Bone Reconstruction Using Two-Layer Porcine-Derived Bone Scaffold Composed of Cortical and Cancellous Bones in a Rabbit Calvarial Defect Model
Abstract
:1. Introduction
2. Results
2.1. In Vitro Findings
2.1.1. Scanning Electron Microscope (SEM) Surface Observation
2.1.2. Energy-Dispersive X-ray Spectroscopy (EDS) Findings
2.1.3. Compressive Strength Analysis
2.1.4. Porosity Analysis
2.1.5. CCK-8 Assays of Cell Viability and Proliferation
2.1.6. Osteoblast Differentiation
2.1.7. Osteoblast Differentiation Marker Expression
2.2. In Vivo Findings
2.2.1. Clinical Findings
2.2.2. Volumetric Findings
2.2.3. Histologic Findings
2.2.4. Histometric Findings
3. Discussion
4. Materials and Methods
4.1. Preparation of Porcine Bone Scaffolds
4.2. In Vitro Study
4.2.1. Surface Observation and Chemical Composition
4.2.2. Compressive Strength
4.2.3. Porosity Measurement
4.2.4. Preparation of Extracts for In Vitro Cell Assay
4.2.5. Cell Cultures and Differentiation
4.2.6. Cell Viability Assay
4.2.7. Alkaline Phosphatase (ALP) Staining and Activity Assay
4.2.8. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis
4.3. In Vivo Study
4.3.1. Animals and Surgical Procedures
4.3.2. Micro-Computed Tomography (µCT) Analysis
4.3.3. Histomorphometric Analysis
4.3.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Bone Quality and Quantity and Dental Implant Failure: A Systematic Review and Meta-analysis. Int. J. Prosthodont. 2017, 30, 219–237. [Google Scholar] [CrossRef]
- Samartzis, D.; Shen, F.H.; Goldberg, E.J.; An, H.S. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine 2005, 30, 1756–1761. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.W.; Muschler, G.F. Bone graft materials: An overview of the basic science. Clin. Orthop. Relat. Res. 2000, 371, 10–27. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Porosity of 3d biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef] [PubMed]
- Parrilla-Almansa, A.; García-Carrillo, N.; Ros-Tárraga, P.; Martínez, C.M.; Martínez-Martínez, F.; Meseguer-Olmo, L.; De Aza, P.N. Demineralized Bone Matrix Coating Si-Ca-P Ceramic Does Not Improve the Osseointegration of the Scaffold. Materials 2018, 11, 1580. [Google Scholar] [CrossRef] [Green Version]
- Lei, P.; Sun, R.; Wang, L.; Zhou, J.; Wan, L.; Zhou, T.; Hu, Y. A New Method for Xenogeneic Bone Graft Deproteinization: Comparative Study of Radius Defects in a Rabbit Model. PLoS ONE 2015, 10, e0146005. [Google Scholar] [CrossRef] [Green Version]
- Park, J.W. Evaluation of deproteinized bovine bone mineral as a bone graft substitute: A comparative analysis of basic characteristics of three commercially available bone substitutes. J. Korean Acad. Periodontol. 2005, 35, 863–875. [Google Scholar] [CrossRef] [Green Version]
- Clokie, C.M.L.; Sandor, G.K.B. Bone: Present and future. In Dental Implants: The Art and Science, 2nd ed.; Babbush, C.A., Ed.; Sanduers Company: Philadelphia, PA, USA, 2001; p. 70. [Google Scholar]
- Norton, M.R.; Odell, E.W.; Thompson, I.D.; Cook, R.J. Efficacy of bovine bone mineral for alveolar augmentation: A human histologic study. Clin. Oral Implant. Res. 2003, 14, 775–783. [Google Scholar] [CrossRef]
- Salama, R. Xenogeneic bone grafting in humans. Clin. Oral Implant. Res. 1983, 174, 113–121. [Google Scholar] [CrossRef]
