Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis
Abstract
:1. Introduction
Mechanism | Etiopathogenesis | References |
---|---|---|
Microenvironmental acid pH | As in all malignant tumors, a microenvironmental acidic pH is a fundamental hallmark of the demyelinating lesions of MS and other HNDDs. This pathologically acidified pHe decreases the migration, proliferation, and survival of oligodendrocyte precursor cells; hinders the cell differentiation into mature oligodendrocytes; and induces demyelination while decreasing remyelination. In AD, accumulation of β-amyloid (βA) is directly induced by acidosis. In PD, low neural cell pH induces protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation, all hallmarks of the disease. Low pHi also activates pHi-dependent caspases and endonucleases. | [8,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] |
H+ extrusion and elevated pHi | H+ extrusion on its own is a fundamental carcinogenic factor that induces cell transformation, growth, and invasion in BC and other tumors. On the contrary, H+ extrusion is an anti-apoptotic process in MS and HNDDs. | [6,7,8,32,33,34,35,36,37,38,39,40,41,42,43,44] |
Ion channels (IOs) in HNNDs pathogenesis | IOs, mainly the isoform ASIC1, favor an i.c. excessive accumulation of Na+, Ca++, and H+ in MS and other HNDDs, resulting in severe axonal degeneration and neural damage, secondary to Ca++ overload and acidification-mediated apoptosis. Tissue acidosis further activates ASIC1, which precedes neuroinflammation and other autoimmune phenomena. A decrease in the CNS pHi opens ASIC1, which, through the stimulation of Ca++ into neural cells, induces axonal injury, apoptosis, and demyelination in MS, and β-amyloid accumulation in AD. | [45,46] |
Ion channels (IOs) in cancer pathogenesis | Different ion channels (IOs) are involved in the deregulation of the pHi/pHe system in cancer cells, stimulating cell proliferation, matrix invasion, resistance to apoptosis, and metastatic potential. Hv1 and/or Nav1.5 have been found to be highly expressed in highly invasive BC cells, but not in poorly invasive BC cells. | [10,11,47,48,49,50,51,52,53] |
Acidosis and immunity | Acidity of the tumor microenvironment (TME) disrupts the body immune defense mechanisms towards malignant tumors, locally and systemically. This allows relentless and uncontrolled tumor progression. Neutralizing tumor EC acidity with alkaline solutions improves the immune response. | [54,55,56,57,58] |
Human growth factor (GFs) abnormalities in HNDDS and cancer | Removal of essential GFs result in apoptosis. NHE activity is fundamental in the pH regulation of the CNS, normalizing neural homeostasis by stimulating cellular metabolism and DNA synthesis. PDGF has been shown to induce an important decrease in brain amyloid-β (Aβ) deposition and tau phosphorylation in a mice model of AD, also reducing inflammatory responses and promoting Aβ degradation. | [6,7,26,59,60,61,62,63,64] |
Mitochondriopathy in MS and HNDDs. | Mitochondrial dysfunction has been considered to represent a significant etiopa-thogenic factor in the pathogenesis and progression of several HNDDs. Mitochondria also play a crucial role in oligodendrocyte differentiation. Any perturbation in mitochondrial function is likely to damage myelinogenesis and worsen the evolution of MS. | [65,66,67,68,69,70] |
Lactic acid (LA) in MS and HNDDs | LA levels are higher in MS patients as compared to healthy individuals. LA levels also become elevated with disease activity, progression, and/or during relapses. Cerebrospinal fluid (CSF) LA concentrations show a close link between MS plaque activity and LA metabolism. | [71,72] |
RNMDA receptors in HNDDs | Glutamate is the primary excitatory neurotransmitter of the CNS and has a central role in the communication network between neurons, astrocytes, oligodendrocytes, and microglia. While glutamate induces multiple beneficial and essential effects, excess glutamate is catastrophic. | [73,74,75,76] |
Microbiota in the etiopathogenesis of MS and HNDDs | Gut dysbiosis increases intestinal permeability and impairs Treg cell function, leading to inflammation and oxidative stress. | [77,78] |
1.1. On pH-Related Etiology and Pathogenesis of Cancer in the Post-Warburg Era
1.2. Molecular, Biochemical, Metabolic, and Genetic Links and Differences between Neurodegeneration and Cancer
1.3. Multiple Sclerosis (MS) as an Excellent Model for the Study of HNDDs. The Million-Dollar Question on the Etiopathogenesis of MS Is: What Comes First, Immune or Metabolic Malfunctioning? Further Parallelisms and Differences with Cancer
1.4. Cellular and Microenvironmental Acid–Base Abnormalities in Neurodegenerative Diseases
1.5. Acid–Base Dynamics and Homeostasis as the Main Factors Allowing a Better Understanding of the Intimate Nature of HNDDs and Cancer. Multiple Sclerosis as a Fundamnetal Basic Linking Model
Mechanism | Therapeutic Options | References |
---|---|---|
Ion channels/ASIC inhibitors | NaV1.5 Na+ channels associate with NHE1 to become overexpressed in breast cancer, stimulating the formation of invadopodia and the metastatic process. The utilization of voltage-gated IO-inhibiting drugs has been shown to increase survival in cancer patients. Additionally, they also have the potential to be used as a therapeutic option in MS and HNDDs. | [50,115,116] |
Amiloride (AM) and its derivatives: liposomal amiloride, benzamil, and bepedril | AM is a non-specific and weak NHE inhibitor and cell acidifier that has been recommended in both MS and cancer treatment. In MS, as well as in other HNDDs, AM is also recommended as a preventive measure, AM acts as an NHE, Ca++/Na+ exchanger, and ASIC inhibitor. Paradoxically, since AM is a cell acidifier, it has been shown to have protective effects in different neurodegenerative situations by preventing acidosis-induced cellular Ca++ injury, also preserving myelin in hypoxic and inflammatory conditions. Bepridil, a more powerful NHE inhibitor than AM, also acting as an ASIC1 inhibitor, has been reported to protect myelinated axons from degeneration. | [6,8,11,30,59,109,110,111,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134] |
Cariporide (CP) | CP, a more potent and specific NHE inhibitor than AM, protects neurons from apoptosis, attenuates glutamate-mediated mitochondrial death pathways, as well as decreases the cellular entry of Ca++ and the mitochondrial overloading of ROS. Thus, NHE1 inhibition may prevent neural necrosis and apoptosis. CP has also been advised to be considered in cancer treatment. | [117,135] |
Other anti-MS drugs: aminopyridine (4-AP), nafamostat mesylate (NM), and butyrate | 4-AP works as a potassium K+ channel blocker and is clinically approved to treat walking deficiencies in patients with MS. It helps to improve nerve conduction induced by demyelination. NM has been tried in cancer patients but not in patients with MS or other HNDDs. | [136,137,138,139,140,141] |
Butyrate | In MS, butyrate protects the intestinal barrier, increases the Treg cell population, reduces proinflammatory T lymphocyte levels and facilitates the differentiation of oligodendrocytes, in addition to suppressing demielyination and enhancing remyelination. | [139,140,141] |
PTIs and human growth factors (hGF) | Different growth factors (GFs) have been tried for neuronal protection in different HNDDs. Platelet-derived growth factors (PDGF) have been most successful in AD and PD models using rodents. They are bound to be an important part of the clinical armamentarium in MS and other HNDDs. | [26,142,143,144,145,146] |
Human growth hormone (hGH) | GHs play a very important role in the development and maintenance of brain functions. The brain has been considered to be a GH-target tissue. Moreover, production of GH and its receptor occurs in neural stem cells, where the hormone induces their proliferation and differentiation. In rats, GH administration induces neural cell proliferation and recovers motor function after frontal cortex lesions. GH induces the expression of a number of neurotrophic factors. In humans, hGH administration improves cognition, learning, and memory in different pathologies. GH administration in rat AD models improves spatial cognition. The possible use of hGH in AD in humans has been postulated. In mice models of ALS, GH has a protective effect on motor neurons, increasing survival times and improving motor performance. GH concentrations are low in the CSF of ALS patients; however, its administration has no effect on the clinical progression of this fatal HNDD. | [146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162] |
Melatonin (MT) | MT can prevent NO stress-induced mitochondrial dysfunction in experimental models of AD. In mouse models of AD, there is a significant clinical improvement after chronic MT treatment, with an improvement of cognition and memory, as well as a reduction in the deposits of Aβ. MT administration at pharmacological dosages should be considered in the adjuvant treatment of certain HNDDs, such as MS. MT seems to improve intestinal and adipose lipid metabolism in experimental MS, and seems to improve the progression of the disease. | [153,163,164,165,166,167,168] |
Nitric oxide (NO), inhibitors | Nitric oxide synthase (iNOS) is increased in MS patients, supporting MS pathogenesis, mainly inhibiting the mitochondrial respiratory chain. Agmantine is an NO inhibitor that shows activity against MS in vivo, and it should be considered within the integral treatment of MS. Moreover, hydralazine decreases the accumulation of LA and is a promising drug in the complementary treatment of MS. | [169,170,171,172,173,174,175,176,177,178,179,180] |
Mitochondrial booster agents in MS: methylene blue (MB), alpha lipoic acid (α-LA), and fermented wheat germ extract (FWGE) | MB restores mitochondrial function and has a role in the treatment of MS. However, despite it also being an NO inhibitor, it has not been reported to show activity against MS. FWGE is a potent mitobooster agent, restoring mitochondrial activity, and it also suppresses the Warburg effect and decreases the lactic acid (LA) burden in MS. So far, however, its utilization has been reported mainly in the cancer context. | [181,182,183,184,185] |
Calcium (Ca++) entry inhibitors in MS | An excess of i.c. Ca++ increases ROS, interferes with neurotransmission and neuroinflammation, promotes further i.c. acidification, favors apoptosis, and leads to the development of MS. Administration of Ca++ inhibitors represents a fundamental neuroprotective measure in MS. Several of these inhibitors are clinically available. Bepridil also works as a Ca++ channel blocker and has been shown to induce an outstanding improvement of symptoms in the management of MS in model systems. | [16,22,186,187,188,189,190,191,192,193,194,195] |
