Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring
Abstract
:1. Epidemiology of Periodontal Disease (PD)
Periodontal Disease (PD) Is a Serious Problem in the Pregnant Women Population
2. The Aim of the Review
3. The Clinical Picture and Etiology of Periodontitis
4. Periodontal Disease in Pregnancy
5. Epigenetic Regulations in the Pathophysiology of Periodontal Disease
5.1. DNA Methylation
5.2. Histone Modifications
5.3. Non-Coding RNAs
5.4. MicroRNAs
5.5. Long Noncoding RNAs
6. The Maternal Periodontal Disease in Pregnancy and Consequences in Offspring
6.1. Maternal Periodontitis as a Chronic Exposure to Inflammatory Mediators
6.2. Maternal Periodontitis as a Dysbiosis of Intrauterine Microenviroment
- (1)
- Direct invasion, translocation, and injury to the fetal–placental unit/interface and maternal tissues,
- (2)
- Persistence and survival within the fetal and maternal tissues and immune response evasion,
- (3)
- Increased production of proinflammatory cytokines and shift in maternal–fetal immune response from Th2 to Th1 with the onset of Th17/T regulatory cell imbalance,
- (4)
- Activation of the acute-phase response,
- (5)
- Onset of polymicrobial dysbiosis and development of pathobiont species,
- (6)
- Increased oxidative stress in the fetal and maternal tissue, and
- (7)
- Increased fetal adrenal cortisone production and the onset of fetal stress [135].
6.3. Does the Maternal Periodontitis Change the Epigenome of the Offspring?
7. Clinicaltrials.Gov Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marcenes, W.; Kassebaum, N.J.; Bernabe, E.; Flaxman, A.; Naghavi, M.; Lopez, A.; Murray, C.J. Global burden of oral conditions in 1990-2010: A systematic analysis. J. Dent. Res. 2013, 92, 592–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frencken, J.E.; Sharma, P.; Stenhouse, L.; Green, D.; Laverty, D.; Dietrich, T. Global epidemiology of dental caries and severe periodontitis—A comprehensive review. J. Clin. Periodontol. 2017, 44 (Suppl. S18), S94–S105. [Google Scholar] [CrossRef] [PubMed]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; WHO/NMH/NVI/15.1. 2014. Available online: https://apps.who.int/iris/handle/10665/148114 (accessed on 26 January 2022).
- Dietrich, T.; Ower, P.; Tank, M.; West, N.X.; Walter, C.; Needleman, I.; Hughes, F.J.; Wadia, R.; Milward, M.R.; Hodge, P.J.; et al. Periodontal diagnosis in the context of the 2017 classification system of periodontal diseases and conditions—Implementation in clinical practice. Br. Dent. J. 2019, 226, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Slots, J. Periodontitis: Facts, fallacies and the future. Periodontol. 2000 2017, 75, 7–23. [Google Scholar] [CrossRef]
- Konopka, T.; Dembowska, E.; Pietruska, M.; Dymalski, P.; Gorska, R. Periodontal status and selected parameters of oral condition of Poles aged 65 to 74 years. Przegl. Epidemiol. 2015, 69, 537–542, 643-7. [Google Scholar]
- Xie, Y.; Xiong, X.; Elkind-Hirsch, K.E.; Pridjian, G.; Maney, P.; Delarosa, R.L.; Buekens, P. Change of periodontal disease status during and after pregnancy. J. Periodontol. 2013, 84, 725–731. [Google Scholar] [CrossRef]
- Raju, K.; Berens, L. Periodontology and pregnancy: An overview of biomedical and epidemiological evidence. Periodontol. 2000 2021, 87, 132–142. [Google Scholar] [CrossRef]
- Asa’ad, F.A.; Rahman, G.; Al Mahmoud, N.; Al Shamasi, E.; Al Khuwaileidi, A. Periodontal disease awareness among pregnant women in the central and eastern regions of Saudi Arabia. J. Investig. Clin. Dent. 2015, 6, 8–15. [Google Scholar] [CrossRef]
- Tarannum, F.; Prasad, R.K.; Shobha, R.; Kumar, B.B.; Ebenezer, S. Awareness of the association between periodontal disease and adverse pregnancy outcome among the general female population. Indian J. Dent. Res. 2015, 26, 21–25. [Google Scholar] [CrossRef]
- Petit, C.; Benezech, J.; Davideau, J.L.; Hamann, V.; Tuzin, N.; Huck, O. Consideration of Oral Health and Periodontal Diseases During Pregnancy: Knowledge and Behaviour Among French Pregnant Women. Oral Health Prev. Dent. 2021, 19, 33–42. [Google Scholar] [PubMed]
- Cohen, L.; Schaeffer, M.; Davideau, J.L.; Tenenbaum, H.; Huck, O. Obstetric knowledge, attitude, and behavior concerning periodontal diseases and treatment needs in pregnancy: Influencing factors in France. J. Periodontol. 2015, 86, 398–405. [Google Scholar] [CrossRef]
- Penmetsa, G.S.; Meghana, K.; Bhavana, P.; Venkatalakshmi, M.; Bypalli, V.; Lakshmi, B. Awareness, Attitude and Knowledge Regarding Oral Health among Pregnant Women: A Comparative Study. Niger. Med. J. 2018, 59, 70–73. [Google Scholar] [CrossRef]
- Christensen, L.B.; Jeppe-Jensen, D.; Petersen, P.E. Self-reported gingival conditions and self-care in the oral health of Danish women during pregnancy. J. Clin. Periodontol. 2003, 30, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Periodontal Disease. Available online: https://www.cdc.gov/oralhealth/conditions/periodontal-disease.html (accessed on 28 November 2021).