- Salamanca, E.; Lee, W.F.; Lin, C.Y.; Huang, H.M.; Lin, C.T.; Feng, S.W.; Chang, W.J. A novel porcine graft for regeneration of bone defects. Materials 2015, 8, 2523–2536. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Fu, L.; Liu, J.; Li, D. The expression and distribution of xenogeneic targeted antigens on porcine bone tissue. Transplant. Proc. 2012, 44, 1419–1422. [Google Scholar] [CrossRef]
- Bracey, D.N.; Seyler, T.M.; Jinnah, A.H.; Lively, M.O.; Willey, J.S.; Smith, T.L.; Van Dyke, M.E.; Whitlock, P.W. A Decellularized Porcine Xenograft-Derived Bone Scaffold for Clinical Use as a Bone Graft Substitute: A Critical Evaluation of Processing and Structure. J. Funct. Biomater. 2018, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Park, S.A.; Shin, J.W.; Yang, Y.I.; Kim, Y.K.; Park, K.D.; Lee, J.W.; Jo, I.H.; Kim, Y.J. In vitro study of osteogenic differentiation of bone marrow stromal cells on heat-treated porcine trabecular bone blocks. Biomaterials 2004, 25, 527–535. [Google Scholar] [CrossRef]
- Ramírez-Fernández, M.; Calvo-Guirado, J.L.; Delgado-Ruiz, R.A.; Maté-Sánchez del Val, J.E.; Vicente-Ortega, V.; Meseguer-Olmos, L. Retracted: Bone response to hydroxyapatites with open porosity of animal origin (porcine [OsteoBiol®mp3] and bovine [Endobon®]): A radiological and histomorphometric study. Clin. Oral Implant. Res. 2011, 22, 767–773. [Google Scholar] [CrossRef]
- Go, A.; Eun Kim, S.; Mi Shim, K.; Lee, S.M.; Hwa Choi, S.; Sik Son, J.; Soo Kang, S. Osteogenic effect of low-temperature-heated porcine bone particles in a rat calvarial defect model. J. Biomed. Mater. Res. Part A 2014, 102, 3609–3617. [Google Scholar] [CrossRef]
- Mellonig, J.T. Human histologic evaluation of a bovine-derived bone xenograft in the treatment of periodontal osseous defects. Int. J. Periodontics Restor. Dent. 2000, 20, 19–29. [Google Scholar]
- Kim, S.Y.; Lee, Y.J.; Cho, W.T.; Hwang, S.H.; Heo, S.C.; Kim, H.J.; Huh, J.B. Preliminary Animal Study on Bone Formation Ability of Commercialized Particle-Type Bone Graft with Increased Operability by Hydrogel. Materials 2021, 14, 4464. [Google Scholar] [CrossRef] [PubMed]
- Buser, D.; Dula, K.; Belser, U.; Hirt, H.P.; Berthold, H. Localized ridge augmentation using guided bone regeneration. I. Surgical procedure in the maxilla. Int. J. Periodontics Restor. Dent. 1993, 13, 29–45. [Google Scholar]
- Le, B.T.; Borzabadi-Farahani, A. Simultaneous implant placement and bone grafting with particulate mineralized allograft in sites with buccal wall defects, a three-year follow-up and review of literature. J. Cranio-Maxillofac. Surg. 2014, 42, 552–559. [Google Scholar] [CrossRef]
- Wong, R.; Rabie, A. Effect of Bio-Oss Collagen and Collagen matrix on bone formation. Open Biomed. Eng. J. 2010, 4, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Simion, M.; Rocchietta, I.; Kim, D.; Nevins, M.; Fiorellini, J. Vertical ridge augmentation by means of deproteinized bovine bone block and recombinant human platelet-derived growth factor-BB: A histologic study in a dog model. Int. J. Periodontics Restor. Dent. 2006, 26, 415–423. [Google Scholar]
- Gehrke, S.A.; Mazón, P.; Del Fabbro, M.; Tumedei, M.; Aramburú Júnior, J.; Pérez-Díaz, L.; De Aza, P.N. Histological and histomorphometric analyses of two bovine bone blocks implanted in rabbit calvaria. Symmetry 2019, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Baek, M.K.; Kim, I.K.; Cho, H.Y.; Chang, K.S.; Park, S.H.; Park, J.W.; So, K.M. A retrospective analysis of the medioproximal tibial bone graft for oral and maxillofacial reconstruction. Maxillofac. Plast. Reconstr. Surg. 2008, 30, 241–248. [Google Scholar]
