Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Data Sources and Literature Search Strategy
2.3. Study Selection and Data Extraction
3. Results
3.1. Search Results
3.2. Predicting MSI/dMMR Status by AI-Based/Deep Learning—Approaches
3.3. Assessment of the Risk of Bias and Applicability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Garrido-Ramos, M.A. Satellite DNA: An evolving topic. Genes 2017, 8, 230. [Google Scholar] [CrossRef]
- Lower, S.S.; McGurk, M.P.; Clark, A.G.; Barbash, D.A. Satellite DNA evolution: Old ideas, new approaches. Curr. Opin. Genet. Dev. 2018, 49, 70–78. [Google Scholar] [CrossRef]
- Pećina-Šlaus, N.; Kafka, A.; Salamon, I.; Bukovac, A. Mismatch Repair Pathway, Genome Stability and Cancer. Front. Mol. Biosci. 2020, 7, 122. [Google Scholar] [CrossRef]
- Luchini, C.; Bibeau, F.; Ligtenberg, M.J.L.; Singh, N.; Nottegar, A.; Bosse, T.; Miller, R.; Riaz, N.; Douillard, J.Y.; Andre, F.; et al. Esmo recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with pd-1/pd-l1 expression and tumour mutational burden: A systematic review-based approach. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1232–1243. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Li, L.; Jiang, X.; Li, Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-pd-1/pd-l1 immunotherapy efficacy. J. Hematol. Oncol. 2019, 12, 54. [Google Scholar] [CrossRef]
- Bonneville, R.; Krook, M.A.; Chen, H.Z.; Smith, A.; Samorodnitsky, E.; Wing, M.R.; Reeser, J.W.; Roychowdhury, S. Detection of microsatellite instability biomarkers via next-generation sequencing. Methods Mol. Biol. 2020, 2055, 119–132. [Google Scholar] [CrossRef]
- Glaire, M.A.; Brown, M.; Church, D.N.; Tomlinson, I. Cancer predisposition syndromes: Lessons for truly precision medicine. J. Pathol. 2017, 241, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Lawes, D.A.; SenGupta, S.; Boulos, P.B. The clinical importance and prognostic implications of microsatellite instability in sporadic cancer. Eur. J. Surg. Oncol. 2003, 29, 201–212. [Google Scholar] [CrossRef]
- Ligtenberg, M.J.; Kuiper, R.P.; Chan, T.L.; Goossens, M.; Hebeda, K.M.; Voorendt, M.; Lee, T.Y.; Bodmer, D.; Hoenselaar, E.; Hendriks-Cornelissen, S.J.; et al. Heritable somatic methylation and inactivation of msh2 in families with lynch syndrome due to deletion of the 3′ exons of tacstd1. Nat. Genet. 2009, 41, 112–117. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. Pd-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to pd-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Mann, S.A.; Cheng, L. Microsatellite instability and mismatch repair deficiency in the era of precision immuno-oncology. Expert Rev. Anticancer Ther. 2020, 20, 1–4. [Google Scholar] [CrossRef]
- Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087.e3. [Google Scholar] [CrossRef]
- Kawakami, H.; Zaanan, A.; Sinicrope, F.A. Microsatellite instability testing and its role in the management of colorectal cancer. Curr. Treat. Options Oncol. 2015, 16, 30. [Google Scholar] [CrossRef]
- Stjepanovic, N.; Moreira, L.; Carneiro, F.; Balaguer, F.; Cervantes, A.; Balmaña, J.; Martinelli, E. Hereditary gastrointestinal cancers: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1558–1571. [Google Scholar] [CrossRef] [Green Version]