Caspase-3 inhibitors in MS | Caspase inhibition is therapeutically indicated in AD, MS, and other HNDDs. Since caspase-3 promotes pyroptosis (apoptosis associated with a high inflammatory component), suppressing pyroptosis becomes a promising strategy in the management of MS. | [30,31,196,197,198] |
Glutamate lowering agents | In MS, excess glutamate levels cause the degradation of enzymes, transporters, receptors, and signaling. Thus, a therapeutic strategy being considered as a novel therapeutic approach is to minimize excess glutamate in the CNS with the glutamate oxaloacetate transaminase (GOT). Interestingly, MS is also mediated by autoimmune T cells that can produce and release glutamate. | [199] |
Antilactacemics in MS | Antilactacemics offer a new therapy to minimize myelin degeneration in MS. Among them, alkaline preparations are important in the treatment of MS, since they have been shown to relieve MS patients from ocular symptoms, tiredness, and muscle pain. They have been used in the cancer context too. In combination with DMSO, sodium bicarbonate has proved to be a safe and effective treatment of pain in malignancy. Moreover, the use of oral DMSO has also been used in treating autoimmune and ocular diseases. | [15,200] |
1.6. Ion Channel Activity in Neurodegeneration and Cancer
1.6.1. Ion Channel Activity in Neurodegeneration
1.6.2. Ion Channel Activity in Cancer
1.7. Human Growth Factor (GFs) Abnormalities in Neurodegeneration and Cancer
1.8. Mitochondriopathy in MS and Other Human Neurodegenerative Diseases (HNDDs)
1.9. The Role of Lactate in MS
1.10. The Role of NMDA Receptors in HNDDs
1.11. The Role of Gut Microbiota in HNDDs and Cancer
1.11.1. Gut Microbiota and the Immune System
1.11.2. Neuroinflammation in MS
1.11.3. pH as an Intracellular Effector Controlling Differentiation of Oligodendrocyte Precursors (OPCs)
1.11.4. Gut Microbiota and Short-Chain Fatty Acids in MS
2. On Treatment. Metabolically and Biochemically-Derived Preclinical and Clinical Treatment Proposals in HNDDs. Therapeutic Options
2.1. Therapeutic Approaches and Options to the Proapoptotic Metabolism of MS and HNDDs
2.2. Inhibition of Ion Channels in Neuroprotection and Cancer
2.3. Clinically Available ASIC Inhibitors and Other Measures in the Metabolic-Derived Treatment of HNDDs and MS
2.4. Amiloride (AM) and Amiloride Derivatives in the Neurology and Oncology Clinics. Benzamil, Bepedril, Cariporide, and Other Proton Transport Inhibitors
2.4.1. Amiloride (AM) Has Been Shown to Have Protective Effects in Different Neurodegenerative Situations
2.4.2. Benzamil
2.4.3. Bepedril
2.4.4. Cariporide (CP)
2.5. Other Anti-MS Drugs: Aminopyridine and Nafamostat Mesylate
2.5.1. Aminopyridine (4-AP)
2.5.2. Nafamostat Mesylate (NM)
2.6. Human Growth Factors (hGFs) and Platelet-Derived Growth Factors (PDGF) in MS and HNDDs
2.7. Human Growth Hormone (hGH) in MS and HNDDs and Its Implications in Treatment
2.8. Melatonin (MT) in MS, HNDDs, and Cancer Therapeutics
2.8.1. Melatonin (MT) in MS and HNDDs
2.8.2. Melatonin in Cancer
2.9. Treating Microbiota in Neurodegeneration
2.10. Butyrate, Propionate, Vitamin A, and Vitamin D in MS and HNDDs
2.11. Nitric Oxide (NO) Inhibitors in MS
2.12. Hydralazine in MS
2.13. Mitochondrial Booster Agents in MS: Methylene Blue, Alpha Lipoic Acid, and Fermented Wheat Germ Extract
2.13.1. Methylene Blue (MB)
2.13.2. Alpha-Lipoic Acid (α-LA)
2.13.3. Fermented Wheat Germ Extract (FWGE, Metatrol®)
2.14. Calcium (Ca++) Entry Inhibitors in MS
2.15. Caspase-3 Inhibitors in MS
2.16. Glutamate Lowering Agents
2.17. Antilactacemics in MS
Clinical Formulation and Dosages of the SB + DMSO Mixture
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harguindey, S.; Katin, M.; Edgerton, F.; Takita, H. Hierarchical organization, integrations in biology and cancer, balance loss, and a question on modernism. Med. Hypotheses 1981, 7, 1123–1132. [Google Scholar] [CrossRef]
- Cannon, W.B. Organization for physiological homeostasis. Physiol. Rev. 1929, 9, 399–431. [Google Scholar] [CrossRef]
- Selye, H. The evolution of the stress concept. Am. Sci. 1973, 61, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Harguindey, S.; Stanciu, D.; Devesa, J.; Alfarouk, K.; Cardone, R.A.; Polo Orozco, J.D.; Devesa, P.; Rauch, C.; Orive, G.; Anitua, E.; et al. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin. Cancer Biol. 2017, 43, 157–179. [Google Scholar] [CrossRef] [PubMed]
- Harguindey, S.; Reshkin, S.J. “The new pH-centric anticancer paradigm in Oncology and Medicine”; SCB, 2017. Semin. Cancer Biol. 2017, 43, 1–4. [Google Scholar] [CrossRef]
- Harguindey, S.; Orive, G.; Cacabelos, R.; Hevia, E.M.; de Otazu, R.D.; Arranz, J.L.; Anitua, E. An integral approach to the etiopathogenesis of human neurodegenerative diseases (HNDDs) and cancer. Possible therapeutic consequences within the frame of the trophic factor withdrawal syndrome (TFWS). Neuropsychiatr. Dis. Treat. 2008, 4, 1073–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harguindey, S.; Reshkin, S.J.; Orive, G.; Arranz, J.L.; Anitua, E. Growth and trophic factors, pH and the Na+/H+ exchanger in Alzheimer’s disease, other neurodegenerative diseases and cancer: New therapeutic possibilities and potential dangers. Curr. Alzheimer Res. 2007, 4, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Fang, B.; Wang, D.; Huang, M.; Yu, G.; Li, H. Hypothesis on the relationship between the change in intracellular pH and incidence of sporadic Alzheimer’s disease or vascular dementia. Int. J. Neurosci. 2010, 120, 591–595. [Google Scholar] [CrossRef]
- Schwartz, L.; Peres, S.; Jolicoeur, M.; da Veiga Moreira, J. Cancer and Alzheimer’s disease: Intracellular pH scales the metabolic disorders. Biogerontology 2020, 21, 683–694. [Google Scholar] [CrossRef]
- Xiong, Z.-G.; Pignataro, G.; Li, M.; Chang, S.-y.; Simon, R.P. Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr. Opin. Pharmacol. 2008, 8, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Obara, M.; Szeliga, M.; Albrecht, J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: Facts and hypotheses. Neurochem. Int. 2008, 52, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Ibarreta, D.; Urcelay, E.; Parrilla, R.; Ayuso, M.S. Distinct pH homeostatic features in lymphoblasts from Alzheimer’s disease patients. Ann. Neurol. 1998, 44, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.K.; Bauer, P.O.; Kurosawa, M.; Goswami, A.; Washizu, C.; Machida, Y.; Tosaki, A.; Yamada, M.; Knopfel, T.; Nakamura, T.; et al. Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum. Mol. Genet. 2008, 17, 3223–3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaumeil, M.M.; Valette, J.; Baligand, C.; Brouillet, E.; Hantraye, P.; Bloch, G.; Gaura, V.; Rialland, A.; Krystkowiak, P.; Verny, C. pH as a biomarker of neurodegeneration in Huntington’s disease: A translational rodent-human MRS study. J. Cereb. Blood Flow Metab. 2012, 32, 771–779. [Google Scholar] [CrossRef]
- Young, P.R.; Snyder, W.R.; Vacante, D.A.; Waickus, C.M.; Zygas, A.P.; Grynspan, F.; Karunatilake, C.; Wilson, D.H. The acid instability of myelin. A model for myelin degeneration in multiple sclerosis. Med. Hypotheses 1988, 26, 31–37. [Google Scholar] [CrossRef]
- Atwood, C.S.; Moir, R.D.; Huang, X.; Scarpa, R.C.; Bacarra, N.M.; Romano, D.M.; Hartshorn, M.A.; Tanzi, R.E.; Bush, A.I. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 1998, 273, 12817–12826. [Google Scholar] [CrossRef] [Green Version]
- Nottingham, S.; Leiter, J.C.; Wages, P.; Buhay, S.; Erlichman, J.S. Developmental changes in intracellular pH regulation in medullary neurons of the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R1940–R1951. [Google Scholar] [CrossRef]
- Deitmer, J.W.; Rose, C.R. pH regulation and proton signalling by glial cells. Prog. Neurobiol. 1996, 48, 73–103. [Google Scholar] [CrossRef]
- Nedergaard, M.; Goldman, S.A.; Desai, S.; Pulsinelli, W.A. Acid-induced death in neurons and glia. J. Neurosci. 1991, 11, 2489–2497. [Google Scholar] [CrossRef]
- de Ceglia, R.; Chaabane, L.; Biffi, E.; Bergamaschi, A.; Ferrigno, G.; Amadio, S.; Del Carro, U.; Mazzocchi, N.; Comi, G.; Bianchi, V.; et al. Down-sizing of neuronal network activity and density of presynaptic terminals by pathological acidosis are efficiently prevented by Diminazene Aceturate. Brain. Behav. Immun. 2015, 45, 263–276. [Google Scholar] [CrossRef]
- Kuo, S.W.; Jiang, M.; Heckman, C. Potential involvement of intracellular pH in a mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler. Front. Degener. 2014, 15, 151–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbano, F.J.; Lino, N.G.; Gonzalez-Inchauspe, C.M.; Gonzalez, L.E.; Colettis, N.; Vattino, L.G.; Wunsch, A.M.; Wemmie, J.A.; Uchitel, O.D. Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice. Am. J. Physiol. Cell Physiol. 2014, 306, C396–C406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burtscher, J.; Millet, G.P. Hypoxia, Acidification and Inflammation: Partners in Crime in Parkinson’s Disease Pathogenesis? Immuno 2021, 1, 78–90. [Google Scholar] [CrossRef]
- Taylor, C.P.; Meldrum, B.S. Na+ channels as targets for neuroprotective drugs. Trends Pharmacol. Sci. 1995, 16, 309–316. [Google Scholar] [CrossRef]
- Ruffin, V.A.; Salameh, A.I.; Boron, W.F.; Parker, M.D. Intracellular pH regulation by acid-base transporters in mammalian neurons. Front. Physiol. 2014, 5, 43. [Google Scholar] [CrossRef] [Green Version]
- Anitua, E.; Pascual, C.; Antequera, D.; Bolos, M.; Padilla, S.; Orive, G.; Carro, E. Plasma rich in growth factors (PRGF-Endoret) reduces neuropathologic hallmarks and improves cognitive functions in an Alzheimer’s disease mouse model. Neurobiol. Aging 2014, 35, 1582–1595. [Google Scholar] [CrossRef]
- Torres-Lopez, J.E.; Guzman-Priego, C.G.; Rocha-Gonzalez, H.I.; Granados-Soto, V. Role of NHE1 in Nociception. Pain Res. Treat. 2013, 2013, 217864. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Peng, H.; Veasey, S.C.; Ma, J.; Wang, G.F.; Wang, K.W. Blockade of Na+/H+ exchanger type 3 causes intracellular acidification and hyperexcitability via inhibition of pH-sensitive K+ channels in chemosensitive respiratory neurons of the dorsal vagal nucleus in rats. Neurosci. Bull. 2014, 30, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Majdi, A.; Mahmoudi, J.; Sadigh-Eteghad, S.; Golzari, S.E.; Sabermarouf, B.; Reyhani-Rad, S. Permissive role of cytosolic pH acidification in neurodegeneration: A closer look at its causes and consequences. J. Neurosci. Res. 2016, 94, 879–887. [Google Scholar] [CrossRef]
