leisse, A.; De Vos, L.; Gevensleben, H.; Dröge, F.; Franzen, A.; Wachendörfer, M.; Schröck, F.; Ellinger, J.; Teschke, M.; et al. Free-Circulating Methylated DNA in Blood for Diagnosis, Staging, Prognosis, and Monitoring of Head and Neck Squamous Cell Carcinoma Patients: An Observational Prospective Cohort Study. Clin. Chem. 2017, 63, 1288–1296. [Google Scholar] [CrossRef]
- de Vos, L.; Jung, M.; Koerber, R.-M.; Bawden, E.G.; Holderried, T.A.; Dietrich, J.; Bootz, F.; Brossart, P.; Kristiansen, G.; Dietrich, D. Treatment Response Monitoring in Patients with Advanced Malignancies Using Cell-Free SHOX2 and SEPT9 DNA Methylation in Blood. J. Mol. Diagn. 2020, 22, 920–933. [Google Scholar] [CrossRef]
- Jesus, L.M.; dos Reis, M.B.; Bsn, R.S.C.; Neto, C.S.; Almeida, G.C.; Laus, A.C.; Bsc, G.T.M.; Leal, L.F.; Melendez, M.E.; Marchi, P.; et al. Feasibility of methylated ctDNA detection in plasma samples of oropharyngeal squamous cell carcinoma patients. Head Neck 2020, 42, 3307–3315. [Google Scholar] [CrossRef]
- Severino, P.; Oliveira, L.S.; Torres, N.; Andreghetto, F.M.; Klingbeil, M.D.F.G.; Moyses, R.; Wünsch-Filho, V.; Nunes, F.D.; Mathor, M.B.; Paschoal, A.R.; et al. High-throughput sequencing of small RNA transcriptomes reveals critical biological features targeted by microRNAs in cell models used for squamous cell cancer research. BMC Genom. 2013, 14, 735. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, I.; Ansari, A.; Ayachit, G.; Gandhi, M.; Sharma, P.; Bhairappanavar, S.; Joshi, C.G.; Das, J. Differential gene expression analysis of HNSCC tumors deciphered tobacco dependent and independent molecular signatures. Oncotarget 2019, 10, 6168–6183. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Tian, W.; Li, B. Integrative Bioinformatics Analysis Identifies NEK2 as a Potential Biomarker in Head and Neck Squamous Cell Carcinoma. J. Comput. Biol. 2020, 27, 100–108. [Google Scholar] [CrossRef]
- Ock, C.-Y.; Kim, S.; Keam, B.; Kim, M.; Kim, T.M.; Kim, J.-H.; Jeon, Y.K.; Lee, J.-S.; Kwon, S.K.; Hah, J.H.; et al. PD-L1 expression is associated with epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Oncotarget 2016, 7, 15901–15914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puram, S.V.; Tirosh, I.; Parikh, A.S.; Patel, A.P.; Yizhak, K.; Gillespie, S.; Rodman, C.; Luo, C.L.; Mroz, E.A.; Emerick, K.S.; et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell 2017, 171, 1611–1624.e24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leemans, C.R.; Snijders, P.J.F.; Brakenhoff, R.H. The molecular landscape of head and neck cancer. Nat. Rev. Cancer 2018, 18, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, Q.; Zhang, Z.; Ge, S.; Han, Z.-G.; Chen, W.-T. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene 2012, 32, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshizuka, K.; Hanazawa, T.; Arai, T.; Okato, A.; Kikkawa, N.; Seki, N. Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma. Cancer Metastasis Rev. 2017, 36, 525–545. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, G.; Wang, D.; Li, Y. Analysis of lncRNA-Mediated ceRNA Crosstalk and Identification of Prognostic Signature in Head and Neck Squamous Cell Carcinoma. Front. Pharmacol. 2019, 10, 150. [Google Scholar] [CrossRef] [Green Version]
- Economopoulou, P.; De Bree, R.; Kotsantis, I.; Psyrri, A. Diagnostic Tumor Markers in Head and Neck Squamous Cell Carcinoma (HNSCC) in the Clinical Setting. Front. Oncol. 2019, 9, 827. [Google Scholar] [CrossRef]
- Diez-Fraile, A.; De Ceulaer, J.; Derpoorter, C.; Spaas, C.; De Backer, T.; Lamoral, P.; Abeloos, J.; Lammens, T. Circulating Non-Coding RNAs in Head and Neck Cancer: Roles in Diagnosis, Prognosis, and Therapy Monitoring. Cells 2020, 10, 48. [Google Scholar] [CrossRef]