- Madabhushi, A.; Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 2016, 33, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Luchini, C.; Brosens, L.A.A.; Wood, L.D.; Chatterjee, D.; Shin, J.I.; Sciammarella, C.; Fiadone, G.; Malleo, G.; Salvia, R.; Kryklyva, V.; et al. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: Histology, molecular pathology and clinical implications. Gut 2021, 70, 148. [Google Scholar] [CrossRef]
- Luchini, C.; Grant, R.C.; Scarpa, A.; Gallinger, S. Microsatellite instability/mismatch repair deficiency in pancreatic cancers: The same or different? Gut 2021, 70, 1809–1811. [Google Scholar] [CrossRef]
- Alexander, J.; Watanabe, T.; Wu, T.T.; Rashid, A.; Li, S.; Hamilton, S.R. Histopathological identification of colon cancer with microsatellite instability. Am. J. Pathol. 2001, 158, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Greenson, J.K.; Bonner, J.D.; Ben-Yzhak, O.; Cohen, H.I.; Miselevich, I.; Resnick, M.B.; Trougouboff, P.; Tomsho, L.D.; Kim, E.; Low, M.; et al. Phenotype of microsatellite unstable colorectal carcinomas: Well-differentiated and focally mucinous tumors and the absence of dirty necrosis correlate with microsatellite instability. Am. J. Surg. Pathol. 2003, 27, 563–570. [Google Scholar] [CrossRef]
- Greenson, J.K.; Huang, S.C.; Herron, C.; Moreno, V.; Bonner, J.D.; Tomsho, L.P.; Ben-Izhak, O.; Cohen, H.I.; Trougouboff, P.; Bejhar, J.; et al. Pathologic predictors of microsatellite instability in colorectal cancer. Am. J. Surg. Pathol. 2009, 33, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, M.A.; Hayashi, S.; O’Shea, A.M.; Burgart, L.J.; Smyrk, T.C.; Shimizu, D.; Waring, P.M.; Ruszkiewicz, A.R.; Pollett, A.F.; Redston, M.; et al. Pathology features in bethesda guidelines predict colorectal cancer microsatellite instability: A population-based study. Gastroenterology 2007, 133, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.D.; Cummings, M.C.; Buchanan, D.D.; Dambacher, W.M.; Arnold, S.; McKeone, D.; Byrnes, R.; Barker, M.A.; Leggett, B.A.; Gattas, M.; et al. Molecular, pathologic, and clinical features of early-onset endometrial cancer: Identifying presumptive lynch syndrome patients. Clin. Cancer Res. 2008, 14, 1692–1700. [Google Scholar] [CrossRef] [Green Version]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef]
- Skrede, O.J.; De Raedt, S.; Kleppe, A.; Hveem, T.S.; Liestøl, K.; Maddison, J.; Askautrud, H.A.; Pradhan, M.; Nesheim, J.A.; Albregtsen, F.; et al. Deep learning for prediction of colorectal cancer outcome: A discovery and validation study. Lancet 2020, 395, 350–360. [Google Scholar] [CrossRef]
- Luchini, C.; Pea, A.; Scarpa, A. Artificial intelligence in oncology: Current applications and future perspectives. Br. J. Cancer 2021, 126, 4–9. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, Q.; Lao, I.; Wang, L.; Wu, Y.; Li, D.; Ji, Q.; Wang, Y.; Zhu, Y.; Lu, H.; et al. Using deep convolutional neural networks for multi-classification of thyroid tumor by histopathology: A large-scale pilot study. Ann. Transl. Med. 2019, 7, 468. [Google Scholar] [CrossRef]
- Sultan, A.S.; Elgharib, M.A.; Tavares, T.; Jessri, M.; Basile, J.R. The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J. Oral Pathol. Med. 2020, 49, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, M.; Wang, S.; Li, X.; Sun, Y. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun. 2020, 40, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Echle, A.; Rindtorff, N.T.; Brinker, T.J.; Luedde, T.; Pearson, A.T.; Kather, J.N. Deep learning in cancer pathology: A new generation of clinical biomarkers. Br. J. Cancer 2021, 124, 686–696. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Song, K.D.; Kim, M.; Do, S. The latest trends in the use of deep learning in radiology illustrated through the stages of deep learning algorithm development. J. Korean Soc. Radiol. 2019, 80, 202–212. [Google Scholar] [CrossRef]