- Gonzalez-Jaranay, M.; Tellez, L.; Roa-Lopez, A.; Gomez-Moreno, G.; Moreu, G. Periodontal status during pregnancy and postpartum. PLoS ONE 2017, 12, e0178234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guthmiller, J.M.; Hassebroek-Johnson, J.R.; Weenig, D.R.; Johnson, G.K.; Kirchner, H.L.; Kohout, F.J.; Hunter, S.K. Periodontal disease in pregnancy complicated by type 1 diabetes mellitus. J. Periodontol. 2001, 72, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, D.S.; Verma, M.; Lamba, A.K.; Gupta, M.M.; Sharma, S.; Perumal, V. Association between periodontal disease and gestational diabetes mellitus-A prospective cohort study. J. Clin. Periodontol. 2018, 45, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Genco, R.J.; Graziani, F.; Hasturk, H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontol. 2000 2020, 83, 59–65. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Xiao, E.; Graves, D.T. Diabetes mellitus related bone metabolism and periodontal disease. Int. J. Oral Sci. 2015, 7, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Kocher, T.; Konig, J.; Borgnakke, W.S.; Pink, C.; Meisel, P. Periodontal complications of hyperglycemia/diabetes mellitus: Epidemiologic complexity and clinical challenge. Periodontol. 2000 2018, 78, 59–97. [Google Scholar] [CrossRef]
- Soucy-Giguere, L.; Tetu, A.; Gauthier, S.; Morand, M.; Chandad, F.; Giguere, Y.; Bujold, E. Periodontal Disease and Adverse Pregnancy Outcomes: A Prospective Study in a Low-Risk Population. J. Obstet. Gynaecol. Can. 2016, 38, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Arregoces, F.; Latorre-Uriza, C.; Velosa-Porras, J.; Roa-Molina, N.; Ruiz, A.J.; Silva, J.; Arias, E.; Echeverri, J. Inflamatory response in pregnant women with high risk of preterm delivery and its relationship with periodontal disease: A pilot study. Acta Odontol. Latinoam. 2018, 31, 53–57. [Google Scholar] [PubMed]
- Figueiredo, M.; Takita, S.Y.; Dourado, B.M.R.; Mendes, H.S.; Terakado, E.O.; Nunes, H.R.C.; Fonseca, C. Periodontal disease: Repercussions in pregnant woman and newborn health-A cohort study. PLoS ONE 2019, 14, e0225036. [Google Scholar] [CrossRef]
- Puertas, A.; Magan-Fernandez, A.; Blanc, V.; Revelles, L.; O’Valle, F.; Pozo, E.; Leon, R.; Mesa, F. Association of periodontitis with preterm birth and low birth weight: A comprehensive review. J. Matern. Fetal Neonatal Med. 2018, 31, 597–602. [Google Scholar] [CrossRef]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S. The well-built clinical question: A key to evidence-based decisions. ACP J. Club 1995, 123, A12-3. [Google Scholar] [CrossRef] [PubMed]
- Donos, N. The periodontal pocket. Periodontol. 2000 2018, 76, 7–15. [Google Scholar] [CrossRef]
- Genco, R.J. Current view of risk factors for periodontal diseases. J. Periodontol. 1996, 67 (Suppl. S10), 1041–1049. [Google Scholar]
- Meyle, J.; Chapple, I. Molecular aspects of the pathogenesis of periodontitis. Periodontol. 2000 2015, 69, 7–17. [Google Scholar] [CrossRef]
- Chapple, I.L.; Genco, R. Diabetes and periodontal diseases: Consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J. Clin. Periodontol. 2013, 84 (Suppl. S4), S106–S112. [Google Scholar] [CrossRef]
- Torrungruang, K.; Jitpakdeebordin, S.; Charatkulangkun, O.; Gleebbua, Y. Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Treponema denticola/Prevotella intermedia Co-Infection Are Associated with Severe Periodontitis in a Thai Population. PLoS ONE 2015, 10, e0136646. [Google Scholar] [CrossRef]
- Bi, J.; Intriago, M.F.B.; Koivisto, L.; Jiang, G.; Hakkinen, L.; Larjava, H. Leucocyte- and platelet-rich fibrin regulates expression of genes related to early wound healing in human gingival fibroblasts. J. Clin. Periodontol. 2020, 47, 851–862. [Google Scholar] [CrossRef]
- Cortelli, J.R.; Cortelli, S.C.; Jordan, S.; Haraszthy, V.I.; Zambon, J.J. Prevalence of periodontal pathogens in Brazilians with aggressive or chronic periodontitis. J. Clin. Periodontol. 2005, 32, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Chahbouni, H.; Maltouf, A.F.; Ennibi, O. Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in aggressive periodontitis in Morocco—Preliminary study. Odontostomatol. Trop. 2013, 36, 5–10. [Google Scholar] [PubMed]
- Greenstein, G.; Lamster, I. Changing periodontal paradigms: Therapeutic implications. Int. J. Periodontics Restor. Dent. 2000, 20, 336–357. [Google Scholar]
- Kalala-Kazadi, E.; Sekele-Issouradi, J.P.; Bolenge-Ileboso, J.; Lasserre, J.F.; Mantshumba-Milolo, A.; Ntumba-Mulumba, H.; Brecx, M.C. Periopathogenic bacteria in dental plaque of Congolese patients with periodontitis: A pilot study. J. Clin. Exp. Dent. 2018, 10, e232–e236. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, A.S.; Almarghlani, A.A. Periodontal pathogenic bacteria among high school children in Saudi Arabia. Ann. Saudi Med. 2019, 39, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Genco, R.J.; Grossi, S.G.; Ho, A.; Nishimura, F.; Murayama, Y. A proposed model linking inflammation to obesity, diabetes, and periodontal infections. J. Periodontol. 2005, 76 (Suppl. S11), 2075–2084. [Google Scholar] [CrossRef]
- Rivera, R.; Andriankaja, O.M.; Perez, C.M.; Joshipura, K. Relationship between periodontal disease and asthma among overweight/obese adults. J. Clin. Periodontol. 2016, 43, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Kolltveit, K.M.; Tronstad, L.; Olsen, I. Systemic diseases caused by oral infection. Clin. Microbiol. Rev. 2000, 13, 547–558. [Google Scholar] [CrossRef]