- Vincent, A.M.; TenBroeke, M.; Maiese, K. Neuronal intracellular pH directly mediates nitric oxide-induced programmed cell death. J. Neurobiol. 1999, 40, 171–184. [Google Scholar] [CrossRef]
- Yuste, J.E.; Tarragon, E.; Campuzano, C.M.; Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci. 2015, 9, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harguindey, S.; Alfarouk, K.; Polo Orozco, J.; Fais, S.; Devesa, J. Towards an integral therapeutic protocol for Breast Cancer based upon the new H+-centered anticancer paradigm of the late post-Warburg era. Int. J. Mol. Sci. 2020, 21, 7475. [Google Scholar] [CrossRef] [PubMed]
- Reshkin, S.J.; Bellizzi, A.; Caldeira, S.; Albarani, V.; Malanchi, I.; Poignee, M.; Alunni-Fabbroni, M.; Casavola, V.; Tommasino, M. Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J. 2000, 14, 2185–2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reshkin, S.J.; Cardone, R.A.; Harguindey, S. Na+-H+ exchanger, pH regulation and cancer. Recent Pat. Anticancer Drug Discov. 2013, 8, 85–99. [Google Scholar] [CrossRef]
- Reshkin, S.J.; Greco, M.R.; Cardone, R.A. Role of pHi, and proton transporters in oncogene-driven neoplastic transformation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130100. [Google Scholar] [CrossRef] [Green Version]
- Amith, S.R.; Fong, S.; Baksh, S.; Fliegel, L. Na+/H+ exchange in the tumour microenvironment: Does NHE1 drive breast cancer carcinogenesis? Int. J. Dev. Biol. 2015, 59, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Webb, B.A.; Chimenti, M.; Jacobson, M.P.; Barber, D.L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011, 11, 671–677. [Google Scholar] [CrossRef]
- Gerweck, L.E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 1996, 56, 1194–1198. [Google Scholar]
- Grillo-Hill, B.K.; Choi, C.; Jimenez-Vidal, M.; Barber, D.L. Increased H+ efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. eLife 2015, 4, e03270. [Google Scholar] [CrossRef]
- Harguindey, S.; Alfarouk, K.; Orozco, J.P.; Hardonniere, K.; Stanciu, D.; Fais, S.; Devesa, J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int. J. Mol. Sci. 2020, 21, 1110. [Google Scholar] [CrossRef] [Green Version]
- Amith, S.R.; Fliegel, L. Regulation of the Na+/H+ Exchanger (NHE1) in Breast Cancer Metastasis. Cancer Res. 2013, 73, 1259–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amith, S.R.; Wilkinson, J.M.; Fliegel, L. Assessing Na+/H+ exchange and cell effector functionality in metastatic breast cancer. Biochim Open 2016, 2, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, R.C.; Hubbard, N.E.; Damonte, P.; Mori, H.; Penzvalto, Z.; Pham, C.; Koehne, A.L.; Go, A.C.; Anderson, S.E.; Cala, P.M.; et al. Glucose Uptake and Intracellular pH in a Mouse Model of Ductal Carcinoma In situ (DCIS) Suggests Metabolic Heterogeneity. Front. Cell Dev. Biol. 2016, 4, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koltai, T.; Harguindey, S.; Reshkin, S.J. An Innovative Approach to Understanding and Treating Cancer: Targeting pH. From Etiopathogenesis to New Therapeutic Avenues; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Chauhan, A.S.; Sahoo, G.C.; Dikhit, M.R.; Das, P. Acid-Sensing Ion Channels Structural Aspects, Pathophysiological Importance and Experimental Mutational Data Available Across Various Species to Target Human ASIC1. Curr. Drug Targets 2019, 20, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Craner, M.J.; Damarjian, T.G.; Liu, S.; Hains, B.C.; Lo, A.C.; Black, J.A.; Newcombe, J.; Cuzner, M.L.; Waxman, S.G. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 2005, 49, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Schwab, A.; Stock, C. Ion channels and transporters in tumour cell migration and invasion. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130102. [Google Scholar] [CrossRef] [Green Version]
- Litan, A.; Langhans, S.A. Cancer as a channelopathy: Ion channels and pumps in tumor development and progression. Front. Cell. Neurosci. 2015, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Lang, F.; Stournaras, C. Ion channels in cancer: Future perspectives and clinical potential. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130108. [Google Scholar] [CrossRef] [Green Version]
- Besson, P.; Driffort, V.; Bon, E.; Gradek, F.; Chevalier, S.; Roger, S. How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells? Biochim. Biophys. Acta 2015, 1848, 2493–2501. [Google Scholar] [CrossRef] [Green Version]
- Roger, S.; Gillet, L.; Le Guennec, J.Y.; Besson, P. Voltage-gated sodium channels and cancer: Is excitability their primary role? Front. Pharmacol. 2015, 6, 152. [Google Scholar] [CrossRef] [Green Version]
- Stock, C.; Ludwig, F.T.; Hanley, P.J.; Schwab, A. Roles of ion transport in control of cell motility. Compr. Physiol. 2013, 3, 59–119. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Wu, T.; Wu, W.; Chen, G.; Luo, X.; Jiang, L.; Tao, H.; Rong, M.; Kang, S.; Deng, M. The Functional Role of Voltage-Gated Sodium Channel Nav1.5 in Metastatic Breast Cancer. Front. Pharmacol. 2020, 11, 1111. [Google Scholar] [CrossRef] [PubMed]
- Huber, V.; Camisaschi, C.; Berzi, A.; Ferro, S.; Lugini, L.; Triulzi, T.; Tuccitto, A.; Tagliabue, E.; Castelli, C.; Rivoltini, L. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin. Cancer Biol. 2017, 43, 74–89. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, R.; Rozeman, E.A.; Kreutz, M.; Renner, K.; Blank, C.U. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol. Immunother. 2018, 67, 1331–1348. [Google Scholar] [CrossRef] [PubMed]
- Pilon-Thomas, S.; Kodumudi, K.N.; El-Kenawi, A.E.; Russell, S.; Weber, A.M.; Luddy, K.; Damaghi, M.; Wojtkowiak, J.W.; Mule, J.J.; Ibrahim-Hashim, A.; et al. Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer Res. 2016, 76, 1381–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Estrella, V.; Enriquez-Navas, P.; El-Kenawi, A.; Russell, S.; Abrahams, D.; Ibrahim-Hashim, A.; Longo, D.; Reshetnyak, Y.; Luddy, K. Lymph Nodes Inhibit T-cell Effector Functions Locally by Establishing Acidic Niches. bioRxiv 2019, 689604. [Google Scholar] [CrossRef]
- Friese, M.A.; Craner, M.J.; Etzensperger, R.; Vergo, S.; Wemmie, J.A.; Welsh, M.J.; Vincent, A.; Fugger, L. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat. Med. 2007, 13, 1483–1489. [Google Scholar] [CrossRef]
- Tolkovsky, A.M.; Richards, C.D. Na+/H+ exchange is the major mechanism of pH regulation in cultured sympathetic neurons: Measurements in single cell bodies and neurites using a fluorescent pH indicator. Neuroscience 1987, 22, 1093–1102. [Google Scholar] [CrossRef]
- Collins, M.K.; Perkins, G.R.; Rodriguez-Tarduchy, G.; Nieto, M.A.; Lopez-Rivas, A. Growth factors as survival factors: Regulation of apoptosis. Bioessays 1994, 16, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Anitua, E.; Sanchez, M.; Orive, G.; Andia, I. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 2007, 28, 4551–4560. [Google Scholar] [CrossRef]
- Paris, S.; Pouyssegur, J. Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+. J. Biol. Chem. 1984, 259, 10989–10994. [Google Scholar] [CrossRef]
- Jenkins, E.C.; Debnath, S.; Gundry, S.; Gundry, S.; Uyar, U.; Fata, J.E. Intracellular pH regulation by Na+/H+ exchanger-1 (NHE1) is required for growth factor-induced mammary branching morphogenesis. Dev. Biol. 2012, 365, 71–81. [Google Scholar] [CrossRef]
- Ma, E.; Haddad, G.G. Expression and localization of Na+/H+ exchangers in rat central nervous system. Neuroscience 1997, 79, 591–603. [Google Scholar] [CrossRef]
- Johri, A.; Beal, M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 2012, 342, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Muyderman, H.; Chen, T. Mitochondrial dysfunction in amyotrophic lateral sclerosis—A valid pharmacological target? Br. J. Pharmacol. 2014, 171, 2191–2205. [Google Scholar] [CrossRef] [PubMed]
- Soane, L.; Kahraman, S.; Kristian, T.; Fiskum, G. Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J. Neurosci. Res. 2007, 85, 3407–3415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcelos, I.P.; Troxell, R.M.; Graves, J.S. Mitochondrial Dysfunction and Multiple Sclerosis. Biology 2019, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Watkins, T.A.; Emery, B.; Mulinyawe, S.; Barres, B.A. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 2008, 60, 555–569. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, R.; Wong, A.; Silva, J.; Li, M.; Itoh, A.; Horiuchi, M.; Itoh, T.; Pleasure, D.; Cortopassi, G. Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion 2010, 10, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Amorini, A.M.; Nociti, V.; Petzold, A.; Gasperini, C.; Quartuccio, E.; Lazzarino, G.; Di Pietro, V.; Belli, A.; Signoretti, S.; Vagnozzi, R. Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2014, 1842, 1137–1143. [Google Scholar] [CrossRef] [Green Version]
- Lutz, N.W.; Viola, A.; Malikova, I.; Confort-Gouny, S.; Audoin, B.; Ranjeva, J.P.; Pelletier, J.; Cozzone, P.J. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS ONE 2007, 2, e595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota, S.I.; Ferreira, I.L.; Rego, A.C. Dysfunctional synapse in Alzheimer’s disease—A focus on NMDA receptors. Neuropharmacology 2014, 76, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci. 2019, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojanovic, I.R.; Kostic, M.; Ljubisavljevic, S. The role of glutamate and its receptors in multiple sclerosis. J. Neural Transm. 2014, 121, 945–955. [Google Scholar] [CrossRef]
- Levite, M. Glutamate, T cells and multiple sclerosis. J. Neural Transm. 2017, 124, 775–798. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.-D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability—A new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef] [Green Version]
- Hang, Z.; Lei, T.; Zeng, Z.; Cai, S.; Bi, W.; Du, H. Composition of intestinal flora affects the risk relationship between Alzheimer’s disease/Parkinson’s disease and cancer. Biomed. Pharmacother. 2022, 145, 112343. [Google Scholar] [CrossRef]
- Rauch, C.; Baw, E.D.; Miriam, L.; Wahl, H.S. Cell Membranes, Cytosolic pH and Drug Transport in Cancer and MDR: Physics, Biochemistry and Molecular Biology. In Multiple Drug Resistance; Meszaros, A., Balogh, G., Eds.; Nova Publishers: Hauppauge, NY, USA, 2009; pp. 1–24. Available online: http://irep.ntu.ac.uk/id/eprint/34345 (accessed on 2 December 2021).