- Kemper, N.; Davison, N.; Fitzpatrick, D.; Marshall, R.; Lin, A.; Mundy, K.; Cobb, R.R. Characterization of the mechanical properties of bovine cortical bone treated with a novel tissue sterilization process. Cell Tissue Bank. 2011, 12, 273–279. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, J.W.; Park, S.A.; Kim, Y.K.; Park, M.S.; Mok, J.M.; Lee, J.W. Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2004, 68, 69–74. [Google Scholar] [CrossRef]
- Bansal, M.R.; Bhagat, S.B.; Shukla, D.D. Bovine cancellous xenograft in the treatment of tibial plateau fractures in elderly patients. Int. Orthop. 2009, 33, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Açil, Y.; Terheyden, H.; Dunsche, A.; Fleiner, B.; Jepsen, S. Three-dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral. J. Biomed. Mater. Res. 2000, 51, 703–710. [Google Scholar] [CrossRef]
- Lee, Y.M.; Seol, Y.J.; Lim, Y.T.; Kim, S.; Han, S.B.; Rhyu, I.C.; Baek, S.H.; Heo, S.J.; Choi, J.Y.; Klokkevold, P.R.; et al. Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. 2001, 54, 216–223. [Google Scholar] [CrossRef]
- Poumarat, G.; Squire, P. Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft. Biomaterials 1993, 14, 337–340. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Maeda, H. Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. Sci. World J. 2013, 2013, 863157. [Google Scholar] [CrossRef] [Green Version]
- Amid, R.; Kheiri, A.; Kheiri, L.; Kadkhodazadeh, M.; Ekhlasmandkermani, M. Structural and chemical features of xenograft bone substitutes: A systematic review of in vitro studies. Biotechnol. Appl. Biochem. 2020, 68, 1432–1452. [Google Scholar] [CrossRef]
- Bružauskaitė, I.; Bironaitė, D.; Bagdonas, E.; Bernotienė, E. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes—Different cell effects. Cytotechnology 2016, 68, 355–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Yi, G.S.; Lee, J.W.; Kim, D.J. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. J. Periodontal Implant. Sci. 2017, 47, 388–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.H.; Moon, T.S.; Yun, M.J.; Jeon, Y.C.; Jeong, C.M.; Cho, D.W.; Huh, J.B. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. J. Mater. Sci. Mater. Med. 2012, 23, 2993–3002. [Google Scholar] [CrossRef]
- Adachi, T.; Osako, Y.; Tanaka, M.; Hojo, M.; Hollister, S.J. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 2006, 27, 3964–3972. [Google Scholar] [CrossRef]
- Choe, G.W. The Mechanical Properties of Bone Tissues. J. Korean Soc. Precis. Eng. 2002, 19, 18–24. [Google Scholar]
- Cornell, C.N. Osteobiologics. Bull. NYU Hosp. Jt. Dis. 2004, 62, 13–17. [Google Scholar]
- Smith, P.C.; Martínez, C.; Martínez, J.; McCulloch, C.A. Role of Fibroblast Populations in Periodontal Wound Healing and Tissue Remodeling. Front. Physiol. 2019, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Claeys, L.; Bravenboer, N.; Eekhoff, E.M.; Micha, D. Human Fibroblasts as a Model for the Study of Bone Disorders. Front. Endocrinol. 2020, 11, 394. [Google Scholar] [CrossRef]
