Mechanism Underlying the Bypass of Apurinic/Pyrimidinic Site Analogs by Sulfolobus acidocaldarius DNA Polymerase IV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Expression and Purification of DNA Polymerase Dbh
2.3. Translesion Synthesis Assay
2.4. Homology Modeling and Molecular Dynamics Simulation
3. Results
3.1. The Paired Primers Were More Easily Extended by Dbh on Spacer Skipping
3.2. Incorporation of the First Nucleotide during Bypassing Spacer by Dbh
3.3. Incorporation of the First Nucleotide Downstream of AP Sites Was the Most Difficult
3.4. Effect of the Structure of Sliding PT DNA on the TLS Efficiency of Dbh
3.5. Key Amino Acids of Dbh Involved in Stabilizing the Bulging Damaged Base
3.6. Effect of Residues Interacting with Normal DNA Strands on TLS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacNeill, S. Composition and Dynamics of the Eukaryotic Replisome: A Brief Overview. Subcell. Biochem. 2012, 62, 1–17. [Google Scholar] [CrossRef]
- Hübscher, U.; Maga, G.; Spadari, S. Spadari, Eukaryotic DNA Polymerases. Annu. Rev. Biochem. 2002, 71, 133–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, M.; Langston, L.; Stillman, B. Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya. Cold Spring Harb. Perspect. Biol. 2013, 5, a010108. [Google Scholar] [CrossRef]
- Kelman, L.M.; Kelman, Z. Archaeal DNA Replication. Annu. Rev. Genet. 2014, 48, 71–97. [Google Scholar] [CrossRef]
- Sarmiento, F.; Long, F.; Cann, I.; Whitman, W.B. Diversity of the DNA Replication System in the Archaea Domain. Archaea 2014, 2014, 675946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, L.S.; Minesinger, B.K.; Wiltrout, M.E.; D’Souza, S.; Woodruff, R.V.; Walker, G.C. Eukaryotic Translesion Polymerases and Their Roles and Regulation in DNA Damage Tolerance. Microbiol. Mol. Biol. Rev. 2009, 73, 134–154. [Google Scholar] [CrossRef] [Green Version]
- Yamtich, J.; Sweasy, J.B. DNA polymerase Family X: Function, structure, and cellular roles. Biochim. Biophys. Acta Proteins Proteom. 2010, 1804, 1136–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W. An Overview of Y-Family DNA Polymerases and a Case Study of Human DNA Polymerase η. Biochemistry 2014, 53, 2793–2803. [Google Scholar] [CrossRef]
- Le Chatelier, E.; Bécherel, O.J.; D’Alençon, E.; Canceill, D.; Ehrlich, S.D.; Fuchs, R.P.P.; Jannière, L. Involvement of DnaE, the Second Replicative DNA Polymerase from Bacillus subtilis, in DNA Mutagenesis. J. Biol. Chem. 2004, 279, 1757–1767. [Google Scholar] [CrossRef] [Green Version]
- Sale, J.E.; Lehmann, A.R.; Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 2012, 13, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, B.A.; Suo, Z. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Biochemistry 2014, 53, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- Pata, J.D. Structural diversity of the Y-family DNA polymerases. Biochim. Biophys. Acta Proteins Proteom. 2010, 1804, 1124–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, H.; Boudsocq, F.; Woodgate, R.; Yang, W. Crystal Structure of a Y-Family DNA Polymerase in Action: A Mechanism for Error-Prone and Lesion-Bypass Replication. Cell 2001, 107, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Trincao, J.; Johnson, R.E.; Escalante, C.R.; Prakash, S.; Prakash, L.; Aggarwal, A.K. Structure of the Catalytic Core of S. cerevisiae DNA Polymerase η: Implications for Translesion DNA Synthesis. Mol. Cell 2001, 8, 417–426. [Google Scholar] [CrossRef]
- Wilson, R.C.; Jackson, M.A.; Pata, J.D. Y-Family Polymerase Conformation Is a Major Determinant of Fidelity and Translesion Specificity. Structure 2013, 21, 20–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLucia, A.M.; Grindley, N.D.; Joyce, C.M. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. Biochemistry 2007, 46, 10790–10803. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, T. Frameshift mutagenesis by eucaryotic DNA polymerases in vitro. J. Biol. Chem. 1986, 261, 13581–13587. [Google Scholar] [CrossRef]