- Park, H.J.; Choi, I.; Leem, K.H. Decreased Brain pH and Pathophysiology in Schizophrenia. Int. J. Mol. Sci. 2021, 22, 8358. [Google Scholar] [CrossRef]
- Harguindey, S.; Orive, G.; Luis Pedraz, J.; Paradiso, A.; Reshkin, S.J. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin—One single nature. Biochim. Biophys. Acta 2005, 1756, 1–24. [Google Scholar] [CrossRef]
- Perona, R.; Portillo, F.; Giraldez, F.; Serrano, R. Transformation and pH homeostasis of fibroblasts expressing yeast H+-ATPase containing site-directed mutations. Mol. Cell. Biol. 1990, 10, 4110–4115. [Google Scholar] [CrossRef]
- Wigerup, C.; Pahlman, S.; Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 2016, 164, 152–169. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, C.; Longatto-Filho, A.; Pereira, S.M.; Etlinger, D.; Moreira, M.A.; Jube, L.F.; Queiroz, G.S.; Schmitt, F.; Baltazar, F. Monocarboxylate transporters 1 and 4 are associated with CD147 in cervical carcinoma. Dis. Markers 2009, 26, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Gonçalves, V.; Granja, S.; Martinho, O.; Honavar, M.; Pojo, M.; Costa, B.M.; Pires, M.M.; Pinheiro, C.; Cordeiro, M.; Bebiano, G. Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas. Oncotarget 2016, 7, 46335–46353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, S.F.; Amorim, R.; Viana-Pereira, M.; Pinheiro, C.; Costa, R.F.; Silva, P.; Couto, C.; Alves, S.; Fernandes, S.; Vilaca, S.; et al. Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis. BMC Cancer 2016, 16, 535. [Google Scholar] [CrossRef] [Green Version]
- van Kuijk, S.J.; Yaromina, A.; Houben, R.; Niemans, R.; Lambin, P.; Dubois, L.J. Prognostic Significance of Carbonic Anhydrase IX Expression in Cancer Patients: A Meta-Analysis. Front. Oncol. 2016, 6, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, S.; Azevedo-Silva, J.; Casal, M.; Corte-Real, M.; Baltazar, F.; Preto, A. Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications. Oncotarget 2016, 7, 70639–70653. [Google Scholar] [CrossRef] [Green Version]
- Counillon, L.; Bouret, Y.; Marchiq, I.; Pouysségur, J. Na+/H+ antiporter (NHE1) and lactate/H+ symporters (MCTs) in pH homeostasis and cancer metabolism. BBA-Mol. Cell Res. 2016, 1863, 2465–2480. [Google Scholar] [CrossRef]
- Behrens, M.I.; Ponce, D.P.; Roe, C.M.; Salech, F. Chapter 2—Common Biological Mechanisms in Alzheimer’s Disease and Cancer. In Advances in Alzheimer’s Research; Lahiri, D.K., Ed.; Bentham Science Publisher: Al Sharjah, United Arab Emirates, 2014; Volume 2, pp. 33–57. [Google Scholar] [CrossRef]
- Plun-Favreau, H.; Lewis, P.A.; Hardy, J.; Martins, L.M.; Wood, N.W. Cancer and neurodegeneration: Between the devil and the deep blue sea. PLoS Genet. 2010, 6, e1001257. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Park, M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell. Mol. Life Sci. 2020, 77, 2659–2680. [Google Scholar] [CrossRef] [Green Version]
- Houck, A.L.; Seddighi, S.; Driver, J.A. At the crossroads between neurodegeneration and cancer: A review of overlapping biology and its implications. Curr. Aging Sci. 2018, 11, 77–89. [Google Scholar] [CrossRef]
- Kennedy, S.R.; Loeb, L.A.; Herr, A.J. Somatic mutations in aging, cancer and neurodegeneration. Mech. Ageing Dev. 2012, 133, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Migliore, L.; Coppede, F. Genetic and environmental factors in cancer and neurodegenerative diseases. Mutat. Res. 2002, 512, 135–153. [Google Scholar] [CrossRef]
- Grunicke, H.; Maly, K.; Oberhuber, H.; Doppler, W.; Hoflacher, J.; Hochleitner, B.W.; Jaggi, R.; Groner, B. Role of Na+/H+-Antiporter in Growth Stimulation by Ha-ras. In Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth; Springer: Boston, MA, USA, 1988; pp. 369–381. [Google Scholar]
- Doppler, W.; Jaggi, R.; Groner, B. Induction of v-mos and activated Ha-ras oncogene expression in quiescent NIH 3T3 cells causes intracellular alkalinisation and cell-cycle progression. Gene 1987, 54, 147–153. [Google Scholar] [CrossRef]
- Mohammadi, M. Brief note on multiple sclerosis. J. Mult. Scler. 2021, 8, 1–10. [Google Scholar]
- Mulero, P.; Midaglia, L.; Montalban, X. Ocrelizumab: A new milestone in multiple sclerosis therapy. Ther. Adv. Neurol. Disord. 2018, 11, 1756286418773025. [Google Scholar] [CrossRef] [Green Version]
- Syed, Y.Y. Ocrelizumab: A Review in Multiple Sclerosis. CNS Drugs 2018, 32, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Corthals, A.P. Multiple sclerosis is not a disease of the immune system. Q. Rev. Biol. 2011, 86, 287–321. [Google Scholar] [CrossRef] [Green Version]
- Skripuletz, T.; Manzel, A.; Gropengießer, K.; Schäfer, N.; Gudi, V.; Singh, V.; Salinas Tejedor, L.; Jörg, S.; Hammer, A.; Voss, E. Pivotal role of choline metabolites in remyelination. Brain 2015, 138, 398–413. [Google Scholar] [CrossRef]
- Jagielska, A.; Wilhite, K.D.; Van Vliet, K.J. Extracellular acidic pH inhibits oligodendrocyte precursor viability, migration, and differentiation. PLoS ONE 2013, 8, e76048. [Google Scholar] [CrossRef] [Green Version]
- Makowski, L.; Chaib, M.; Rathmell, J.C. Immunometabolism: From basic mechanisms to translation. Immunol. Rev. 2020, 295, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Marches, R.; Vitetta, E.S.; Uhr, J.W. A role for intracellular pH in membrane IgM-mediated cell death of human B lymphomas. Proc. Natl. Acad. Sci. USA 2001, 98, 3434–3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarty, M.F.; Whitaker, J. Manipulating tumor acidification as a cancer treatment strategy. Altern. Med. Rev. 2010, 15, 264–272. [Google Scholar]
- Lercher, A.; Baazim, H.; Bergthaler, A. Systemic Immunometabolism: Challenges and Opportunities. Immunity 2020, 53, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Luan, H.H.; Medzhitov, R. An evolutionary perspective on immunometabolism. Science 2019, 363, eaar3932. [Google Scholar] [CrossRef] [PubMed]
- Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev. 2003, 83, 1183–1221. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.I.; Copenhagen, D.R. Modulation of neuronal function by intracellular pH. Neurosci. Res. 1996, 24, 109–116. [Google Scholar] [CrossRef]
- Choi, D.W. Calcium: Still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 1995, 18, 58–60. [Google Scholar] [CrossRef]
- Peers, C.; Scragg, J.L.; Boyle, J.P.; Fearon, I.M.; Taylor, S.C.; Green, K.N.; Webster, N.J.; Ramsden, M.; Pearson, H.A. A central role for ROS in the functional remodelling of L-type Ca2+ channels by hypoxia. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 2247–2254. [Google Scholar] [CrossRef] [Green Version]
- Ryu, W.-I.; Bormann, M.K.; Shen, M.; Kim, D.; Forester, B.; Park, Y.; So, J.; Seo, H.; Sonntag, K.-C.; Cohen, B.M. Brain cells derived from Alzheimer’s disease patients have multiple specific innate abnormalities in energy metabolism. Mol. Psychiatry 2021, 26, 5702–5714. [Google Scholar] [CrossRef]
- Dodge, J.C.; Treleaven, C.M.; Fidler, J.A.; Tamsett, T.J.; Bao, C.; Searles, M.; Taksir, T.V.; Misra, K.; Sidman, R.L.; Cheng, S.H.; et al. Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 10812–10817. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.G.; Zhu, X.M.; Chu, X.P.; Minami, M.; Hey, J.; Wei, W.L.; MacDonald, J.F.; Wemmie, J.A.; Price, M.P.; Welsh, M.J.; et al. Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels. Cell 2004, 118, 687–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brisson, L.; Driffort, V.; Benoist, L.; Poet, M.; Counillon, L.; Antelmi, E.; Rubino, R.; Besson, P.; Labbal, F.; Chevalier, S.; et al. NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J. Cell Sci. 2013, 126, 4835–4842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harguindey, S.; Arranz, J.L.; Polo Orozco, J.D.; Rauch, C.; Fais, S.; Cardone, R.A.; Reshkin, S.J. Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs--an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J. Transl. Med. 2013, 11, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durham-Lee, J.C.; Mokkapati, V.U.; Johnson, K.M.; Nesic, O. Amiloride improves locomotor recovery after spinal cord injury. J. Neurotrauma 2011, 28, 1319–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roger, S.; Le Guennec, J.Y.; Besson, P. Particular sensitivity to calcium channel blockers of the fast inward voltage-dependent sodium current involved in the invasive properties of a metastastic breast cancer cell line. Br. J. Pharmacol. 2004, 141, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellenberger, S.; Schild, L. International Union of Basic and Clinical Pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol. Rev. 2015, 67, 1–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yermolaieva, O.; Leonard, A.S.; Schnizler, M.K.; Abboud, F.M.; Welsh, M.J. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA 2004, 101, 6752–6757. [Google Scholar] [CrossRef] [Green Version]
- Vergo, S.; Craner, M.J.; Etzensperger, R.; Attfield, K.; Friese, M.A.; Newcombe, J.; Esiri, M.; Fugger, L. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 2011, 134, 571–584. [Google Scholar] [CrossRef]
- Ding, D.; Moskowitz, S.I.; Li, R.; Lee, S.B.; Esteban, M.; Tomaselli, K.; Chan, J.; Bergold, P.J. Acidosis induces necrosis and apoptosis of cultured hippocampal neurons. Exp. Neurol. 2000, 162, 1–12. [Google Scholar] [CrossRef]
- Flogel, U.; Willker, W.; Leibfritz, D. Regulation of intracellular pH in neuronal and glial tumour cells, studied by multinuclear NMR spectroscopy. NMR Biomed. 1994, 7, 157–166. [Google Scholar] [CrossRef]
- Yao, H.; Ma, E.; Gu, X.Q.; Haddad, G.G. Intracellular pH regulation of CA1 neurons in Na+/H+ isoform 1 mutant mice. J. Clin. Investig. 1999, 104, 637–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waxman, S.G.; Lo, A.C. Blocking the axonal injury cascade: Neuroprotection in multiple sclerosis and its models. In Multiple Sclerosis as a Neuronal Disease; Academic Press: London, UK, 2005; pp. 435–449. [Google Scholar] [CrossRef]
- Cengiz, P.; Kintner, D.B.; Chanana, V.; Yuan, H.; Akture, E.; Kendigelen, P.; Begum, G.; Fidan, E.; Uluc, K.; Ferrazzano, P.; et al. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation. PLoS ONE 2014, 9, e84294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harguindey, S. Use of Na+/H+ antiporter inhibitors as a novel approach to cancer treatment. In Amiloride and Its Analogs: Unique Cation Transport Inhibitors; VCH Publishers Inc.: New York, NY, USA, 1992; pp. 317–334. [Google Scholar]
- Harguindey, S.; Gonzalez Molinillo, J.; Chinchilla, D.; Reshkin, S.; Tomoda, A. Further along a Clinical Protocol Using a Cocktail of PTIs in Human Cancer. In Proceedings of the ISPDC Abstract Book, 2nd ISPD Meeting, Nice, France, 18–19 November 2011. [Google Scholar]