- Offenbacher, S.; Jared, H.L.; O’Reilly, P.G.; Wells, S.R.; Salvi, G.E.; Lawrence, H.P.; Socransky, S.S.; Beck, J.D. Potential pathogenic mechanisms of periodontitis associated pregnancy complications. Ann. Periodontol. 1998, 3, 233–250. [Google Scholar] [CrossRef]
- Figuero, E.; Han, Y.W.; Furuichi, Y. Periodontal diseases and adverse pregnancy outcomes: Mechanisms. Periodontol. 2000 2020, 83, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.W.; Ikegami, A.; Bissada, N.F.; Herbst, M.; Redline, R.W.; Ashmead, G.G. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J. Clin. Microbiol. 2006, 44, 1475–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.W.; Shen, T.; Chung, P.; Buhimschi, I.A.; Buhimschi, C.S. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J. Clin. Microbiol. 2009, 47, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Buhimschi, C.S.; Temoin, S.; Bhandari, V.; Han, Y.W.; Buhimschi, I.A. Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis. PLoS ONE 2013, 8, e56131. [Google Scholar] [CrossRef] [PubMed]
- Chaim, W.; Mazor, M. Intraamniotic infection with fusobacteria. Arch. Gynecol. Obstet. 1992, 251, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.B. Investigating the source of amniotic fluid isolates of fusobacteria. Clin. Infect. Dis. 1993, 16 (Suppl. S4), S423–S424. [Google Scholar] [CrossRef]
- Hill, G.B. Preterm birth: Associations with genital and possibly oral microflora. Ann. Periodontol. 1998, 3, 222–232. [Google Scholar] [CrossRef]
- Cappelletti, M.; Della Bella, S.; Ferrazzi, E.; Mavilio, D.; Divanovic, S. Inflammation and preterm birth. J. Leukoc. Biol. 2016, 99, 67–78. [Google Scholar] [CrossRef]
- Gucer, F.; Balkanli-Kaplan, P.; Yuksel, M.; Sayin, N.C.; Yuce, M.A.; Yardim, T. Maternal serum levels of tumor necrosis factor-alpha and interleukin-2 receptor in threatened abortion: A comparison with normal and pathologic pregnancies. Fertil. Steril. 2001, 76, 707–711. [Google Scholar] [CrossRef]
- Turhan, N.O.; Karabulut, A.; Adam, B. Maternal serum interleukin 6 levels in preterm labor: Prediction of admission-to-delivery interval. J. Perinat. Med. 2000, 28, 133–139. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Grischke, E.M.; Schwab, S.; Hettinger, S.; Loibl, S.; Aulmann, M.; Kaufmann, M. Predictive value of serum interleukin-6 and -8 levels in preterm labor or rupture of the membranes. Acta Obstet. Gynecol. Scand. 2000, 79, 667–672. [Google Scholar] [CrossRef]
- Stadelmann, P.; Alessandri, R.; Eick, S.; Salvi, G.E.; Surbek, D.; Sculean, A. The potential association between gingival crevicular fluid inflammatory mediators and adverse pregnancy outcomes: A systematic review. Clin. Oral Investig. 2013, 17, 1453–1463. [Google Scholar] [CrossRef] [Green Version]
- Penova-Veselinovic, B.; Keelan, J.A.; Wang, C.A.; Newnham, J.P.; Pennell, C.E. Changes in inflammatory mediators in gingival crevicular fluid following periodontal disease treatment in pregnancy: Relationship to adverse pregnancy outcome. J. Reprod. Immunol. 2015, 112, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Geisinger, M.L.; Geurs, N.C.; Griffin, R.; Vassilopoulos, P.J.; Vermeulen, L.; Haigh, S.; Reddy, M.S. Effect of intensive oral hygiene regimen during pregnancy on periodontal health, cytokine levels, and pregnancy outcomes: A pilot study. J. Periodontol. 2014, 85, 1684–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddington, C.H. The epigenotype. 1942. Int. J. Epidemiol. 2012, 41, 10–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Barros, S.P.; Offenbacher, S. Epigenetics: Connecting environment and genotype to phenotype and disease. J. Dent. Res. 2009, 88, 400–408. [Google Scholar] [CrossRef]
- Jurdzinski, K.T.; Potempa, J.; Grabiec, A.M. Epigenetic regulation of inflammation in periodontitis: Cellular mechanisms and therapeutic potential. Clin. Epigenet. 2020, 12, 186. [Google Scholar] [CrossRef]
- Zhang, S.; Barros, S.P.; Moretti, A.J.; Yu, N.; Zhou, J.; Preisser, J.S.; Niculescu, M.D.; Offenbacher, S. Epigenetic regulation of TNFA expression in periodontal disease. J. Periodontol. 2013, 84, 1606–1616. [Google Scholar]
- Zhang, S.; Barros, S.P.; Niculescu, M.D.; Moretti, A.J.; Preisser, J.S.; Offenbacher, S. Alteration of PTGS2 promoter methylation in chronic periodontitis. J. Dent. Res. 2010, 89, 133–137. [Google Scholar] [CrossRef]
- de Faria Amormino, S.A.; Arao, T.C.; Saraiva, A.M.; Gomez, R.S.; Dutra, W.O.; da Costa, J.E.; de Fatima Correia Silva, J.; Moreira, P.R. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis. Hum. Immunol. 2013, 74, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Crivello, A.; Offenbacher, S.; Moretti, A.; Paquette, D.W.; Barros, S.P. Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis. J. Clin. Periodontol. 2010, 37, 953–961. [Google Scholar] [CrossRef]
