Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates
Abstract
:1. Introduction
2. Coffee
2.1. Caffeine
2.2. Caffeic and Chicoric Acid
Parameter | Compound | Model | Results | Ref. | |
---|---|---|---|---|---|
In Vitro | In Vivo | ||||
Steatosis | Caffeine, green coffee extracts (GCE) | Female Sprague Dawley rats (HFD) 4.2–5.8 mg/kg/day | Neither caffeine nor GCE alleviated hepatic steatosis, but GCE-treated rats showed lower hepatic triglyceride levels | [49] | |
Caffeine, chlorogenic acid | 100 subjects with T2DM and NAFLD 200 mg caffeine with/without chlorogenic acid/day | Liver steatosis was not attenuated by caffeine or chlorogenic acid | [50] | ||
Coffee | 2819 subjects with NAFLD or ALFD categorized consumption 0, 1, 2, and ≥3 cup/day | Coffee intake was not associated with any lower odds of hepatic steatosis | [51] | ||
Caffeine | Zebrafish in HFD 1–8% caffeine | Caffeine suppressed diet-induced hepatic steatosis by downregulation of genes associated with lipogenesis, ER stress, and inflammatory response | [52] | ||
Caffeine | HepG2 cells 2 mM | Male C57Bl/6 mice with HFD 10 and 20 mg/kg | Caffeine ameliorated hepatic steatosis by suppressing fatty acid synthesis and promoting β-oxidation | [52] | |
Colombian coffee extracts | 40 male Wistar rats (8–9 weeks old 30–70 mg/kg caffeine/day | Coffee extract attenuated diet-induced changes in structure and function of the liver and heart without changing the abdominal fat deposition | [53] | ||
Coffee | 1452 subjects Caffeinated beverage consumption | No association between caffeine consumption and either the prevalence of fatty liver or serum ALT concentrations | [54] | ||
Caffeic acid | HepG2 cells 0–200 µM | Caffeic acid reduced lipid accumulation and increased AMPK phosphorylation, which reduced the expression of the genes involved in hepatic lipogenesis and increased those related to hepatic lipolysis | [33] | ||
Caffeic acid | AML12 cells 0–200 µM | Mice with HFD 50 mg/kg/day | Caffeic acid ameliorated hepatic steatosis, increasing autophagy and reducing ER stress | [45] | |
Oxidative stress | Caffeine | Male Wistar rats 20–30 mg/kg/day | Caffeine improved HFD-induced hepatic injury, suppressing inflammatory response, oxidative stress, and regulating lipogenesis and β-oxidation | [55] | |
Caffeic acid | HepG2 cells 1, 5, and 10 µM | Polyphenols decreased ROS generation by oleic acid treatment, increasing the expression of markers of mitochondrial respiratory complex subunits and mitochondrial biogenesis | [37] | ||
Caffeic acid, other phenolic compounds | FaO cells 25 µM/24 h | Polyphenols ameliorated fatty acid accumulation and endothelial and hepatic lipid-dependent oxidative imbalance | [38] | ||
Chicoric acid | HepG2 cells 50–200 µM/24 h | Chicoric acid enhanced Akt/GSK3b signaling pathways and modulated the expression of downstream genes related to lipid metabolism in a BMAL1-dependent manner | [48] | ||
Inflammation | Caffeine | Hepa 1-6, C2C12, and 3T3L1 cells 0.5 mg/mL | Male C57Bl/6 HFD | Caffeine ameliorated NAFLD via crosstalk between IL-6 production in muscle and liver STAT3 activation | [28] |
Caffeic acid | Male C57Bl/6 HFD 0.08–0.16% caffeic acid supplementation HFD | Caffeic acid reverted the imbalance in the gut microbiota and related LPS-mediated inflammation, contributing to normalizing the dysregulation expression of lipid-metabolism-related genes | [36] | ||
Chicoric acid | HepG2 cells 10–20 µM/24 h | Male C57Bl/6 HFD 15–30 mg/kg/day | Chicoric acid modified gut microbiota toward a healthier microbial profile, ameliorating oxidative stress and inflammation via the AMPK/Nrf2/NF-κB signaling pathway | [46] | |