- Harguindey, S.; Orive, G.; Pedraz, J.L.; Bello, G.; Arranz, J.L.; Samaniego, J.M. Apparent cure of a case of metastatic ovarian carcinoma after the chronic treatment with Na+H+ antiport inhibitors. Oncologia 2002, 25, 62–66. [Google Scholar]
- Matthews, H.; Ranson, M.; Kelso, M.J. Anti-tumour/metastasis effects of the potassium-sparing diuretic amiloride: An orally active anti-cancer drug waiting for its call-of-duty? Int. J. Cancer 2011, 129, 2051–2061. [Google Scholar] [CrossRef]
- Rodgers, H.C.; Knox, A.J. The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis. Eur. Respir. J. 1999, 14, 693–696. [Google Scholar] [CrossRef] [Green Version]
- Rash, L.D. Acid-sensing ion channel pharmacology, past, present, and future …. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 79, pp. 35–66. [Google Scholar]
- Siegel, M.; Shankle, L.; Hwang, S.; Ogdie, A. The 2017 National Psoriasis Foundation Research Symposium. J. Psoriasis Psoriatic Arthritis 2018, 3, 15–17. [Google Scholar] [CrossRef]
- Lee, B.K.; Jung, Y.S. The Na+/H+ exchanger-1 inhibitor cariporide prevents glutamate-induced necrotic neuronal death by inhibiting mitochondrial Ca2+ overload. J. Neurosci. Res. 2012, 90, 860–869. [Google Scholar] [CrossRef]
- Boiko, N.; Kucher, V.; Eaton, B.A.; Stockand, J.D. Inhibition of neuronal degenerin/epithelial Na+ channels by the multiple sclerosis drug 4-aminopyridine. J. Biol. Chem. 2013, 288, 9418–9427. [Google Scholar] [CrossRef] [Green Version]
- Kostadinova, I.; Danchev, N. 4-aminopyridine—The new old drug for the treatment of neurodegenerative diseases. Pharmacia 2019, 66, 67. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Z.; Zeng, S.; Wang, X.; Liu, W.; Qian, L.; Wei, J.; Yang, X.; Shen, Q.; Gong, Z.; et al. The Molecular Aspect of Antitumor Effects of Protease Inhibitor Nafamostat Mesylate and Its Role in Potential Clinical Applications. Front. Oncol. 2019, 9, 852. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Sun, L.; Zhang, X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J. Autoimmun. 2017, 83, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Haghikia, A.; Jorg, S.; Duscha, A.; Berg, J.; Manzel, A.; Waschbisch, A.; Hammer, A.; Lee, D.H.; May, C.; Wilck, N.; et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 2015, 43, 817–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Noto, D.; Hoshino, Y.; Mizuno, M.; Miyake, S. Butyrate suppresses demyelination and enhances remyelination. J. Neuroinflamm. 2019, 16, 165. [Google Scholar] [CrossRef] [Green Version]
- Arce, V.M.; Devesa, P.; Devesa, J. Role of growth hormone (GH) in the treatment on neural diseases: From neuroprotection to neural repair. Neurosci. Res. 2013, 76, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Devesa, J.; Reimunde, P.; Devesa, P.; Barbera, M.; Arce, V. Growth hormone (GH) and brain trauma. Horm. Behav. 2013, 63, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Pascual, C.; Perez-Gonzalez, R.; Antequera, D.; Padilla, S.; Orive, G.; Carro, E. Intranasal delivery of plasma and platelet growth factors using PRGF-Endoret system enhances neurogenesis in a mouse model of Alzheimer’s disease. PLoS ONE 2013, 8, e73118. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Pascual, C.; Perez-Gonzalez, R.; Orive, G.; Carro, E. Intranasal PRGF-Endoret enhances neuronal survival and attenuates NF-kappaB-dependent inflammation process in a mouse model of Parkinson’s disease. J. Control. Release 2015, 203, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Devesa, J.; Lema, H.; Zas, E.; Munin, B.; Taboada, P.; Devesa, P. Learning and Memory Recoveries in a Young Girl Treated with Growth Hormone and Neurorehabilitation. J. Clin. Med. 2016, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Åberg, N.D.; Brywe, K.G.; Isgaard, J. Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci. World J. 2006, 6, 53–80. [Google Scholar] [CrossRef] [Green Version]
- Devesa, P.; Gelabert, M.; Gonźlez-Mosquera, T.; Gallego, R.; Luis Relova, J.; Devesa, J.; Arce, V.M. Growth hormone treatment enhances the functional recovery of sciatic nerves after transection and repair. Muscle Nerve 2012, 45, 385–392. [Google Scholar] [CrossRef]
- Heredia, M.; Fuente, A.; Criado, J.; Yajeya, J.; Devesa, J.; Riolobos, A.S. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats. Behav. Brain Res. 2013, 247, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.E.; Miquet, J.G.; Rossi, S.P.; Irene, P.E.; Sotelo, A.I.; Frungieri, M.B.; Turyn, D.; Gonzalez, L. GH administration patterns differently regulate epidermal growth factor signaling. J. Endocrinol. 2014, 221, 309–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohmiya, M.; Ishikawa, K.; Kato, Y. Stimulation of erythropoietin secretion by continuous subcutaneous infusion of recombinant human GH in anemic patients with chronic renal failure. Eur. J. Endocrinol. 1998, 138, 302–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharfmann, R.; Atouf, F.; Tazi, A.; Czernichow, P. Growth hormone and prolactin regulate the expression of nerve growth factor receptors in INS-1 cells. Endocrinology 1994, 134, 2321–2328. [Google Scholar] [CrossRef]
- Devesa, J.; Devesa, P.; Reimunde, P.; Arce, V. Growth Hormone and Kynesitherapy for Brain Injury Recovery. Brain Injury—Pathogenesis, Monitoring, Recovery and Management. In Brain Injury-Pathogenesis, Monitoring, Recovery and Management, 1st ed.; Agrawal, A., Ed.; InTech Open: London, UK, 2012; Chapter 21; pp. 417–454. [Google Scholar] [CrossRef] [Green Version]
- Devesa, J.; Almenglo, C.; Devesa, P. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin. Med. Insights Endocrinol. Diabetes 2016, 9, 47–71. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.Y.; Kim, H.J.; Kim, M. The protective effect of growth hormone on Cu/Zn superoxide dismutase-mutant motor neurons. BMC Neurosci. 2015, 16, 1. [Google Scholar] [CrossRef] [Green Version]
- Doulah, A.H.; Rohani, A.H.; Khaksari Haddad, M.; Motamedi, F.; Farbood, Y.; Badavi, M.; Malek, M.; Sarkaki, A. The effect of peripheral administration of growth hormone on AD-like cognitive deficiency in NBM-lesioned rats. Neurosci. Lett. 2009, 466, 47–51. [Google Scholar] [CrossRef]
- Saez, J.M. Possible usefulness of growth hormone/insulin-like growth factor-I axis in Alzheimer’s disease treatment. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 274–286. [Google Scholar] [CrossRef]
- Sacca, F.; Quarantelli, M.; Rinaldi, C.; Tucci, T.; Piro, R.; Perrotta, G.; Carotenuto, B.; Marsili, A.; Palma, V.; De Michele, G.; et al. A randomized controlled clinical trial of growth hormone in amyotrophic lateral sclerosis: Clinical, neuroimaging, and hormonal results. J. Neurol. 2012, 259, 132–138. [Google Scholar] [CrossRef]
- Devesa, J.; Diaz-Getino, G.; Rey, P.; Garcia-Cancela, J.; Loures, I.; Nogueiras, S.; Hurtado de Mendoza, A.; Salgado, L.; Gonzalez, M.; Pablos, T.; et al. Brain Recovery after a Plane Crash: Treatment with Growth Hormone (GH) and Neurorehabilitation: A Case Report. Int. J. Mol. Sci. 2015, 16, 30470–30482. [Google Scholar] [CrossRef] [Green Version]
- Devesa, J.; Alonso, A.; Lopez, N.; Garcia, J.; Puell, C.I.; Pablos, T.; Devesa, P. Growth Hormone (GH) and Rehabilitation Promoted Distal Innervation in a Child Affected by Caudal Regression Syndrome. Int. J. Mol. Sci. 2017, 18, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åberg, N.D.; Johansson, U.E.; Åberg, M.A.; Hellström, N.A.; Lind, J.; Bull, C.; Isgaard, J.; Anderson, M.F.; Oscarsson, J.; Eriksson, P.S. Peripheral infusion of insulin-like growth factor-I increases the number of newborn oligodendrocytes in the cerebral cortex of adult hypophysectomized rats. Endocrinology 2007, 148, 3765–3772. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, F.; Hallberg, M. Growth hormone and cognitive function. Nat. Rev. Endocrinol. 2013, 9, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, D.P.; Pagano, E.S.; Scacchi Bernasconi, P.A.; Reynoso, R.; Scacchi, P. Melatonin and mitochondrial dysfunction in the central nervous system. Horm. Behav. 2013, 63, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olcese, J.M.; Cao, C.; Mori, T.; Mamcarz, M.B.; Maxwell, A.; Runfeldt, M.J.; Wang, L.; Zhang, C.; Lin, X.; Zhang, G.; et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J. Pineal Res. 2009, 47, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Rudnitskaya, E.A.; Muraleva, N.A.; Maksimova, K.Y.; Kiseleva, E.; Kolosova, N.G.; Stefanova, N.A. Melatonin Attenuates Memory Impairment, Amyloid-beta Accumulation, and Neurodegeneration in a Rat Model of Sporadic Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 47, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Manchester, L.C.; Coto-Montes, A.; Boga, J.A.; Andersen, L.P.; Zhou, Z.; Galano, A.; Vriend, J.; Tan, D.X.; Reiter, R.J. Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 2015, 59, 403–419. [Google Scholar] [CrossRef]
- Rong, B.; Wu, Q.; Reiter, R.J.; Sun, C. The mechanism of oral melatonin ameliorates intestinal and adipose lipid dysmetabolism through reducing Escherichia Coli-derived lipopolysaccharide. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1643–1667. [Google Scholar] [CrossRef]
- López-González, A.; Álvarez-Sánchez, N.; Lardone, P.J.; Cruz-Chamorro, I.; Martínez-López, A.; Guerrero, J.M.; Reiter, R.J.; Carrillo-Vico, A. Melatonin treatment improves primary progressive multiple sclerosis: A case report. J. Pineal Res. 2015, 58, 173–177. [Google Scholar] [CrossRef]
- Giovannoni, G.; Heales, S.J.; Land, J.M.; Thompson, E.J. The potential role of nitric oxide in multiple sclerosis. Mult. Scler. 1998, 4, 212–216. [Google Scholar] [CrossRef]
- Smith, K.J.; Lassmann, H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002, 1, 232–241. [Google Scholar] [CrossRef]
- Hausladen, A.; Fridovich, I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem. 1994, 269, 29405–29408. [Google Scholar] [CrossRef]
- Brown, G.C. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995, 369, 136–139. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; St Pierre, B.A.; Parkinson, J.F.; Medberry, P.; Wong, J.L.; Rogers, N.E.; Ignarro, L.J.; Merrill, J.E. Inducible nitric-oxide synthase and nitric oxide production in human fetal astrocytes and microglia. A kinetic analysis. J. Biol. Chem. 1997, 272, 11327–11335. [Google Scholar] [CrossRef] [Green Version]
- Bolanos, J.P.; Peuchen, S.; Heales, S.J.; Land, J.M.; Clark, J.B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 1994, 63, 910–916. [Google Scholar] [CrossRef]
- Bolaños, J.P.; Heales, S.J. Persistent mitochondrial damage by nitric oxide and its derivatives: Neuropathological implications. Front. Neuroenerget. 2010, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Kawanishi, S. Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett. 1995, 371, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Mateo, R.B.; Reichner, J.S.; Mastrofrancesco, B.; Kraft-Stolar, D.; Albina, J.E. Impact of nitric oxide on macrophage glucose metabolism and glyceraldehyde-3-phosphate dehydrogenase activity. Am. J. Physiol. 1995, 268, C669–C675. [Google Scholar] [CrossRef]