- Oliveira, N.F.; Damm, G.R.; Andia, D.C.; Salmon, C.; Nociti, F.H., Jr.; Line, S.R.; de Souza, A.P. DNA methylation status of the IL8 gene promoter in oral cells of smokers and non-smokers with chronic periodontitis. J. Clin. Periodontol. 2009, 36, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Kobayashi, T.; Ito, S.; Murasawa, A.; Nakazono, K.; Yoshie, H. Tumor necrosis factor-alpha gene promoter methylation in Japanese adults with chronic periodontitis and rheumatoid arthritis. J. Periodontal Res. 2016, 51, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Kobayashi, T.; Ito, S.; Komatsu, Y.; Yokoyama, T.; Okada, M.; Abe, A.; Murasawa, A.; Yoshie, H. Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis. J. Periodontol. 2012, 83, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Seutter, S.; Winfield, J.; Esbitt, A.; Snyder, S.; Magner, A.; Kim, K.; Carcuffe, C.; Schmoyer, J.; Kamrani, P.; Mercando, J.; et al. Interleukin 1beta and Prostaglandin E2 affect expression of DNA methylating and demethylating enzymes in human gingival fibroblasts. Int. Immunopharmacol. 2020, 78, 105920. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Li, Q.; Yi, B.; Xu, Q. DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation. Cell Tissue Res. 2018, 373, 477–485. [Google Scholar] [CrossRef]
- Sabari, B.R.; Zhang, D.; Allis, C.D.; Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 2017, 18, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Audia, J.E.; Campbell, R.M. Histone Modifications and Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019521. [Google Scholar] [CrossRef]
- Ling, C.; Ronn, T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019, 29, 1028–1044. [Google Scholar] [CrossRef] [Green Version]
- Francis, M.; Gopinathan, G.; Foyle, D.; Fallah, P.; Gonzalez, M.; Luan, X.; Diekwisch, T.G.H. Histone Methylation: Achilles Heel and Powerful Mediator of Periodontal Homeostasis. J. Dent. Res. 2020, 99, 1332–1340. [Google Scholar] [CrossRef]
- Bianco-Miotto, T.; Craig, J.M.; Gasser, Y.P.; van Dijk, S.J.; Ozanne, S.E. Epigenetics and DOHaD: From basics to birth and beyond. J. Dev. Orig. Health Dis. 2017, 8, 513–519. [Google Scholar] [CrossRef]
- Martins, M.D.; Jiao, Y.; Larsson, L.; Almeida, L.O.; Garaicoa-Pazmino, C.; Le, J.M.; Squarize, C.H.; Inohara, N.; Giannobile, W.V.; Castilho, R.M. Epigenetic Modifications of Histones in Periodontal Disease. J. Dent. Res. 2016, 95, 215–222. [Google Scholar] [CrossRef]
- Sobocki, B.K.; Basset, C.A.; Bruhn-Olszewska, B.; Olszewski, P.; Szot, O.; Kaźmierczak-Siedlecka, K.; Guziak, M.; Nibali, L.; Leone, A. Molecular Mechanisms Leading from Periodontal Disease to Cancer. Int. J. Mol. Sci. 2022, 23, 970. [Google Scholar] [CrossRef]
- Cao, J.; Yan, Q. Cancer Epigenetics, Tumor Immunity, and Immunotherapy. Trends Cancer 2020, 6, 580–592. [Google Scholar] [CrossRef]
- Francis, M.; Gopinathan, G.; Salapatas, A.; Nares, S.; Gonzalez, M.; Diekwisch, T.G.H.; Luan, X. SETD1 and NF-kappaB Regulate Periodontal Inflammation through H3K4 Trimethylation. J. Dent. Res. 2020, 99, 1486–1493. [Google Scholar] [CrossRef]
- Cantley, M.D.; Bartold, P.M.; Marino, V.; Fairlie, D.P.; Le, G.T.; Lucke, A.J.; Haynes, D.R. Histone deacetylase inhibitors and periodontal bone loss. J. Periodontal Res. 2011, 46, 697–703. [Google Scholar] [CrossRef]
- Chater-Diehl, E.J.; Laufer, B.I.; Singh, S.M. Changes to histone modifications following prenatal alcohol exposure: An emerging picture. Alcohol 2017, 60, 41–52. [Google Scholar] [CrossRef]
- Zakar, T.; Paul, J.W. Fetal Membrane Epigenetics. Front. Physiol. 2020, 11, 588539. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and their Integrated Networks. J. Integr. Bioinform. 2019, 16, 20190027. [Google Scholar] [CrossRef]
- Pasquinelli, A.E. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 2012, 13, 271–282. [Google Scholar] [CrossRef]
- Ceribelli, A.; Yao, B.; Dominguez-Gutierrez, P.R.; Nahid, M.A.; Satoh, M.; Chan, E.K. MicroRNAs in systemic rheumatic diseases. Arthritis Res. Ther. 2011, 13, 229. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal. Transduct. Target. 2016, 1, 15004. [Google Scholar] [CrossRef] [Green Version]
- Luan, X.; Zhou, X.; Trombetta-eSilva, J.; Francis, M.; Gaharwar, A.K.; Atsawasuwan, P.; Diekwisch, T.G.H. MicroRNAs and Periodontal Homeostasis. J. Dent. Res. 2017, 96, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Nahid, M.A.; Satoh, M.; Chan, E.K. MicroRNA in TLR signaling and endotoxin tolerance. Cell. Mol. Immunol. 2011, 8, 388–403. [Google Scholar] [CrossRef] [Green Version]
- Asa’ad, F.; Garaicoa-Pazmino, C.; Dahlin, C.; Larsson, L. Expression of MicroRNAs in Periodontal and Peri-Implant Diseases: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 4147. [Google Scholar] [CrossRef]
- Motedayyen, H.; Ghotloo, S.; Saffari, M.; Sattari, M.; Amid, R. Evaluation of MicroRNA-146a and Its Targets in Gingival Tissues of Patients With Chronic Periodontitis. J. Periodontol. 2015, 86, 1380–1385. [Google Scholar] [CrossRef]
- Perri, R.; Nares, S.; Zhang, S.; Barros, S.P.; Offenbacher, S. MicroRNA modulation in obesity and periodontitis. J. Dent. Res. 2012, 91, 33–38. [Google Scholar] [CrossRef]
- Yagnik, K.; Mahendra, J.; Kurian, V.M. The Periodontal-Cardiovascular alliance: Evaluation of miRNA-146a in subgingival plaque samples of chronic periodontitis patients with and without coronary heart disease. J. Investig. Clin. Dent. 2019, 10, e12442. [Google Scholar] [CrossRef]
- Vigorito, E.; Kohlhaas, S.; Lu, D.; Leyland, R. miR-155: An ancient regulator of the immune system. Immunol. Rev. 2013, 253, 146–157. [Google Scholar] [CrossRef]