- Park, S.H. Artificial intelligence in medicine: Beginner’s guide. J. Korean Soc. Radiol. 2018, 78, 301–308. [Google Scholar] [CrossRef]
- Murchan, P.; Ó’Brien, C.; O’Connell, S.; McNevin, C.; Baird, A.-M.; Sheils, O.; Ó Broin, P.; Finn, S. Deep learning of histopathological features for the prediction of tumour molecular genetics. Diagnostics 2021, 11, 1406. [Google Scholar] [CrossRef]
- Hildebrand, L.A.; Pierce, C.J.; Dennis, M.; Paracha, M.; Maoz, A. Artificial intelligence for histology-based detection of microsatellite instability and prediction of response to immunotherapy in colorectal cancer. Cancers 2021, 13, 391. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Luchini, C.; Veronese, N.; Nottegar, A.; Shin, J.I.; Gentile, G.; Granziol, U.; Soysal, P.; Alexinschi, O.; Smith, L.; Solmi, M. Assessing the quality of studies in meta-research: Review/guidelines on the most important quality assessment tools. Pharm. Stat. 2021, 20, 185–195. [Google Scholar] [CrossRef]
- Zhang, R.; Osinski, B.L.; Taxter, T.J.; Perera, J.; Lau, D.J.; Khan, A.A. Adversarial deep learning for microsatellite instability prediction from histopathology slides. In Proceedings of the 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands, 4–6 July 2018; pp. 4–6. [Google Scholar]
- Klaiman, E.; Gildenblat, J.; Ben-Shaul, I.; Heller, A.; Korski, K.; Kiermaier, A.; Gaire, F. Prediction of biomarker status, diagnosis and outcome from histology slides using deep learning-based hypothesis free feature extraction. J. Clin. Oncol. 2019, 37, 3140. [Google Scholar] [CrossRef]
- Kather, J.N.; Pearson, A.T.; Halama, N.; Jäger, D.; Krause, J.; Loosen, S.H.; Marx, A.; Boor, P.; Tacke, F.; Neumann, U.P.; et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 2019, 25, 1054–1056. [Google Scholar] [CrossRef]
- Pressman, I.S.; Xu, H.; Kang, J.; Cha, Y.J.; Lee, S.H.; Hwang, T.H. Abstract 2100: Deep learning can predict microsatellite instability from histology in colorectal cancer across different ethnic groups. Cancer Res. 2020, 80, 2100. [Google Scholar] [CrossRef]
- Schmauch, B.; Romagnoni, A.; Pronier, E.; Saillard, C.; Maillé, P.; Calderaro, J.; Kamoun, A.; Sefta, M.; Toldo, S.; Zaslavskiy, M.; et al. A deep learning model to predict rna-seq expression of tumours from whole slide images. Nat. Commun. 2020, 11, 387. [Google Scholar] [CrossRef] [PubMed]
- Kather, J.N.; Heij, L.R.; Grabsch, H.I.; Loeffler, C.; Echle, A.; Muti, H.S.; Krause, J.; Niehues, J.M.; Sommer, K.A.J.; Bankhead, P.; et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 2020, 1, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Yang, F.; Ma, S.C.; Liu, L.; Zhao, Y.; Li, Y.; Wu, D.H.; Wang, T.; Lu, W.J.; Cai, W.J.; et al. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in colorectal cancer. Theranostics 2020, 10, 11080–11091. [Google Scholar] [CrossRef]
- Echle, A.; Grabsch, H.I.; Quirke, P.; van den Brandt, P.A.; West, N.P.; Hutchins, G.G.A.; Heij, L.R.; Tan, X.; Richman, S.D.; Krause, J.; et al. Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning. Gastroenterology 2020, 159, 1406–1416.e11. [Google Scholar] [CrossRef]