- Park, Y.M.; Lee, W.T.; Bokara, K.K.; Seo, S.K.; Park, S.H.; Kim, J.H.; Yenari, M.A.; Park, K.A.; Lee, J.E. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells. PLoS ONE 2013, 8, e53911. [Google Scholar] [CrossRef] [Green Version]
- Leung, G.; Sun, W.; Zheng, L.; Brookes, S.; Tully, M.; Shi, R. Anti-acrolein treatment improves behavioral outcome and alleviates myelin damage in experimental autoimmune enchephalomyelitis mouse. Neuroscience 2011, 173, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Tully, M.; Shi, R. New insights in the pathogenesis of multiple sclerosis—role of acrolein in neuronal and myelin damage. Int. J. Mol. Sci. 2013, 14, 20037–20047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhao, C.; Kong, P.; Bian, G.; Sun, Z.; Sun, Y.; Guo, L.; Li, B. Methylene blue alleviates experimental autoimmune encephalomyelitis by modulating AMPK/SIRT1 signaling pathway and Th17/Treg immune response. J. Neuroimmunol. 2016, 299, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Ommati, M.M.; Azarpira, N.; Khodaei, F.; Niknahad, H.; Gozashtegan, V.; Heidari, R. Methylene blue treatment enhances mitochondrial function and locomotor activity in a C57BL/6 mouse model of multiple sclerosis. Trends Pharm. Sci. 2020, 6, 29–42. [Google Scholar] [CrossRef]
- Lougheed, R.; Turnbull, J. Lack of effect of methylene blue in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. PLoS ONE 2011, 6, e23141. [Google Scholar] [CrossRef]
- Bencze, G.; Bencze, S.; Rivera, K.D.; Watson, J.D.; Hidvegi, M.; Orfi, L.; Tonks, N.K.; Pappin, D.J. Mito-oncology agent: Fermented extract suppresses the Warburg effect, restores oxidative mitochondrial activity, and inhibits in vivo tumor growth. Sci. Rep. 2020, 10, 14174. [Google Scholar] [CrossRef]
- Mayer, B.; Brunner, F.; Schmidt, K. Inhibition of nitric oxide synthesis by methylene blue. Biochem. Pharmacol. 1993, 45, 367–374. [Google Scholar] [CrossRef]
- Gentile, A.; De Vito, F.; Fresegna, D.; Rizzo, F.R.; Bullitta, S.; Guadalupi, L.; Vanni, V.; Buttari, F.; Stampanoni Bassi, M.; Leuti, A.; et al. Peripheral T cells from multiple sclerosis patients trigger synaptotoxic alterations in central neurons. Neuropathol. Appl. Neurobiol. 2020, 46, 160–170. [Google Scholar] [CrossRef]
- Thomas, A.G.; O’Driscoll, C.M.; Bressler, J.; Kaufmann, W.; Rojas, C.J.; Slusher, B.S. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia. Biochem. Biophys. Res. Commun. 2014, 443, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Winkler, P.A.; Sun, W.; Lu, W.; Du, J. Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium. Nature 2018, 562, 145–149. [Google Scholar] [CrossRef]
- Tsutsui, M.; Hirase, R.; Miyamura, S.; Nagayasu, K.; Nakagawa, T.; Mori, Y.; Shirakawa, H.; Kaneko, S. TRPM2 Exacerbates Central Nervous System Inflammation in Experimental Autoimmune Encephalomyelitis by Increasing Production of CXCL2 Chemokines. J. Neurosci. 2018, 38, 8484–8495. [Google Scholar] [CrossRef]
- Joshi, D.C.; Tewari, B.P.; Singh, M.; Joshi, P.G.; Joshi, N.B. AMPA receptor activation causes preferential mitochondrial Ca2+ load and oxidative stress in motor neurons. Brain Res. 2015, 1616, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Witte, M.E.; Schumacher, A.-M.; Mahler, C.F.; Bewersdorf, J.P.; Lehmitz, J.; Scheiter, A.; Sánchez, P.; Williams, P.R.; Griesbeck, O.; Naumann, R. Calcium influx through plasma-membrane nanoruptures drives axon degeneration in a model of multiple sclerosis. Neuron 2019, 101, 615–624.e615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hundehege, P.; Epping, L.; Meuth, S.G. Calcium Homeostasis in Multiple Sclerosis. Neurol. Int. Open 2017, 1, E127–E135. [Google Scholar] [CrossRef] [Green Version]
- Desai, R.A.; Davies, A.L.; Del Rossi, N.; Tachrount, M.; Dyson, A.; Gustavson, B.; Kaynezhad, P.; Mackenzie, L.; van der Putten, M.A.; McElroy, D.; et al. Nimodipine Reduces Dysfunction and Demyelination in Models of Multiple Sclerosis. Ann. Neurol. 2020, 88, 123–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belrose, J.C.; Jackson, M.F. TRPM2: A candidate therapeutic target for treating neurological diseases. Acta Pharmacol. Sin. 2018, 39, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Brand-Schieber, E.; Werner, P. Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Exp. Neurol. 2004, 189, 5–9. [Google Scholar] [CrossRef]
- Ryter, S.; Choi, A.M. Cell death and repair in lung disease. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 2558–2574. [Google Scholar]
- McKenzie, B.A.; Fernandes, J.P.; Doan, M.A.L.; Schmitt, L.M.; Branton, W.G.; Power, C. Activation of the executioner caspases-3 and -7 promotes microglial pyroptosis in models of multiple sclerosis. J. Neuroinflamm. 2020, 17, 253. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Yang, D.; Wu, C.; Ma, C.; Liu, X.; Moynagh, P.N.; Wang, B.; Hu, G.; Yang, S. Gasdermin D in peripheral myeloid cells drives neuroinflammation in experimental autoimmune encephalomyelitis. J. Exp. Med. 2019, 216, 2562–2581. [Google Scholar] [CrossRef] [Green Version]
- Gruenbaum, B.F.; Kutz, R.; Zlotnik, A.; Boyko, M. Blood glutamate scavenging as a novel glutamate-based therapeutic approach for post-stroke depression. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320903951. [Google Scholar] [CrossRef] [Green Version]
- Cid Sánchez, C. Mecanismos de Neurodegeneración Inducidos por el Líquido Cefalorraquídeo en la Esclerosis Múltiple; Servicio de Publicaciones, Universidad Complutense de Madrid: Madrid, Spain, 2005. [Google Scholar]
- Yuan, X.L.; Zhao, Y.P.; Huang, J.; Liu, J.C.; Mao, W.Q.; Yin, J.; Peng, B.W.; Liu, W.H.; Han, S.; He, X.H. A Kv1. 3 channel-specific blocker alleviates neurological impairment through inhibiting T-cell activation in experimental autoimmune encephalomyelitis. CNS Neurosci. Ther. 2018, 24, 967–977. [Google Scholar] [CrossRef]
- Wemmie, J.A.; Taugher, R.J.; Kreple, C.J. Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci. 2013, 14, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Carrithers, M.D.; Dib-Hajj, S.; Carrithers, L.M.; Tokmoulina, G.; Pypaert, M.; Jonas, E.A.; Waxman, S.G. Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification. J. Immunol. 2007, 178, 7822–7832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevarskaya, N.; Ouadid-Ahidouch, H.; Skryma, R.; Shuba, Y. Remodelling of Ca2+ transport in cancer: How it contributes to cancer hallmarks? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Arcangeli, A.; Becchetti, A. Novel perspectives in cancer therapy: Targeting ion channels. Drug Resist. Updat. 2015, 21–22, 11–19. [Google Scholar] [CrossRef]
- De-la-Rosa, V.; Suarez-Delgado, E.; Rangel-Yescas, G.E.; Islas, L.D. Currents through Hv1 channels deplete protons in their vicinity. J. Gen. Physiol. 2016, 147, 127–136. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.J.; Pan, J.; Che, Y.; Yin, J.; Zhao, Q. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis. Biochem. Biophys. Res. Commun. 2011, 412, 353–359. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.J.; Wu, X.; Che, Y.; Li, Q. Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J. Biol. Chem. 2012, 287, 13877–13888. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Brackenbury, W.J. Membrane potential and cancer progression. Front. Physiol. 2013, 4, 185. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Rocha, N.B.; Lattari, E.; Paes, F.; Nardi, A.E.; Machado, S. Exercise-induced neuroprotective effects on neurodegenerative diseases: The key role of trophic factors. Expert Rev. Neurother. 2016, 16, 723–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- L’Allemain, G.; Franchi, A.; Cragoe, E., Jr.; Pouyssegur, J. Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. Structure-activity relationships in the amiloride series. J. Biol. Chem. 1984, 259, 4313–4319. [Google Scholar] [CrossRef]
- Wakabayashi, S.; Fafournoux, P.; Sardet, C.; Pouyssegur, J. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls “H+-sensing”. Proc. Natl. Acad. Sci. USA 1992, 89, 2424–2428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Sario, A.; Bendia, E.; Svegliati Baroni, G.; Ridolfi, F.; Bolognini, L.; Feliciangeli, G.; Jezequel, A.M.; Orlandi, F.; Benedetti, A. Intracellular pathways mediating Na+/H+ exchange activation by platelet-derived growth factor in rat hepatic stellate cells. Gastroenterology 1999, 116, 1155–1166. [Google Scholar] [CrossRef]
- Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Monzio Compagnoni, G.; Di Fonzo, A.; Corti, S.; Comi, G.P.; Bresolin, N.; Masliah, E. The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease. Mol. Neurobiol. 2020, 57, 2959–2980. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Wei, Y.; Zhang, J.; Gal, J.; Zhu, H. Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis. J. Alzheimer’s Dis. 2010, 20, S311–S324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredi, G.; Xu, Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 2005, 5, 77–87. [Google Scholar] [CrossRef]
- Colacurcio, D.J.; Nixon, R.A. Disorders of lysosomal acidification—The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res. Rev. 2016, 32, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Kallaur, A.P.; Oliveira, S.R.; Simao, A.N.C.; Alfieri, D.F.; Flauzino, T.; Lopes, J.; de Carvalho Jennings Pereira, W.L.; de Meleck Proenca, C.; Borelli, S.D.; Kaimen-Maciel, D.R.; et al. Cytokine Profile in Patients with Progressive Multiple Sclerosis and Its Association with Disease Progression and Disability. Mol. Neurobiol. 2017, 54, 2950–2960. [Google Scholar] [CrossRef]
- Frank-Cannon, T.C.; Alto, L.T.; McAlpine, F.E.; Tansey, M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener. 2009, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.S. Mechanisms of microbial traversal of the blood–brain barrier. Nat. Rev. Microbiol. 2008, 6, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmen, K.; Tofiño-Vian, M.; Iovino, F. Neuronal damage and neuroinflammation, a bridge between bacterial meningitis and neurodegenerative diseases. Front. Cell. Neurosci. 2021, 15, 193. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A. The diagnostic usefulness of cerebrospinal fluid lactic acid levels in central nervous system infections. Clin. Infect. Dis. 2004, 39, 1260–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benninger, F.; Steiner, I. CSF in acute and chronic infectious diseases. Handb. Clin. Neurol. 2018, 146, 187–206. [Google Scholar] [CrossRef]
- Khatib-Massalha, E.; Bhattacharya, S.; Massalha, H.; Biram, A.; Golan, K.; Kollet, O.; Kumari, A.; Avemaria, F.; Petrovich-Kopitman, E.; Gur-Cohen, S. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat. Commun. 2020, 11, 3547. [Google Scholar] [CrossRef]