- Mattiske, S.; Suetani, R.J.; Neilsen, P.M.; Callen, D.F. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1236–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahesh, G.; Biswas, R. MicroRNA-155: A Master Regulator of Inflammation. J. Interferon Cytokine Res. 2019, 39, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Louafi, F.; Martinez-Nunez, R.T.; Sanchez-Elsner, T. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J. Biol. Chem. 2010, 285, 41328–41336. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Xu, S.; Quan, X.; Nguyen, T.T.; Kong, I.D.; Chung, C.H.; Lee, E.Y.; Cha, S.K.; Park, K.S. Upregulation of mitochondrial Nox4 mediates TGF-beta-induced apoptosis in cultured mouse podocytes. Am. J. Physiol. Ren. Physiol. 2014, 306, F155–F167. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Chen, X.; Zhang, S. Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin. B 2021, 11, 340–354. [Google Scholar] [CrossRef]
- Zemmour, D.; Pratama, A.; Loughhead, S.M.; Mathis, D.; Benoist, C. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc. Natl. Acad. Sci. USA 2017, 114, E3472–E3480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Xue, Y.; Han, Y.; Lin, L.; Wu, C.; Xu, S.; Jiang, Z.; Xu, J.; Liu, Q.; Cao, X. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 2014, 344, 310–313. [Google Scholar] [CrossRef]
- de Lima, D.S.; Cardozo, L.E.; Maracaja-Coutinho, V.; Suhrbier, A.; Mane, K.; Jeffries, D.; Silveira, E.L.V.; Amaral, P.P.; Rappuoli, R.; de Silva, T.I.; et al. Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination. Proc. Natl. Acad. Sci. USA 2019, 116, 17121–17126. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yin, Y.; Lin, Y.; Tian, M.; Liu, T.; Li, X.; Chen, S. Long non-coding RNAs: Emerging roles in periodontitis. J. Periodontal Res. 2021, 56, 848–862. [Google Scholar] [CrossRef]
- Zou, Y.; Li, C.; Shu, F.; Tian, Z.; Xu, W.; Xu, H.; Tian, H.; Shi, R.; Mao, X. lncRNA expression signatures in periodontitis revealed by microarray: The potential role of lncRNAs in periodontitis pathogenesis. J. Cell. Biochem. 2015, 116, 640–647. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Li, H.; Pan, H.; Acharya, A.; Deng, Y.; Yu, Y.; Haak, R.; Schmidt, J.; Schmalz, G.; et al. Integrated analysis of long noncoding RNA-associated competing endogenous RNA network in periodontitis. J. Periodontal Res. 2018, 53, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, D.; Xie, G.; Li, J.; Tang, J.; Tang, L. LncRNA-mediated ceRNA network was identified as a crucial determinant of differential effects in periodontitis and periimplantitis by high-throughput sequencing. Clin. Implant Dent. Relat. Res. 2020, 22, 424–450. [Google Scholar] [CrossRef] [PubMed]
- Dragomir, M.; Chen, B.; Calin, G.A. Exosomal lncRNAs as new players in cell-to-cell communication. Transl Cancer Res. 2018, 7 (Suppl. S2), S243–S252. [Google Scholar] [CrossRef] [PubMed]
- Melo, S.A.; Sugimoto, H.; O’Connell, J.T.; Kato, N.; Villanueva, A.; Vidal, A.; Qiu, L.; Vitkin, E.; Perelman, L.T.; Melo, C.A.; et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014, 26, 707–721. [Google Scholar] [CrossRef] [Green Version]
- Peinado, H.; Aleckovic, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.; Garcia-Santos, G.; Ghajar, C.; et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 2012, 18, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.G.; Smith, M.A.; Arnold, R.R.; Offenbacher, S. Effects of Escherichia coli and Porphyromonas gingivalis lipopolysaccharide on pregnancy outcome in the golden hamster. Infect. Immun. 1994, 62, 4652–4655. [Google Scholar] [CrossRef] [Green Version]
- Mannem, S.; Chava, V.K. The relationship between maternal periodontitis and preterm low birth weight: A case-control study. Contemp. Clin. Dent. 2011, 2, 88–93. [Google Scholar] [CrossRef]
- Jeffcoat, M.K.; Geurs, N.C.; Reddy, M.S.; Cliver, S.P.; Goldenberg, R.L.; Hauth, J.C. Periodontal infection and preterm birth: Results of a prospective study. J. Am. Dent. Assoc. 2001, 132, 875–880. [Google Scholar] [CrossRef]
- Bobetsis, Y.A.; Barros, S.P.; Offenbacher, S. Exploring the relationship between periodontal disease and pregnancy complications. J. Am. Dent. Assoc. 2006, 137 (Suppl. S2), 7S–13S. [Google Scholar] [CrossRef] [Green Version]
- Tucker, R. Periodontitis and pregnancy. J. R Soc. Promot Health 2006, 126, 24–27. [Google Scholar] [CrossRef]
- Offenbacher, S.; Beck, J.D.; Jared, H.L.; Mauriello, S.M.; Mendoza, L.C.; Couper, D.J.; Stewart, D.D.; Murtha, A.P.; Cochran, D.L.; Dudley, D.J.; et al. Effects of periodontal therapy on rate of preterm delivery: A randomized controlled trial. Obstet. Gynecol. 2009, 114, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Piscoya, M.D.; Ximenes, R.A.; Silva, G.M.; Jamelli, S.R.; Coutinho, S.B. Maternal periodontitis as a risk factor for prematurity. Pediatr. Int. 2012, 54, 68–75. [Google Scholar] [CrossRef]
- Moura da Silva, G.; Coutinho, S.B.; Piscoya, M.D.; Ximenes, R.A.; Jamelli, S.R. Periodontitis as a risk factor for preeclampsia. J. Periodontol. 2012, 83, 1388–1396. [Google Scholar] [CrossRef]
- Konopka, T.; Zakrzewska, A. Periodontitis and risk for preeclampsia—A systematic review. Ginekol. Pol. 2020, 91, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Horakova, D.; Janoutova, G.; Janout, V. Insulin resistance and birth weight. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2005, 149, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Park, J.S.; Park, J.; Nam, J.S.; Kang, E.S.; Ahn, C.W.; Cha, B.S.; Lim, S.K.; Kim, K.R.; Lee, H.C.; et al. The relation between birth weight and insulin resistance in Korean adolescents. Yonsei Med. J. 2006, 47, 85–92. [Google Scholar] [CrossRef]