- Valieris, R.; Amaro, L.; Osório, C.; Bueno, A.P.; Rosales Mitrowsky, R.A.; Carraro, D.M.; Nunes, D.N.; Dias-Neto, E.; Silva, I.T.D. Deep learning predicts underlying features on pathology images with therapeutic relevance for breast and gastric cancer. Cancers 2020, 12, 3687. [Google Scholar] [CrossRef]
- Yamashita, R.; Long, J.; Longacre, T.; Peng, L.; Berry, G.; Martin, B.; Higgins, J.; Rubin, D.L.; Shen, J. Deep learning model for the prediction of microsatellite instability in colorectal cancer: A diagnostic study. Lancet Oncol. 2021, 22, 132–141. [Google Scholar] [CrossRef]
- Krause, J.; Grabsch, H.I.; Kloor, M.; Jendrusch, M.; Echle, A.; Buelow, R.D.; Boor, P.; Luedde, T.; Brinker, T.J.; Trautwein, C.; et al. Deep learning detects genetic alterations in cancer histology generated by adversarial networks. J. Pathol. 2021, 254, 70–79. [Google Scholar] [CrossRef]
- Lee, S.H.; Song, I.H.; Jang, H.J. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer. Int. J. Cancer 2021, 149, 728–740. [Google Scholar] [CrossRef]
- Hong, R.; Liu, W.; DeLair, D.; Razavian, N.; Fenyö, D. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Rep. Med. 2021, 2, 100400. [Google Scholar] [CrossRef]
- Fu, Y.; Jung, A.W.; Torne, R.V.; Gonzalez, S.; Vöhringer, H.; Shmatko, A.; Yates, L.R.; Jimenez-Linan, M.; Moore, L.; Gerstung, M. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 2020, 1, 800–810. [Google Scholar] [CrossRef]
- Saeed, O.A.M.; Mann, S.A.; Luchini, C.; Huang, K.; Zhang, S.; Sen, J.D.; Piredda, M.L.; Wang, M.; Baldrige, L.A.; Sperling, R.M.; et al. Evaluating mismatch repair deficiency for solid tumor immunotherapy eligibility: Immunohistochemistry versus microsatellite molecular testing. Hum. Pathol. 2021, 115, 10–18. [Google Scholar] [CrossRef]
- Piredda, M.L.; Ammendola, S.; Sciammarella, C.; Turri, G.; Bagante, F.; Fassan, M.; Mafficini, A.; Mombello, A.; Cataldi, S.; Paolino, G.; et al. Colorectal cancer with microsatellite instability: Right-sided location and signet ring cell histology are associated with nodal metastases, and extranodal extension influences disease-free survival. Pathol. Res. Pract. 2021, 224, 153519. [Google Scholar] [CrossRef]
- Hyde, A.; Fontaine, D.; Stuckless, S.; Green, R.; Pollett, A.; Simms, M.; Sipahimalani, P.; Parfrey, P.; Younghusband, B. A histology-based model for predicting microsatellite instability in colorectal cancers. Am. J. Surg. Pathol. 2010, 34, 1820–1829. [Google Scholar] [CrossRef] [PubMed]
- Fujiyoshi, K.; Yamaguchi, T.; Kakuta, M.; Takahashi, A.; Arai, Y.; Yamada, M.; Yamamoto, G.; Ohde, S.; Takao, M.; Horiguchi, S.I.; et al. Predictive model for high-frequency microsatellite instability in colorectal cancer patients over 50 years of age. Cancer Med. 2017, 6, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Acs, B.; Rantalainen, M.; Hartman, J. Artificial intelligence as the next step towards precision pathology. J. Intern. Med. 2020, 288, 62–81. [Google Scholar] [CrossRef] [Green Version]
- Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Werneck Krauss Silva, V.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra, D.S.; Fuchs, T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 2019, 25, 1301–1309. [Google Scholar] [CrossRef]
- Calderaro, J.; Kather, J.N. Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers. Gut 2021, 70, 1183–1193. [Google Scholar] [CrossRef]