- Nolt, B.; Tu, F.; Wang, X.; Ha, T.; Winter, R.; Williams, D.L.; Li, C. Lactate and Immunosuppression in Sepsis. Shock 2018, 49, 120–125. [Google Scholar] [CrossRef]
- Zwaag, J.; Ter Horst, R.; Blazenovic, I.; Stoessel, D.; Ratter, J.; Worseck, J.M.; Schauer, N.; Stienstra, R.; Netea, M.G.; Jahn, D.; et al. Involvement of Lactate and Pyruvate in the Anti-Inflammatory Effects Exerted by Voluntary Activation of the Sympathetic Nervous System. Metabolites 2020, 10, 148. [Google Scholar] [CrossRef]
- Pucino, V.; Bombardieri, M.; Pitzalis, C.; Mauro, C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur. J. Immunol. 2017, 47, 14–21. [Google Scholar] [CrossRef]
- Ratter, J.M.; Rooijackers, H.M.M.; Hooiveld, G.J.; Hijmans, A.G.M.; de Galan, B.E.; Tack, C.J.; Stienstra, R. In vitro and in vivo Effects of Lactate on Metabolism and Cytokine Production of Human Primary PBMCs and Monocytes. Front. Immunol. 2018, 9, 2564. [Google Scholar] [CrossRef] [Green Version]
- Pucino, V.; Certo, M.; Bulusu, V.; Cucchi, D.; Goldmann, K.; Pontarini, E.; Haas, R.; Smith, J.; Headland, S.E.; Blighe, K. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 2019, 30, 1055–1074.e1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodcock, E.A.; Hillmer, A.T.; Mason, G.F.; Cosgrove, K.P. Imaging biomarkers of the neuroimmune system among substance use disorders: A systematic review. Mol. Neuropsychiatry 2019, 5, 125–146. [Google Scholar] [CrossRef]
- Certo, M.; Tsai, C.H.; Pucino, V.; Ho, P.C.; Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 2021, 21, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Dunn, J.F. Multiple sclerosis disease progression: Contributions from a hypoxia–inflammation cycle. Mult. Scler. J. 2019, 25, 1715–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, S. Lactate shuttles in neuroenergetics—Homeostasis, allostasis and beyond. Front. Neurosci. 2017, 11, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, D.W. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 1987, 7, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Tymianski, M.; Charlton, M.P.; Carlen, P.L.; Tator, C.H. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 1993, 13, 2085–2104. [Google Scholar] [CrossRef]
- Choi, D.W. Excitotoxic cell death. J. Neurobiol. 1992, 23, 1261–1276. [Google Scholar] [CrossRef]
- Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in Alzheimer’s disease. J. Alzheimer’s Dis. 2017, 57, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Neunlist, M.; Van Landeghem, L.; Mahé, M.M.; Derkinderen, P.; Des Varannes, S.B.; Rolli-Derkinderen, M. The digestive neuronal–glial–epithelial unit: A new actor in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 90–100. [Google Scholar] [CrossRef]
- Wang, Y.; Kasper, L.H. The role of microbiome in central nervous system disorders. Brain. Behav. Immun. 2014, 38, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslowski, K.M.; Mackay, C.R. Diet, gut microbiota and immune responses. Nat. Immunol. 2011, 12, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Tao, W.; Zhu, S. T lymphocytes in the intestinal mucosa: Defense and tolerance. Cell. Mol. Immunol. 2019, 16, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaumik, S.; Basu, R. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response. Front. Immunol. 2017, 8, 254. [Google Scholar] [CrossRef] [Green Version]
- Khatri, D.K.; Kadbhane, A.; Patel, M.; Nene, S.; Atmakuri, S.; Srivastava, S.; Singh, S.B. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100022. [Google Scholar] [CrossRef]
- de la Fuente-Nunez, C.; Meneguetti, B.T.; Franco, O.L.; Lu, T.K. Neuromicrobiology: How microbes influence the brain. ACS Chem. Neurosci. 2018, 9, 141–150. [Google Scholar] [CrossRef] [Green Version]
- McQualter, J.L.; Bernard, C.C. Multiple sclerosis: A battle between destruction and repair. J. Neurochem. 2007, 100, 295–306. [Google Scholar] [CrossRef]
- Hall, J.A.; Cannons, J.L.; Grainger, J.R.; Dos Santos, L.M.; Hand, T.W.; Naik, S.; Wohlfert, E.A.; Chou, D.B.; Oldenhove, G.; Robinson, M.; et al. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 2011, 34, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Pino-Lagos, K.; Guo, Y.; Brown, C.; Alexander, M.P.; Elgueta, R.; Bennett, K.A.; De Vries, V.; Nowak, E.; Blomhoff, R.; Sockanathan, S. A retinoic acid–dependent checkpoint in the development of CD4+ T cell–mediated immunity. J. Exp. Med. 2011, 208, 1767–1775. [Google Scholar] [CrossRef] [Green Version]
- Grizotte-Lake, M.; Zhong, G.; Duncan, K.; Kirkwood, J.; Iyer, N.; Smolenski, I.; Isoherranen, N.; Vaishnava, S. Commensals Suppress Intestinal Epithelial Cell Retinoic Acid Synthesis to Regulate Interleukin-22 Activity and Prevent Microbial Dysbiosis. Immunity 2018, 49, 1103–1115.e1106. [Google Scholar] [CrossRef] [Green Version]
- Bernard, F.; Vanhoutte, P.; Bennasroune, A.; Labourdette, G.; Perraut, M.; Aunis, D.; Gaillard, S. pH is an intracellular effector controlling differentiation of oligodendrocyte precursors in culture via activation of the ERK1/2 pathway. J. Neurosci. Res. 2006, 84, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Mukhin, Y.V.; Garnovskaya, M.N.; Ullian, M.E.; Raymond, J.R. ERK is regulated by sodium-proton exchanger in rat aortic vascular smooth muscle cells. J. Biol. Chem. 2004, 279, 1845–1852. [Google Scholar] [CrossRef] [Green Version]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007, 8, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.L., Jr.; Sick, T.J. Aging impairs regulation of intracellular pH in rat hippocampal slices. Brain Res. 1996, 735, 339–342. [Google Scholar] [CrossRef]
- Harguindey, S.; Polo Orozco, J.; Alfarouk, K.O.; Devesa, J. Hydrogen Ion Dynamics of Cancer and a New Molecular, Biochemical and Metabolic Approach to the Etiopathogenesis and Treatment of Brain Malignancies. Int. J. Mol. Sci. 2019, 20, 4278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulamea, A.O. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. Adv. Exp. Med. Biol. 2017, 958, 91–127. [Google Scholar] [CrossRef]
- Maghzi, A.H.; Minagar, A.; Waubant, E. Neuroprotection in multiple sclerosis: A therapeutic approach. CNS Drugs 2013, 27, 799–815. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Min, Y.; Guo, K.; Chen, Y.; Huang, Z.; Long, C. Effects and Mechanisms of Bone Marrow Mesenchymal Stem Cell Transplantation for Treatment of Ischemic Stroke in Hypertensive Rats. Int J. Stem Cells 2021. [Google Scholar] [CrossRef]
- Aly, R.M. Current state of stem cell-based therapies: An overview. Stem Cell Investig. 2020, 7, 8. [Google Scholar] [CrossRef]
- Pluchino, S.; Smith, J.A.; Peruzzotti-Jametti, L. Promises and Limitations of Neural Stem Cell Therapies for Progressive Multiple Sclerosis. Trends Mol. Med. 2020, 26, 898–912. [Google Scholar] [CrossRef]
- Goutman, S.A.; Savelieff, M.G.; Sakowski, S.A.; Feldman, E.L. Stem cell treatments for amyotrophic lateral sclerosis: A critical overview of early phase trials. Expert Opin. Investig. Drugs 2019, 28, 525–543. [Google Scholar] [CrossRef] [PubMed]
- Arun, T.; Tomassini, V.; Sbardella, E.; de Ruiter, M.B.; Matthews, L.; Leite, M.I.; Gelineau-Morel, R.; Cavey, A.; Vergo, S.; Craner, M.; et al. Targeting ASIC1 in primary progressive multiple sclerosis: Evidence of neuroprotection with amiloride. Brain 2013, 136, 106–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasternak, B.; Svanström, H.; Nielsen, N.M.; Melbye, M.; Hviid, A. Use of amiloride and multiple sclerosis: Registry-based cohort studies. Pharmacoepidemiol. Drug Saf. 2012, 21, 890–895. [Google Scholar] [CrossRef]
- Lee, Y.S.; Sayeed, M.M.; Wurster, R.D. Intracellular Ca2+ mediates the cytotoxicity induced by bepridil and benzamil in human brain tumor cells. Cancer Lett. 1995, 88, 87–91. [Google Scholar] [CrossRef]
- Bezprozvanny, I.; Tsien, R.W. Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967). Mol. Pharmacol. 1995, 48, 540–549. [Google Scholar]
- Devesa, J.; Lima, L.; Tresguerres, J.A. Neuroendocrine control of growth hormone secretion in humans. Trends Endocrinol. Metab. 1992, 3, 175–183. [Google Scholar] [CrossRef]
- Devesa, P.; Agasse, F.; Xapelli, S.; Almenglo, C.; Devesa, J.; Malva, J.O.; Arce, V.M. Growth hormone pathways signaling for cell proliferation and survival in hippocampal neural precursors from postnatal mice. BMC Neurosci. 2014, 15, 100. [Google Scholar] [CrossRef] [Green Version]
- Wasinski, F.; Frazão, R.; Donato, J. Effects of growth hormone in the central nervous system. Arch. Endocrinol. Metab. 2020, 63, 549–556. [Google Scholar] [CrossRef]
- Devesa, J.; Nunez, I.; Agra, C.; Bejarano, A.; Devesa, P. Treatment with Growth Hormone (GH) Increased the Metabolic Activity of the Brain in an Elder Patient, Not GH-Deficient, Who Suffered Mild Cognitive Alterations and Had an ApoE 4/3 Genotype. Int. J. Mol. Sci. 2018, 19, 2294. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.; Zheng, B.; Fan, L.W.; Rhodes, P.G.; Cai, Z. IGF-1 protects oligodendrocyte progenitors against TNFα-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway. Glia 2007, 55, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Perez, O.; Alvarez-Buylla, A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res. Rev. 2011, 67, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gironi, M.; Solaro, C.; Meazza, C.; Vaghi, M.; Montagna, L.; Rovaris, M.; Batocchi, A.P.; Nemni, R.; Albertini, R.; Zaffaroni, M.; et al. Growth hormone and disease severity in early stage of multiple sclerosis. Mult. Scler. Int. 2013, 2013, 836486. [Google Scholar] [CrossRef]
- Patergnani, S.; Fossati, V.; Bonora, M.; Giorgi, C.; Marchi, S.; Missiroli, S.; Rusielewicz, T.; Wieckowski, M.R.; Pinton, P. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. Int. Rev. Cell Mol. Biol. 2017, 328, 49–103. [Google Scholar] [CrossRef] [PubMed]
- Hervias, I.; Beal, M.F.; Manfredi, G. Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve 2006, 33, 598–608. [Google Scholar] [CrossRef]
- Weishaupt, J.H.; Bartels, C.; Polking, E.; Dietrich, J.; Rohde, G.; Poeggeler, B.; Mertens, N.; Sperling, S.; Bohn, M.; Huther, G.; et al. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J. Pineal Res. 2006, 41, 313–323. [Google Scholar] [CrossRef]
- Farhadi, N.; Oryan, S.; Nabiuni, M. Serum levels of melatonin and cytokines in multiple sclerosis. Biomed. J. 2014, 37, 90–92. [Google Scholar] [CrossRef]
- Miller, E.; Morel, A.; Saso, L.; Saluk, J. Melatonin redox activity. Its potential clinical applications in neurodegenerative disorders. Curr. Top. Med. Chem. 2015, 15, 163–169. [Google Scholar] [CrossRef]
- Vakilzadeh, G.; Khodagholi, F.; Ghadiri, T.; Ghaemi, A.; Noorbakhsh, F.; Sharifzadeh, M.; Gorji, A. The Effect of Melatonin on Behavioral, Molecular, and Histopathological Changes in Cuprizone Model of Demyelination. Mol. Neurobiol. 2016, 53, 4675–4684. [Google Scholar] [CrossRef]