- Shirakashi, D.J.; Leal, R.P.; Colombo, N.H.; Chiba, F.Y.; Garbin, C.A.; Jardim, E.G., Jr.; Antoniali, C.; Sumida, D.H. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring. J. Periodontol. 2013, 84, 407–414. [Google Scholar] [CrossRef]
- Pimentel, S.P.; Casati, M.Z.; Cirano, F.R.; Ribeiro, F.V.; Casarin, R.V.; Kirsten, T.B.; Chaves-Kirsten, G.P.; Duarte, P.M.; Bernardi, M.M. Perinatal periodontal disease reduces social behavior in male offspring. Neuroimmunomodulation 2013, 20, 29–38. [Google Scholar] [CrossRef]
- Rodrigues, G.; Wuo, A.D.V.; Klein, S.; de Almeida, P.; Damazo, A.S.; Marcos, R.L.; Horliana, A.; Lino-Dos-Santos-Franco, A. The impact of maternal periodontitis in the development of asthma in the offspring. J. Dev. Orig. Health Dis. 2021, 12, 293–299. [Google Scholar] [CrossRef]
- Sert, T.; Kirzioglu, F.Y.; Fentoglu, O.; Aylak, F.; Mungan, T. Serum placental growth factor, vascular endothelial growth factor, soluble vascular endothelial growth factor receptor-1 and -2 levels in periodontal disease, and adverse pregnancy outcomes. J. Periodontol. 2011, 82, 1735–1748. [Google Scholar] [CrossRef]
- Rabinovitch, A.; Suarez-Pinzon, W.L. Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. Rev. Endocr. Metab. Disord. 2003, 4, 291–299. [Google Scholar] [CrossRef]
- O’Neill, C.M.; Lu, C.; Corbin, K.L.; Sharma, P.R.; Dula, S.B.; Carter, J.D.; Ramadan, J.W.; Xin, W.; Lee, J.K.; Nunemaker, C.S. Circulating levels of IL-1B+IL-6 cause ER stress and dysfunction in islets from prediabetic male mice. Endocrinology 2013, 154, 3077–3088. [Google Scholar] [CrossRef] [Green Version]
- Mattera, M.S.; Chiba, F.Y.; Mota, M.S.; Pereira, R.F.; Ervolino, E.; Chaves Neto, A.H.; Salzedas, L.M.; Scaramele, N.F.; Silva, C.A.; Okamoto, M.M.; et al. Maternal periodontitis decreases plasma membrane GLUT4 content in skeletal muscle of adult offspring. Life Sci. 2016, 148, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Vittos, O.; Toana, B.; Vittos, A. Biomarkers and their involvement in the early diagnosis of right ventricular dysfunction in type 2 Diabetes Mellitus. J. Med. Life 2012, 5, 74–78. [Google Scholar]
- Kellesarian, S.V.; Kellesarian, T.V.; Ros Malignaggi, V.; Al-Askar, M.; Ghanem, A.; Malmstrom, H.; Javed, F. Association Between Periodontal Disease and Erectile Dysfunction: A Systematic Review. Am. J. Mens Health 2018, 12, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Barichello, T.; Simoes, L.R.; Quevedo, J.; Zhang, X.Y. Microglial Activation and Psychotic Disorders: Evidence from Pre-clinical and Clinical Studies. Curr. Top. Behav. Neurosci. 2020, 44, 161–205. [Google Scholar]
- Meyer, U.; Nyffeler, M.; Engler, A.; Urwyler, A.; Schedlowski, M.; Knuesel, I.; Yee, B.K.; Feldon, J. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 2006, 26, 4752–4762. [Google Scholar] [CrossRef] [Green Version]
- Bain, J.L.; Lester, S.R.; Henry, W.D.; Pongetti, J.L.; Blackman, M.E.; Johnson, R.B. Association between maternal periapical lesions and brain inflammation in rat pups. Arch. Oral Biol. 2013, 58, 266–271. [Google Scholar] [CrossRef]
- do Valle Wuo, A.; Klein, S.; de Almeida, P.; Marcos, R.L.; de Souza Setubal Destro, M.F.; de Fatma, D.T.; Horliana, A.; Lino-Dos-Santos-Franco, A. Prenatal programming of the immune response induced by maternal periodontitis: Effects on the development of acute lung injury in rat pups. Life Sci. 2020, 260, 118309. [Google Scholar] [CrossRef]
- Leon, R.; Silva, N.; Ovalle, A.; Chaparro, A.; Ahumada, A.; Gajardo, M.; Martinez, M.; Gamonal, J. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J. Periodontol. 2007, 78, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Vanterpool, S.F.; Been, J.V.; Houben, M.L.; Nikkels, P.G.; De Krijger, R.R.; Zimmermann, L.J.; Kramer, B.W.; Progulske-Fox, A.; Reyes, L. Porphyromonas gingivalis within Placental Villous Mesenchyme and Umbilical Cord Stroma Is Associated with Adverse Pregnancy Outcome. PLoS ONE 2016, 11, e0146157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Goffau, M.C.; Lager, S.; Sovio, U.; Gaccioli, F.; Cook, E.; Peacock, S.J.; Parkhill, J.; Charnock-Jones, D.S.; Smith, G.C.S. Author Correction: Human placenta has no microbiome but can contain potential pathogens. Nature 2019, 574, E15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, A.; Radhakrishnan, R.; Sharma, M. Porphyromonas gingivalis and adverse pregnancy outcomes: A review on its intricate pathogenic mechanisms. Crit. Rev. Microbiol. 2020, 46, 213–236. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Hatasa, M.; Ohsugi, Y.; Tsuchiya, Y.; Liu, A.; Niimi, H.; Morita, K.; Shimohira, T.; Sasaki, N.; Maekawa, S.; et al. Porphyromonas gingivalis Administration Induces Gestational Obesity, Alters Gene Expression in the Liver and Brown Adipose Tissue in Pregnant Mice, and Causes Underweight in Fetuses. Front. Cell. Infect. Microbiol. 2021, 11, 745117. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Milagro, F.I.; Riezu-Boj, J.I.; Martinez, J.A. Epigenetic signatures underlying inflammation: An interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm. Res. 2021, 70, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Benakanakere, M.; Abdolhosseini, M.; Hosur, K.; Finoti, L.S.; Kinane, D.F. TLR2 promoter hypermethylation creates innate immune dysbiosis. J. Dent. Res. 2015, 94, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Feil, R.; Fraga, M.F. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet. 2012, 13, 97–109. [Google Scholar] [CrossRef]