Fibrosis | Caffeine | 195 severely obese subjects 0–5 g/wk total caffeine intake | Regular coffee consumption was an independent protective factor for liver fibrosis | [20] | |
Caffeine | 306 NAFLD subjects 0–822 (averaged 288 mg/day) mg/day total caffeine | Coffee consumption was associated with a significant reduction in the risk of fibrosis among NASH patients | [56] | ||
Caffeine, chlorogenic acid | Male TSOD mice spontaneous development of metabolic syndrome and NASH with liver tumors. 0.25 mg/caffeine day orally, 1.5 mg chlorogenic acid | Coffee consumption was associated with the prevention of metabolic syndrome; antifibrotic effects appeared to be due to the polyphenols rather than the caffeine | [57] | ||
Chicoric acid | HepG2 and AML12 cells 20 or 40 µM/24 h | Male C57BL/6 MCD diet 10–30 mg/kg/day | Chicoric acid reduced apoptosis, expression of lipogenesis-related genes, and fibrosis both in vivo and in vitro. | [45] |
3. Tormentic Acid
Parameter | Model | Results | Ref. |
---|---|---|---|
Steatosis, Lipidemia | In vivo: HFD-fed rats | Inhibition of hyperlipidemia via the activation of the antioxidative mechanisms | [61] |
In vivo: HFD-fed mice | Reduction in body and adipose tissue weights Decreased expression of enzymes involved in fatty acid synthesis | [62] | |
In vivo: HFD-fed mice | Reduced visceral fat mass and hepatic triacylglycerol contents Downregulation of SREBP-1c and apo C-III, and upregulation of PPAR-α | [63] | |
Glucose Homeostasis | In vitro: enzymatic assay | Inhibition of alpha-glucosidase activity | [64] |
In vitro: enzymatic assay | Inhibition of protein tyrosine PTP1B activity | [66] | |
In vivo: HFD-fed mice | Decreased levels of blood glucose, insulin, leptin, and HOMA-IR index, and attenuated insulin resistance | [62] | |
Oxidative Stress | In vitro: rat vascular smooth muscle cells (RVSMCs) | Decreased ROS generation and downregulated the expression of iNOS and NADPH oxidase Prevented phosphorylation of NF-κB subunit p65 and degradation of the NF-κB inhibitor α (IκBα) | [67] |
Inflammation | In vitro: rat vascular smooth muscle cells (RVSMCs) | Decreased levels of TNF-α, IL-6, and IL-1β Prevented phosphorylation of NF-κB subunit p65 and degradation of the NF-κB inhibitor α (IκBα) | [67] |
In vivo: acetaminophen-induced liver damage in mice | Inhibition of iNOS and COX-retention of enzymes (essential for the antioxidative properties of the liver): SOD, GPx, CAT Inhibition of NF-κB activation and inhibition of the activation of MAPKs | [68] | |
In vitro: LPS-stimulated human gingival fibroblasts (HGFs) | Decreased expression of IL-6 and IL-8 Inhibited LPS-induced TLR4 expression; NF-κB activation; IκBα degradation; and phosphorylation of ERK, JNK, and P38 | [69] | |
In vitro: LPS-induced inflammation in BV2 microglial cells | Inhibition of TNF-α and IL-1β Activation of LXRα and inhibition of NF-κB activation | [70] | |
In vivo: acetaminophen-induced liver damage in mice | Reduction in TNF-α, IL-1β, and IL-6 Inhibition of NF-κB activation and inhibition of the activation of MAPKs | [68] | |
Fibrosis | In vitro: activated hepatic stellate cells | Decreased the expression of collagen type I and III Prevented excessive deposition of ECM | [71] |
4. Verbascoside
Parameter | Model | Results | Ref. |
---|---|---|---|
Steatosis, Lipidemia | In vivo: HFD-fed rats | Reduction in body weight Ameliorated serum lipid profile | [76] |
56 obese/overweight (2 months) | Improvements in body weight, abdominal circumference, and % body fat | [77] | |
Glucose homeostasis | In vitro: mouse and human pancreatic β-cells | Increased viability, mitochondrial function, and insulin content of pancreatic β-cells | [78] |