- Levine, A.B.; Peng, J.; Farnell, D.; Nursey, M.; Wang, Y.; Naso, J.R.; Ren, H.; Farahani, H.; Chen, C.; Chiu, D.; et al. Synthesis of diagnostic quality cancer pathology images by generative adversarial networks. J. Pathol. 2020, 252, 178–188. [Google Scholar] [CrossRef]
- Safarpoor, A.; Kalra, S.; Tizhoosh, H.R. Generative models in pathology: Synthesis of diagnostic quality pathology images. J. Pathol. 2021, 253, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Gadermayr, M.; Gupta, L.; Appel, V.; Boor, P.; Klinkhammer, B.M.; Merhof, D. Generative adversarial networks for facilitating stain-independent supervised and unsupervised segmentation: A study on kidney histology. IEEE Trans. Med. Imaging 2019, 38, 2293–2302. [Google Scholar] [CrossRef]
- Djuric, U.; Zadeh, G.; Aldape, K.; Diamandis, P. Precision histology: How deep learning is poised to revitalize histomorphology for personalized cancer care. NPJ Precis. Oncol. 2017, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- Serag, A.; Ion-Margineanu, A.; Qureshi, H.; McMillan, R.; Saint Martin, M.J.; Diamond, J.; O’Reilly, P.; Hamilton, P. Translational ai and deep learning in diagnostic pathology. Front. Med. 2019, 6, 185. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Han, K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018, 286, 800–809. [Google Scholar] [CrossRef] [PubMed]
Author/Year | Organ (% by Training Cohort) | Neural Network | Training Cohort | Type of Internal Validation | External Validation | Test Cohort(s) with AUC (95% CI) or Accuracy | Methodology for MSI Analysis |
---|---|---|---|---|---|---|---|
Zhang et al., * 2018 [39] | Colorectum (51.3%) UCEC (48.7%) Stomach † | Inception-V3 without adversarial training | TCGA CRC (n = 585 WSIs) | Random split | Yes | TCGA CRC Accuracy: 98.3% TCGA UCEC Accuracy: 53.7% | - |
TCGA CRC (n = 585 WSIs) TCGA UCEC (n = 556 WSIs) | TCGA CRC Accuracy: 72.3% TCGA UCEC Accuracy: 84.2% TCGA STAD (n = 209 WSIs) Accuracy: 34.9% | ||||||
Inception-V3 with adversarial training | TCGA CRC Accuracy: 85.0% TCGA UCEC Accuracy: 94.6% TCGA STAD (n = 209 WSIs) Accuracy: 57.4% | ||||||
Klaiman et al., * 2019 [40] | Colorectum | N/A | Roche internal CRC80 dataset (n = 94 pts) | Random split | No | Roche internal CRC80 dataset: 0.9 | - |
Kater et al., 2019 [41] | Stomach (19.2%) | ResNet-18 | TCGA STAD FFPE (n = 216 pts) | Random split | Yes | TCGA STAD FFPE (n = 99 pts): 0.81 (0.69–0.90) DACHS FFPE (n = 378 pts): 0.60 (0.48–0.69) KCCH FFPE (n = 185 pts): 0.69 (0.52–0.82) | TCGA: PCR DACHS: PCR 1 KCCH: IHC |
Colorectum (23.1%) | TCGA CRC FFPE (n = 260 pts) | TCGA CRC FFPE (n = 100 pts): 0.77 (0.62–0.87) DACHS FFPE (n = 378 pts): 0.84 (0.720–0.92) | |||||
Colorectum (23.8%) | TCGA CRC Frozen (n = 269 pts) | TCGA CRC Frozen (n = 109 pts): 0.84 (0.73–0.91) DACHS FFPE (n = 378pts): 0.61 (0.50–0.73) | |||||
UCEC (33.9%) | TCGA UCEC FFPE (n = 382 pts) | No | TCGA UCEC FFPE (n = 110 pts): 0.75 (0.63–0.83) | ||||
Pressman et al., * 2020 [42] | Colorectum | ResNet18 | TCGA (n = 360 WSIs) | - | Yes | TCGA: 0.79 Gangnam sev (n = 170 WSIs): 0.76 | - |
Schmauch et al., 2020 [43] | Colorectum (62.8%) | HE2RNA with ResNet50 | TCGA CRC FFPE (n = 465 pts) | Three-fold cross validation | No | TCGA CRC FFPE: 0.82 | PCR |
Stomach (37.2%) | TCGA STAD FFPE (n = 276 pts) | TCGA STAD FFPE: 0.76 | |||||