- Palioto, D.B.; Finoti, L.S.; Kinane, D.F.; Benakanakere, M. Epigenetic and inflammatory events in experimental periodontitis following systemic microbial challenge. J. Clin. Periodontol. 2019, 46, 819–829. [Google Scholar] [CrossRef]
- Hernandez, H.G.; Hernandez-Castaneda, A.A.; Pieschacon, M.P.; Arboleda, H. ZNF718, HOXA4, and ZFP57 are differentially methylated in periodontitis in comparison with periodontal health: Epigenome-wide DNA methylation pilot study. J. Periodontal Res. 2021, 56, 710–725. [Google Scholar] [CrossRef]
- Luan, X.; Zhou, X.; Naqvi, A.; Francis, M.; Foyle, D.; Nares, S.; Diekwisch, T.G.H. MicroRNAs and immunity in periodontal health and disease. Int. J. Oral Sci 2018, 10, 24. [Google Scholar] [CrossRef]
- Hu, W.; Weng, X.; Dong, M.; Liu, Y.; Li, W.; Huang, H. Alteration in methylation level at 11beta-hydroxysteroid dehydrogenase type 2 gene promoter in infants born to preeclamptic women. BMC Genet. 2014, 15, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ching, T.; Ha, J.; Song, M.A.; Tiirikainen, M.; Molnar, J.; Berry, M.J.; Towner, D.; Garmire, L.X. Genome-scale hypomethylation in the cord blood DNAs associated with early onset preeclampsia. Clin. Epigenet. 2015, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkut, C.; Ataman, B.; Ramachandran, P.; Ashley, J.; Barria, R.; Gherbesi, N.; Budnik, V. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 2009, 139, 393–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thery, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009, 9, 581–593. [Google Scholar] [CrossRef]
- Jin, Y.; Ai, L.; Chai, X.; Tang, P.; Zhang, W.; Yang, L.; Hu, Y.; Xu, Y.; Li, S. Maternal Circulating Exosomal miRNAs as Non-invasive Biomarkers for the Prediction of Fetal Ventricular Septal Defect. Front. Genet. 2021, 12, 717208. [Google Scholar] [CrossRef]
- Shepherd, M.C.; Radnaa, E.; Tantengco, O.A.; Kechichian, T.; Urrabaz-Garza, R.; Kammala, A.K.; Sheller-Miller, S.; Menon, R. Extracellular vesicles from maternal uterine cells exposed to risk factors cause fetal inflammatory response. Cell Commun. Signal. 2021, 19, 100. [Google Scholar] [CrossRef]
- Shah, K.B.; Chernausek, S.D.; Teague, A.M.; Bard, D.E.; Tryggestad, J.B. Maternal diabetes alters microRNA expression in fetal exosomes, human umbilical vein endothelial cells and placenta. Pediatr. Res. 2021, 89, 1157–1163. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, C.; Yang, J.; Jin, Y.; Zheng, W.; Zhou, Q.; Liang, Y.; Bao, L.; Feng, G.; Ji, J.; et al. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis. J. Cell. Physiol. 2019, 234, 20662–20674. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Yuan, W.; Yao, L.; Wang, S.; Jia, Z.; Wu, P.; Li, L.; Wei, P.; Wang, X.; et al. MicroRNA-155-5p is a key regulator of allergic inflammation, modulating the epithelial barrier by targeting PKIalpha. Cell Death Dis. 2019, 10, 884. [Google Scholar] [CrossRef]
- Nik Mohamed Kamal, N.N.S.; Awang, R.A.R.; Mohamad, S.; Shahidan, W.N.S. Plasma- and Saliva Exosome Profile Reveals a Distinct MicroRNA Signature in Chronic Periodontitis. Front. Physiol. 2020, 11, 587381. [Google Scholar] [CrossRef]
- Kong, L.; Nilsson, I.A.K.; Brismar, K.; Gissler, M.; Lavebratt, C. Associations of Different Types of Maternal Diabetes and Body Mass Index With Offspring Psychiatric Disorders. JAMA Netw Open 2020, 3, e1920787. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications. Int. J. Mol. Sci. 2021, 22, 4033. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Hympanova, L.; Krofta, L. Cardiovascular and Cerebrovascular Disease Associated microRNAs Are Dysregulated in Placental Tissues Affected with Gestational Hypertension, Preeclampsia and Intrauterine Growth Restriction. PLoS ONE 2015, 10, e0138383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Yu, Y.C.; Ding, G.L.; Gao, Q.; Chen, F.; Luo, Q. Intrauterine hyperglycemia induces intergenerational Dlk1-Gtl2 methylation changes in mouse placenta. Oncotarget 2018, 9, 22398–22405. [Google Scholar] [CrossRef] [PubMed]
- Kajiya, M.; Kurihara, H. Molecular Mechanisms of Periodontal Disease. Int. J. Mol. Sci. 2021, 22, 930. [Google Scholar] [CrossRef]
- Figueredo, C.M.; Lira-Junior, R.; Love, R.M. T and B Cells in Periodontal Disease: New Functions in A Complex Scenario. Int. J. Mol. Sci. 2019, 20, 3949. [Google Scholar] [CrossRef] [Green Version]
- Panezai, J.; Ghaffar, A.; Altamash, M.; Sundqvist, K.G.; Engstrom, P.E.; Larsson, A. Correlation of serum cytokines, chemokines, growth factors and enzymes with periodontal disease parameters. PLoS ONE 2017, 12, e0188945. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Billet, S.; Liu, C.; Haldar, S.; Choudhury, D.; Tripathi, M.; Hav, M.; Merchant, A.; Hu, T.; Huang, H.; et al. Periodontal inflammation recruits distant metastatic breast cancer cells by increasing myeloid-derived suppressor cells. Oncogene 2020, 39, 1543–1556. [Google Scholar] [CrossRef] [Green Version]
- Latorre Uriza, C.; Velosa-Porras, J.; Roa, N.S.; Quinones Lara, S.M.; Silva, J.; Ruiz, A.J.; Escobar Arregoces, F.M. Periodontal Disease, Inflammatory Cytokines, and PGE2 in Pregnant Patients at Risk of Preterm Delivery: A Pilot Study. Infect. Dis. Obstet. Gynecol. 2018, 2018, 7027683. [Google Scholar] [CrossRef] [Green Version]