- Shuai, M.; Hong, J.; Huang, D.; Zhang, X.; Tian, Y. Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity. Oncol. Lett. 2018, 16, 6495–6501. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.-Y.; Wang, J.; Ouyang, S.-B.; Huang, Z.-K.; Liao, L. Salivary Circular RNAs Hsa_Circ_0001874 and Hsa_Circ_0001971 as Novel Biomarkers for the Diagnosis of Oral Squamous Cell Carcinoma. Cell. Physiol. Biochem. 2018, 47, 2511–2521. [Google Scholar] [CrossRef]
- Lokvenc, M.; Kalinova, M.; Forsterova, K.; Klener, P.; Trneny, M.; Fronkova, E.; Kodet, R. Cyclin D1 mRNA as a molecular marker for minimal residual disease monitoring in patients with mantle cell lymphoma. Ann. Hematol. 2018, 97, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Iijima-Yamashita, Y.; Yamada, M.; Deguchi, T.; Kiyokawa, N.; Shimada, A.; Tawa, A.; Tomizawa, D.; Taga, T.; Kinoshita, A.; et al. Monitoring of fusion gene transcripts to predict relapse in pediatric acute myeloid leukemia. Pediatr. Int. 2017, 60, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thwin, K.K.; Ishida, T.; Uemura, S.; Yamamoto, N.; Lin, K.S.; Tamura, A.; Kozaki, A.; Saito, A.; Kishimoto, K.; Mori, T.; et al. Level of Seven Neuroblastoma-Associated mRNAs Detected by Droplet Digital PCR Is Associated with Tumor Relapse/Regrowth of High-Risk Neuroblastoma Patients. J. Mol. Diagn. 2020, 22, 236–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, Z.-J.; Yao, W.-Y.; Zhang, F.; Qiu, W.-Z.; Liao, K.-; Feng, J.-H.; Tan, J.-Y.; Liu, H.; Yuan, T.-Z.; Zheng, R.-H.; et al. The Optimal Second-Line Systemic Treatment Model for Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: A Bayesian Network Meta-Analysis. Front. Immunol. 2021, 12, 719650. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.L.; Jansen, L.; Post, W.J.; Bonnema, J.; Van De Velde, J.C.; De Bock, G.H. Impact on survival of early detection of isolated breast recurrences after the primary treatment for breast cancer: A meta-analysis. Breast Cancer Res. Treat. 2008, 114, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Thewes, B.; Husson, O.; Poort, H.; Custers, J.A.; Butow, P.N.; McLachlan, S.-A.; Prins, J.B. Fear of Cancer Recurrence in an Era of Personalized Medicine. J. Clin. Oncol. 2017, 35, 3275–3278. [Google Scholar] [CrossRef]
- Ijzerman, M.J.; Berghuis, A.S.; De Bono, J.S.; Terstappen, L.W. Health economic impact of liquid biopsies in cancer management. Expert Rev. Pharm. Outcomes Res. 2018, 18, 593–599. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diez-Fraile, A.; De Ceulaer, J.; Derpoorter, C.; Spaas, C.; De Backer, T.; Lamoral, P.; Abeloos, J.; Lammens, T. Tracking the Molecular Fingerprint of Head and Neck Cancer for Recurrence Detection in Liquid Biopsies. Int. J. Mol. Sci. 2022, 23, 2403. https://doi.org/10.3390/ijms23052403
Diez-Fraile A, De Ceulaer J, Derpoorter C, Spaas C, De Backer T, Lamoral P, Abeloos J, Lammens T. Tracking the Molecular Fingerprint of Head and Neck Cancer for Recurrence Detection in Liquid Biopsies. International Journal of Molecular Sciences. 2022; 23(5):2403. https://doi.org/10.3390/ijms23052403
Chicago/Turabian StyleDiez-Fraile, Araceli, Joke De Ceulaer, Charlotte Derpoorter, Christophe Spaas, Tom De Backer, Philippe Lamoral, Johan Abeloos, and Tim Lammens. 2022. "Tracking the Molecular Fingerprint of Head and Neck Cancer for Recurrence Detection in Liquid Biopsies" International Journal of Molecular Sciences 23, no. 5: 2403. https://doi.org/10.3390/ijms23052403
APA StyleDiez-Fraile, A., De Ceulaer, J., Derpoorter, C., Spaas, C., De Backer, T., Lamoral, P., Abeloos, J., & Lammens, T. (2022). Tracking the Molecular Fingerprint of Head and Neck Cancer for Recurrence Detection in Liquid Biopsies. International Journal of Molecular Sciences, 23(5), 2403. https://doi.org/10.3390/ijms23052403