- Otabe, K.; Muneta, T.; Kawashima, N.; Suda, H.; Tsuji, K.; Sekiya, I. Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells From the Standpoint of Mesenchymal Stem Cell Properties. Cell Med. 2012, 4, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Diar-Bakirly, S.; El-Bialy, T. Human gingival fibroblasts: Isolation, characterization, and evaluation of CD146 expression. Saudi J. Biol. Sci. 2021, 28, 2518–2526. [Google Scholar] [CrossRef]
- Ichim, T.E.; O’Heeron, P.; Kesari, S. Fibroblasts as a practical alternative to mesenchymal stem cells. J. Transl. Med. 2018, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mortada, I.; Mortada, R. Dental pulp stem cells and osteogenesis: An update. Cytotechnology 2018, 70, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Yang, S.; Shao, J.; Li, Y.P. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front. Biosci. A J. Virtual Libr. 2007, 12, 3068–3092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, S.C.; Boden, S.D. Osteoinductive bone graft substitutes for spinal fusion: A basic science summary. Orthop. Clin. 1999, 30, 635–645. [Google Scholar] [CrossRef]
Elements | Chemical Compositions (wt %) | |
---|---|---|
Cortical | Cancellous | |
C | 13.79 ± 9.32 | 5.63 ± 0.26 |
O | 41.37 ± 4.07 | 38.63 ± 4.46 |
Na | 0.77 ± 0.65 | 0.29 ± 0.16 |
Mg | 0.20 ± 0.20 | 0.37 ± 0.12 |
P | 14.78 ± 3.59 | 17.72 ± 1.27 |
Ca | 29.04 ± 9.29 | 37.35 ± 4.05 |
Ca/P | 1.96 | 2.11 |
Groups | Mean | SD | p-Value | |
---|---|---|---|---|
New bone volume (%) | Control | 4.58 | 1.06 | 0.001 *** |
Cortical | 14.45 | 3.72 | ||
Cancellous | 37.02 | 8.20 | ||
2layer | 27.67 | 3.50 |
Groups | Mean | SD | p-Value | |
---|---|---|---|---|
New bone area (%) | Control | 8.37 | 3.77 | 0.019 * |
Cortical | 13.62 | 5.86 | ||
Cancellous | 37.76 | 7.44 | ||
2layer | 29.12 | 6.61 |
Target Genes | Sequences |
---|---|
β-actin | F: 5′-TCTGGCACCACACCTTCTAC-3′ |
R: 5′ -TACGACCAGAGGCATACAGG- 3′ | |
ALP | F: 5′- TGACCTTCTCTCCTCCATCC- 3′ |
R: 5′-CTTCCTGGGAGTCTCATCCT-3′ | |
Osteocalcin | F: 5′- GCAATAAGGTAGTGAACAGACTCC -3′ |
R: 5′ -GTTTGTAGGCGGTCTTCAAGC- 3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y.-H.; Hwang, S.-H.; Kim, Y.-N.; Kim, H.-J.; Bae, E.-B.; Huh, J.-B. Bone Reconstruction Using Two-Layer Porcine-Derived Bone Scaffold Composed of Cortical and Cancellous Bones in a Rabbit Calvarial Defect Model. Int. J. Mol. Sci. 2022, 23, 2647. https://doi.org/10.3390/ijms23052647
Seo Y-H, Hwang S-H, Kim Y-N, Kim H-J, Bae E-B, Huh J-B. Bone Reconstruction Using Two-Layer Porcine-Derived Bone Scaffold Composed of Cortical and Cancellous Bones in a Rabbit Calvarial Defect Model. International Journal of Molecular Sciences. 2022; 23(5):2647. https://doi.org/10.3390/ijms23052647
Chicago/Turabian StyleSeo, Yong-Ho, Su-Hyun Hwang, Yu-Na Kim, Hyung-Joon Kim, Eun-Bin Bae, and Jung-Bo Huh. 2022. "Bone Reconstruction Using Two-Layer Porcine-Derived Bone Scaffold Composed of Cortical and Cancellous Bones in a Rabbit Calvarial Defect Model" International Journal of Molecular Sciences 23, no. 5: 2647. https://doi.org/10.3390/ijms23052647
APA StyleSeo, Y. -H., Hwang, S. -H., Kim, Y. -N., Kim, H. -J., Bae, E. -B., & Huh, J. -B. (2022). Bone Reconstruction Using Two-Layer Porcine-Derived Bone Scaffold Composed of Cortical and Cancellous Bones in a Rabbit Calvarial Defect Model. International Journal of Molecular Sciences, 23(5), 2647. https://doi.org/10.3390/ijms23052647