- Corbella, S.; Taschieri, S.; Del Fabbro, M.; Francetti, L.; Weinstein, R.; Ferrazzi, E. Adverse pregnancy outcomes and periodontitis: A systematic review and meta-analysis exploring potential association. Quintessence Int. 2016, 47, 193–204. [Google Scholar]
- Corbella, S.; Taschieri, S.; Francetti, L.; De Siena, F.; Del Fabbro, M. Periodontal disease as a risk factor for adverse pregnancy outcomes: A systematic review and meta-analysis of case-control studies. Odontology 2012, 100, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.M.; de Oliveira, P.A.; Cota, L.O.; Magalhaes, C.S.; Moreira, A.N.; Costa, F.O. Periodontal therapy and risk for adverse pregnancy outcomes. Clin. Oral Investig. 2011, 15, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Caneiro-Queija, L.; Lopez-Carral, J.; Martin-Lancharro, P.; Limeres-Posse, J.; Diz-Dios, P.; Blanco-Carrion, J. Non-Surgical Treatment of Periodontal Disease in a Pregnant Caucasian Women Population: Adverse Pregnancy Outcomes of a Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2019, 16, 3638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offenbacher, S.; Lin, D.; Strauss, R.; McKaig, R.; Irving, J.; Barros, S.P.; Moss, K.; Barrow, D.A.; Hefti, A.; Beck, J.D. Effects of periodontal therapy during pregnancy on periodontal status, biologic parameters, and pregnancy outcomes: A pilot study. J. Periodontol. 2006, 77, 2011–2024. [Google Scholar] [CrossRef]
- Cakmak, O.; Alkan, B.A.; Ozsoy, S.; Sen, A.; Abdulrezzak, U. Association of gingival crevicular fluid cortisol/dehydroepiandrosterone levels with periodontal status. J. Periodontol. 2014, 85, e287–e294. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, O.; Alkan, B.A.; Saatci, E.; Tasdemir, Z. The effect of nonsurgical periodontal treatment on gingival crevicular fluid stress hormone levels: A prospective study. Oral Dis. 2019, 25, 250–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botelho, J.; Machado, V.; Proenca, L.; Delgado, A.S.; Mendes, J.J. Vitamin D Deficiency and Oral Health: A Comprehensive Review. Nutrients 2020, 12, 1471. [Google Scholar] [CrossRef]
- Jagelaviciene, E.; Vaitkeviciene, I.; Silingaite, D.; Sinkunaite, E.; Daugelaite, G. The Relationship between Vitamin D and Periodontal Pathology. Medicina 2018, 54, 45. [Google Scholar] [CrossRef] [Green Version]
- Uwitonze, A.M.; Uwambaye, P.; Isyagi, M.; Mumena, C.H.; Hudder, A.; Haq, A.; Nessa, K.; Razzaque, M.S. Periodontal diseases and adverse pregnancy outcomes: Is there a role for vitamin D? J. Steroid Biochem. Mol. Biol. 2018, 180, 65–72. [Google Scholar] [CrossRef]
- Boggess, K.A.; Espinola, J.A.; Moss, K.; Beck, J.; Offenbacher, S.; Camargo, C.A., Jr. Vitamin D status and periodontal disease among pregnant women. J. Periodontol. 2011, 82, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Dror, D.K. Vitamin D status during pregnancy: Maternal, fetal, and postnatal outcomes. Curr. Opin. Obstet. Gynecol. 2011, 23, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Teeuw, W.J.; Gerdes, V.E.; Loos, B.G. Effect of periodontal treatment on glycemic control of diabetic patients: A systematic review and meta-analysis. Diabetes Care 2010, 33, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero, E.; Lopez, M.; Vidal, H.; Martinez, M.; Virto, L.; Marrero, J.; Herrera, D.; Zapatero, A.; Sanz, M. Impact of periodontal therapy on systemic markers of inflammation in patients with metabolic syndrome: A randomized clinical trial. Diabetes Obes. Metab. 2020, 22, 2120–2132. [Google Scholar] [CrossRef] [PubMed]
- Chambrone, L.; Foz, A.M.; Guglielmetti, M.R.; Pannuti, C.M.; Artese, H.P.; Feres, M.; Romito, G.A. Periodontitis and chronic kidney disease: A systematic review of the association of diseases and the effect of periodontal treatment on estimated glomerular filtration rate. J. Clin. Periodontol. 2013, 40, 443–456. [Google Scholar] [CrossRef]
- Merchant, A.T.; Sutherland, M.W.; Liu, J.; Pitiphat, W.; Dasanayake, A. Periodontal treatment among mothers with mild to moderate periodontal disease and preterm birth: Reanalysis of OPT trial data accounting for selective survival. Int. J. Epidemiol. 2018, 47, 1670–1678. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starzyńska, A.; Wychowański, P.; Nowak, M.; Sobocki, B.K.; Jereczek-Fossa, B.A.; Słupecka-Ziemilska, M. Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring. Int. J. Mol. Sci. 2022, 23, 2473. https://doi.org/10.3390/ijms23052473
Starzyńska A, Wychowański P, Nowak M, Sobocki BK, Jereczek-Fossa BA, Słupecka-Ziemilska M. Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring. International Journal of Molecular Sciences. 2022; 23(5):2473. https://doi.org/10.3390/ijms23052473
Chicago/Turabian StyleStarzyńska, Anna, Piotr Wychowański, Maciej Nowak, Bartosz Kamil Sobocki, Barbara Alicja Jereczek-Fossa, and Monika Słupecka-Ziemilska. 2022. "Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring" International Journal of Molecular Sciences 23, no. 5: 2473. https://doi.org/10.3390/ijms23052473
APA StyleStarzyńska, A., Wychowański, P., Nowak, M., Sobocki, B. K., Jereczek-Fossa, B. A., & Słupecka-Ziemilska, M. (2022). Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring. International Journal of Molecular Sciences, 23(5), 2473. https://doi.org/10.3390/ijms23052473