Kather et al., 2020 [44] | Colorectum | ShuffleNet | TCGA CRC FFPE (n = 426 pts) | Three-fold cross-validation | Yes | DACHS FFPE (n = 379 pts): 0.89 (0.88–0.92) | TCGA: PCR DACHS: PCR 1 |
Cao et al., 2020 [45] | Colon | ResNet-18 | TCGA-COAD Frozen (Total number including test cohort: 429 WSIs) | Random split | Yes | TCGA-COAD: 0.8848 (0.8185–0.9512) Asian-CRC FFPE (n = 785 WSIs): 0.6497 (0.6061–0.6933) | TCGA-COAD: NGS 2 Asian-CRC; PCR |
TCGA-COAD Frozen (90%) + Asian-CRC FFPE (10%) | - | No | Asian-CRC FFPE (n = 785 WSIs): 0.8504 (0.7591–0.9323) | ||||
TCGA-COAD Frozen (30%) + Asian-CRC FFPE (70%) | - | No | Asian-CRC FFPE (n = 785 WSIs): 0.9264 (0.8806–0.9722) | ||||
Echle et al., 2020 [46] | Colorectum | ShuffleNet | MSIDETECT CRC (n = 6406 pts) | Random split | Yes | MSIDETECT CRC: 0.92 (0.90–0.93) | DACHS: PCR TCGA: PCR QUASAR and NLCS: IHC 3 YCR-BCIP: IHC |
Three-fold cross validation | MSIDETECT CRC: 0.92 (0.91–0.93) YCR-BCIP-RESECT (n = 771 pts): 0.96 (0.93–0.98) YCR-BCIP-BIOPSY (n = 1531 pts): 0.78 (0.75–0.81) | ||||||
YCR-BCIP-BIOPSY (n = 1531 pts) | Three-fold cross validation | No | YCR-BCIP-BIOPSY: 0.89 (0.88–0.91) | ||||
Valieris et al., 2020 [47] | Stomach | Resnet-34 | TCGA-STAD FFPE (Total number including test cohort: 369 pts) | Random split | No | TCGA-STAD FFPE: 0.81 (0.689–0.928) | NGS 4 |
Yamashita et al., 2021 [48] | Colorectum | MSInet | Stanford dataset (n = 85 pts) | Random split | No | Stanford dataset (n = 15 pts): 0.931 (0.771–1.000) | Stanford dataset: IHC/PCR TCGA: PCR |
Four-fold cross-validation | Yes | Stanford dataset (n = 15 pts): 0.937 TCGA (n = 479 pts): 0.779 (0.720–0.838) | |||||
Krause et al., 2021 [49] | Colorectum | ShuffleNet | TCGA FFPE (n = 256 pts) | Random split | No | TCGA FFPE (n = 142 pts): 0.742 (0.681–0.854) | PCR |
Lee et al., 2021 [50] | Colorectum | Inception-V3 | TCGA FFPE (n = 470,825 patches) SMH FFPE (n = 274 WSIs) | 10-fold cross validation | No | TCGA FFPE: 0.892 (0.855–0.929) SMH FFPE: 0.972 (0.956–0.987) | TCGA: PCR SMH: PCR/IHC |
TCGA FFPE (n = 470,825 patches) | Yes | TCGA FFPE: 0.861 (0.819–0.903) SMH FFPE: 0.787 (0.743–0.830) | |||||
TCGA Frozen (n = 562,837 patches) | No | TCGA Frozen: 0.942 (0.925–0.959) | |||||
Hong et al., 2021 [51] | UCEC | InceptionResNetV1 | TCGA and CPTAC (Total number including test cohort: 456 pts) | Random split | Yes | TCGA and CPTAC: 0.827 (0.705–0.948) NYU set: 0.667 | TCGA: PCR CPTAC: NGS 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.H.; Kim, E.Y.; Luchini, C.; Eccher, A.; Tizaoui, K.; Shin, J.I.; Lim, B.J. Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 2462. https://doi.org/10.3390/ijms23052462
Park JH, Kim EY, Luchini C, Eccher A, Tizaoui K, Shin JI, Lim BJ. Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review. International Journal of Molecular Sciences. 2022; 23(5):2462. https://doi.org/10.3390/ijms23052462
Chicago/Turabian StylePark, Ji Hyun, Eun Young Kim, Claudio Luchini, Albino Eccher, Kalthoum Tizaoui, Jae Il Shin, and Beom Jin Lim. 2022. "Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review" International Journal of Molecular Sciences 23, no. 5: 2462. https://doi.org/10.3390/ijms23052462
APA StylePark, J. H., Kim, E. Y., Luchini, C., Eccher, A., Tizaoui, K., Shin, J. I., & Lim, B. J. (2022). Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review. International Journal of Molecular Sciences, 23(5), 2462. https://doi.org/10.3390/ijms23052462