- Bebenek, K.; Kunkel, T. Frameshift errors initiated by nucleotide misincorporation. Proc. Natl. Acad. Sci. USA 1990, 87, 4946–4950. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.C.; Pata, J.D. Structural Insights into the Generation of Single-Base Deletions by the Y Family DNA Polymerase Dbh. Mol. Cell 2008, 29, 767–779. [Google Scholar] [CrossRef]
- Wu, Y.; Wilson, R.C.; Pata, J.D. The Y-Family DNA Polymerase Dpo4 Uses a Template Slippage Mechanism To Create Single-Base Deletions. J. Bacteriol. 2011, 193, 2630–2636. [Google Scholar] [CrossRef] [Green Version]
- Potapova, O.; Grindley, N.D.F.; Joyce, C.M. The Mutational Specificity of the Dbh Lesion Bypass Polymerase and Its Implications. J. Biol. Chem. 2002, 277, 28157–28166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.-P.; Liu, J.-H. The terminal 5′ phosphate and proximate phosphorothioate promote ligation-independent cloning. Protein Sci. 2010, 19, 967–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrödinger LLC. The PyMOL Molecular Graphics System; Version 1.8; Schrödinger LLC: New York, NY, USA, 2015. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, D.A.; Babin, V.; Berryman, J.; Betz, R.M.; Cai, Q.; Cerutti, D.S.; Cheatham Iii, T.E.; Darden, T.A.; Duke, R.E.; Gohlke, H.; et al. Amber 14. Mech. Eng. 2014, 126, 14. [Google Scholar]
- Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Covo, S.; Blanco, L.; Livneh, Z. Lesion bypass by human DNA polymerase μ reveals a template-dependent, sequence-independent nucleotidyl transferase activity. J. Biol. Chem. 2004, 279, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.; Sayer, J.M.; Plosky, B.S.; Yagi, H.; Boudsocq, F.; Woodgate, R.; Jerina, D.M.; Yang, W. Crystal structure of a benzo[a]pyrene diol epoxide adduct in a ternary complex with a DNA polymerase. Proc. Natl. Acad. Sci. USA 2004, 101, 2265–2269. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.-L.; Pata, J.; Steitz, T.A. Crystal Structure of a DinB Lesion Bypass DNA Polymerase Catalytic Fragment Reveals a Classic Polymerase Catalytic Domain. Mol. Cell 2001, 8, 427–437. [Google Scholar] [CrossRef]
- Franklin, M.C.; Wang, J.; Steitz, T.A. Structure of the Replicating Complex of a Pol α Family DNA Polymerase. Cell 2001, 105, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Boudsocq, F.; Kokoska, R.J.; Plosky, B.S.; Vaisman, A.; Ling, H.; Kunkel, T.A.; Yang, W.; Woodgate, R. Investigating the Role of the Little Finger Domain of Y-family DNA Polymerases in Low Fidelity Synthesis and Translesion Replication. J. Biol. Chem. 2004, 279, 32932–32940. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.-Y.; Song, D.; Wang, W.-W.; Peng, L.; Chen, H.-F.; Xiao, X.; Liu, X.-P. Mechanism Underlying the Bypass of Apurinic/Pyrimidinic Site Analogs by Sulfolobus acidocaldarius DNA Polymerase IV. Int. J. Mol. Sci. 2022, 23, 2729. https://doi.org/10.3390/ijms23052729
Huang Q-Y, Song D, Wang W-W, Peng L, Chen H-F, Xiao X, Liu X-P. Mechanism Underlying the Bypass of Apurinic/Pyrimidinic Site Analogs by Sulfolobus acidocaldarius DNA Polymerase IV. International Journal of Molecular Sciences. 2022; 23(5):2729. https://doi.org/10.3390/ijms23052729
Chicago/Turabian StyleHuang, Qin-Ying, Dong Song, Wei-Wei Wang, Li Peng, Hai-Feng Chen, Xiang Xiao, and Xi-Peng Liu. 2022. "Mechanism Underlying the Bypass of Apurinic/Pyrimidinic Site Analogs by Sulfolobus acidocaldarius DNA Polymerase IV" International Journal of Molecular Sciences 23, no. 5: 2729. https://doi.org/10.3390/ijms23052729
APA StyleHuang, Q. -Y., Song, D., Wang, W. -W., Peng, L., Chen, H. -F., Xiao, X., & Liu, X. -P. (2022). Mechanism Underlying the Bypass of Apurinic/Pyrimidinic Site Analogs by Sulfolobus acidocaldarius DNA Polymerase IV. International Journal of Molecular Sciences, 23(5), 2729. https://doi.org/10.3390/ijms23052729