- Feng, Z.; Qin, C.; Chang, Y.; Zhang, J.T. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease. Free Radic. Biol. Med. 2006, 40, 101–109. [Google Scholar] [CrossRef]
- Leone, M.; D’Amico, D.; Moschiano, F.; Fraschini, F.; Bussone, G. Melatonin versus placebo in the prophylaxis of cluster headache: A double-blind pilot study with parallel groups. Cephalalgia 1996, 16, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Pringsheim, T.; Magnoux, E.; Dobson, C.F.; Hamel, E.; Aube, M. Melatonin as adjunctive therapy in the prophylaxis of cluster headache: A pilot study. Headache 2002, 42, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Sandyk, R. The pineal gland and the clinical course of multiple sclerosis. Int. J. Neurosci. 1992, 62, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.M.; Frasch, T.; Xiang, S.; Yuan, L.; Duplessis, T.; Mao, L. Molecular mechanisms of melatonin anticancer effects. Integr. Cancer Ther. 2009, 8, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Spence, D.W.; Pandi-Perumal, S.R.; Trakht, I.; Cardinali, D.P. Therapeutic actions of melatonin in cancer: Possible mechanisms. Integr. Cancer Ther. 2008, 7, 189–203. [Google Scholar] [CrossRef]
- Reiter, R.J.; Rosales-Corral, S.A.; Tan, D.X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S.F.; Xu, K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int. J. Mol. Sci. 2017, 18, 843. [Google Scholar] [CrossRef] [Green Version]
- Menendez-Menendez, J.; Martinez-Campa, C. Melatonin: An Anti-Tumor Agent in Hormone-Dependent Cancers. Int. J. Endocrinol. 2018, 2018, 3271948. [Google Scholar] [CrossRef]
- Moloudizargari, M.; Moradkhani, F.; Hekmatirad, S.; Fallah, M.; Asghari, M.H.; Reiter, R.J. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci. 2021, 267, 118934. [Google Scholar] [CrossRef]
- Guerra, J.; Devesa, J. Usefulness of Melatonin and Other Compounds as Antioxidants and Epidrugs in the Treatment of Head and Neck Cancer. Antioxidants 2022, 11, 35. [Google Scholar] [CrossRef]
- Onseng, K.; Johns, N.P.; Khuayjarernpanishk, T.; Subongkot, S.; Priprem, A.; Hurst, C.; Johns, J. Beneficial Effects of Adjuvant Melatonin in Minimizing Oral Mucositis Complications in Head and Neck Cancer Patients Receiving Concurrent Chemoradiation. J. Altern. Complement. Med. 2017, 23, 957–963. [Google Scholar] [CrossRef]
- Elsabagh, H.H.; Moussa, E.; Mahmoud, S.A.; Elsaka, R.O.; Abdelrahman, H. Efficacy of Melatonin in prevention of radiation-induced oral mucositis: A randomized clinical trial. Oral Dis. 2020, 26, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Lozano, A.; Marruecos, J.; Rubio, J.; Farre, N.; Gomez-Millan, J.; Morera, R.; Planas, I.; Lanzuela, M.; Vazquez-Masedo, M.G.; Cascallar, L.; et al. Randomized placebo-controlled phase II trial of high-dose melatonin mucoadhesive oral gel for the prevention and treatment of oral mucositis in patients with head and neck cancer undergoing radiation therapy concurrent with systemic treatment. Clin. Transl. Oncol. 2021, 23, 1801–1810. [Google Scholar] [CrossRef]
- Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 2011, 17, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Hanson, L.Å. Immune effects of the normal gut flora. Mon. Kinderheilkd. 1998, 146, S2–S6. [Google Scholar]
- Rossi, M.; Petralla, S.; Protti, M.; Baiula, M.; Kobrlova, T.; Soukup, O.; Spampinato, S.M.; Mercolini, L.; Monti, B.; Bolognesi, M.L. α-Linolenic Acid–Valproic Acid Conjugates: Toward Single-Molecule Polypharmacology for Multiple Sclerosis. ACS Med. Chem. Lett. 2020, 11, 2406–2413. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Reparaz, J.; Mielcarz, D.W.; Ditrio, L.E.; Burroughs, A.R.; Foureau, D.M.; Haque-Begum, S.; Kasper, L.H. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 2009, 183, 6041–6050. [Google Scholar] [CrossRef] [Green Version]
- Sell, L.B.; Ramelow, C.C.; Kohl, H.M.; Hoffman, K.; Bains, J.K.; Doyle, W.J.; Strawn, K.D.; Hevrin, T.; Kirby, T.O.; Gibson, K.M.; et al. Farnesol induces protection against murine CNS inflammatory demyelination and modifies gut microbiome. Clin. Immunol. 2021, 108766. [Google Scholar] [CrossRef]
- Ser, H.-L.; Letchumanan, V.; Goh, B.-H.; Wong, S.H.; Lee, L.-H. The Use of Fecal Microbiome Transplant in Treating Human Diseases: Too Early for Poop? Front. Microbiol. 2021, 12, 1005. [Google Scholar] [CrossRef]
- Wegener, G.; Volke, V. Nitric oxide synthase inhibitors as antidepressants. Pharmaceuticals 2010, 3, 273–299. [Google Scholar] [CrossRef] [Green Version]
- Spain, R.; Powers, K.; Murchison, C.; Heriza, E.; Winges, K.; Yadav, V.; Cameron, M.; Kim, E.; Horak, F.; Simon, J.; et al. Lipoic acid in secondary progressive MS: A randomized controlled pilot trial. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e374. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Youngblood, H.; Wu, C.; Zhang, Q. Mitochondria as a target for neuroprotection: Role of methylene blue and photobiomodulation. Transl. Neurodegener. 2020, 9, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.B.; Negrato, C.A. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol. Metab. Syndr. 2014, 6, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijnhout, G.S.; Kollen, B.J.; Alkhalaf, A.; Kleefstra, N.; Bilo, H.J. Alpha lipoic Acid for symptomatic peripheral neuropathy in patients with diabetes: A meta-analysis of randomized controlled trials. Int. J. Endocrinol. 2012, 2012, 456279. [Google Scholar] [CrossRef] [PubMed]
- Alfarouk, K.O.; Alhoufie, S.T.S.; Hifny, A.; Schwartz, L.; Alqahtani, A.S.; Ahmed, S.B.M.; Alqahtani, A.M.; Alqahtani, S.S.; Muddathir, A.K.; Ali, H.; et al. Of mitochondrion and COVID-19. J. Enzyme Inhib. Med. Chem. 2021, 36, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- Weitzen, R.; Epstein, N.; Oberman, B.; Shevetz, R.; Hidvegi, M.; Berger, R. Fermented Wheat Germ Extract (FWGE) as a Treatment Additive for Castration-Resistant Prostate Cancer: A Pilot Clinical Trial. Nutr. Cancer 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Boros, L.G.; Nichelatti, M.; Shoenfeld, Y. Fermented wheat germ extract (Avemar) in the treatment of cancer and autoimmune diseases. Ann. N. Y. Acad. Sci. 2005, 1051, 529–542. [Google Scholar] [CrossRef]
- Jelinek, G.A.; Marck, C.H.; Weiland, T.J.; Pereira, N.; van der Meer, D.M.; Hadgkiss, E.J. Latitude, sun exposure and vitamin D supplementation: Associations with quality of life and disease outcomes in a large international cohort of people with multiple sclerosis. BMC Neurol. 2015, 15, 132. [Google Scholar] [CrossRef]
- Sintzel, M.B.; Rametta, M.; Reder, A.T. Vitamin D and Multiple Sclerosis: A Comprehensive Review. Neurol. Ther. 2018, 7, 59–85. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, D.W.; Ali, A.; Thornberry, N.A.; Vaillancourt, J.P.; Ding, C.K.; Gallant, M.; Gareau, Y.; Griffin, P.R.; Labelle, M.; Lazebnik, Y.A.; et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995, 376, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Tewari, M.; Quan, L.T.; O’Rourke, K.; Desnoyers, S.; Zeng, Z.; Beidler, D.R.; Poirier, G.G.; Salvesen, G.S.; Dixit, V.M. Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 1995, 81, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Alnemri, E.S.; Livingston, D.J.; Nicholson, D.W.; Salvesen, G.; Thornberry, N.A.; Wong, W.W.; Yuan, J. Human ICE/CED-3 protease nomenclature. Cell 1996, 87, 171. [Google Scholar] [CrossRef] [Green Version]
- Cid, C.; Alvarez-Cermeno, J.C.; Regidor, I.; Plaza, J.; Salinas, M.; Alcazar, A. Caspase inhibitors protect against neuronal apoptosis induced by cerebrospinal fluid from multiple sclerosis patients. J. Neuroimmunol. 2003, 136, 119–124. [Google Scholar] [CrossRef]
- Tully, M.; Tang, J.; Zheng, L.; Acosta, G.; Tian, R.; Hayward, L.; Race, N.; Mattson, D.; Shi, R. Systemic Acrolein Elevations in Mice With Experimental Autoimmune Encephalomyelitis and Patients With Multiple Sclerosis. Front. Neurol. 2018, 9, 420. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.A.; Becker, F.O.; Michael, J.A.; Sorensen, E. Effect of intravenous sodium bicarbonate, disodium edetate (Na2EDTA), and hyperventilation on visual and oculomotor signs in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1970, 33, 723–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, B.X.; Le, B.T.; Tran, H.D.; Hoang, C.; Tran, H.Q.; Tran, D.M.; Pham, C.Q.; Pham, T.D.; Ha, T.V.; Bui, N.T. Dimethyl sulfoxide–sodium bicarbonate infusion for palliative care and pain relief in patients with metastatic prostate cancer. J. Pain Palliat. Care Pharmacother. 2011, 25, 350–355. [Google Scholar] [CrossRef]
- Hoang, B.X.; Tran, D.M.; Tran, H.Q.; Nguyen, P.T.; Pham, T.D.; Dang, H.V.; Ha, T.V.; Tran, H.D.; Hoang, C.; Luong, K.N.; et al. Dimethyl sulfoxide and sodium bicarbonate in the treatment of refractory cancer pain. J. Pain Palliat. Care Pharmacother. 2011, 25, 19–24. [Google Scholar] [CrossRef]
- Hoang, B.X.; Tran, H.Q.; Vu, U.V.; Pham, Q.T.; Shaw, D.G. Palliative treatment for advanced biliary adenocarcinomas with combination dimethyl sulfoxide–sodium bicarbonate infusion and S-adenosyl-l-methionine. J. Pain Palliat. Care Pharmacother. 2014, 28, 206–211. [Google Scholar] [CrossRef]
- Hoang, B.X.; Shaw, D.G.; Han, B.; Fang, J.Y.; Nimni, M. Acidosis and formaldehyde secretion as a possible pathway of cancer pain and options for improved cancer pain control. J. Pain Palliat. Care Pharmacother. 2015, 29, 276–280. [Google Scholar] [CrossRef]
Normal Cells | HNDDs Neurons | Cancer Cells |
---|---|---|
(pHi < pHe) | (Low pHi, low pHe) | (pHi > pHe) |
pHi: 6.99–7.05 | pHi: 6.2–6.8 (acid) (↓pHi pathological apoptosis) | pHi: 7.2–7.8 (alkaline) (↑pHi pathological anti-apoptosis) (CPR) |
pHe: 7.35–7.45 | pHe: 6.0–6.8 (acid) (↓pHi pathological apoptosis) (TFWS) | pHe: 6.0–6.8 (acid) (↓pHi therapeutic apoptosis) |
Acid pHi/Acid pHe | Alkaline pHi/Acid pHe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harguindey, S.; Alfarouk, K.; Polo Orozco, J.; Reshkin, S.J.; Devesa, J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 2454. https://doi.org/10.3390/ijms23052454
Harguindey S, Alfarouk K, Polo Orozco J, Reshkin SJ, Devesa J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. International Journal of Molecular Sciences. 2022; 23(5):2454. https://doi.org/10.3390/ijms23052454
Chicago/Turabian StyleHarguindey, Salvador, Khalid Alfarouk, Julián Polo Orozco, Stephan J Reshkin, and Jesús Devesa. 2022. "Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis" International Journal of Molecular Sciences 23, no. 5: 2454. https://doi.org/10.3390/ijms23052454
APA StyleHarguindey, S., Alfarouk, K., Polo Orozco, J., Reshkin, S. J., & Devesa, J. (2022). Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. International Journal of Molecular Sciences, 23(5), 2454. https://doi.org/10.3390/ijms23052454