In vivo: streptozotocin–nicotinamide (STZ–NA)-induced type 2 diabetic rats | Lower levels of blood glucose, glycosylated hemoglobin, and increased serum insulin | [79] | |
Oxidative stress | In vitro: HepG2 and SH-SY5Y cell lines | Improved DPPH, OH, and O2 scavenging activities | [80] |
In vivo: streptozotocin–nicotinamide (STZ–NA)-induced type 2 diabetic rats | Reduction in MDA levels and restored GSH in livers of diabetic rats | [79] | |
Inflammation | In vivo: high-fat-fed rats | Reduction in serum inflammatory markers | [76] |
Fibrosis | In vitro: Du-145 and PC-3 cell lines | Reduction in α-SMA expression | [81] |
In vivo: renal-fibrosis-induced rats | Reduction in COL-I, α-SMA, and TIMP2 Decreased macrophage infiltration | [82] |
5. Silymarin (Silybum marianum)
Parameter | Model | Results | Ref. |
---|---|---|---|
Liver histology | Rats (8–9 weeks old) + HFD (100 mg/kg daily orally) for 12 weeks | Improved steatosis Reduced inflammatory foci | [129] |
Db/db mice (6 weeks old) + MCD 20 mg/kg daily IP (4 weeks) | Improved steatosis | [123] | |
Db/db mice (8 weeks old) + MCD 20 mg/kg daily IP (4 weeks) | Improved steatosis Reduced lobular inflammation Decreased cell ballooning | [102] | |
OLETF rats + MCD 0.5% w/w of diet orally (8 weeks) | Improvement of the NAS score Improvement of fibrosis (by reducing HSC activation) | [116] | |
Male rats + MCD diet 1 g seed powder/kg daily gavages (3 weeks) | Improvement of steatosis, inflammation, and cell ballooning | [110] | |
Gerbils + HFD 100 mg/kg daily by gastric intubation (8 weeks) | Improved steatosis | [130] | |
Rats (4–6 weeks old) + HFD 25 mg/kg daily intragastric (6 weeks) | Decreased the fatty degeneration and the lobular inflammation | [119] | |
Glucose homeostasis | Rats (8–9 weeks old) + HFD 100 mg/kg orally (12 weeks) | Improved insulin sensitivity | [129] |
Rats (8 weeks old) high-fructose diet 100–300 mg/kg daily orally (3 weeks) | Decreased glycemia Decreased insulinemia Improved HOMA-IR | [101] | |
Db/db mice (6 weeks old) + MCD 20 mg/kg daily IP (4 weeks) | Decreased glycemia Decreased insulinemia Improved HOMA-IR | [123] | |
Gerbils + HFD 100 mg/kg daily by gastric intubation (8 weeks) | Decreased glycemia Decreased insulinemia | [130] | |
Rats (4–6 weeks old) + HFD 25 mg/kg daily intragastric (6 weeks) | Improved HOMA-IR | [119] | |
Oxidative stress | Db/db mice (6 weeks old) + MCD 20 mg/kg daily IP (4 weeks) | Decreased lipoperoxidation Restored the GSH and nitrite/nitrate levels | [123] |
Db/db mice (8 weeks old) + MCD 20 mg/kg daily IP (4 weeks) | Decreased lipoperoxidation, TBARS, and ROS | [102] | |
Rats (8 weeks old) high-fructose diet 100–300 mg/kg daily orally (3 weeks) | Decreased MDA and nitrite content | [101] | |
Male rats + MCD diet 1 g seed powder/kg daily gavages (3 weeks) | Decreased MDA and improved GSH | [110] | |
Gerbils + HFD 100 mg/kg daily by gastric intubation (8 weeks) | Decreased lipoperoxidation | [130] |
6. Discussion
7. Materials and Methods
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, C.H.; Younossi, Z.M. Nonalcoholic Fatty Liver Disease: A Manifestation of the Metabolic Syndrome. Clevel. Clin. J. Med. 2008, 75, 721–728. [Google Scholar] [CrossRef]
- Utz-Melere, M.; Targa-Ferreira, C.; Lessa-Horta, B.; Epifanio, M.; Mouzaki, M.; Mattos, A.A. Non-Alcoholic Fatty Liver Disease in Children and Adolescents: Lifestyle Change—A Systematic Review and Meta-Analysis. Ann. Hepatol. 2018, 17, 345–354. [Google Scholar] [CrossRef]
- Smith, S.K.; Perito, E.R. Nonalcoholic Liver Disease in Children and Adolescents. Clin. Liver Dis. 2018, 22, 723–733. [Google Scholar] [CrossRef]
- Rosso, N.; Chavez-Tapia, N.C.; Tiribelli, C.; Bellentani, S. Translational Approaches: From Fatty Liver to Non-Alcoholic Steatohepatitis. World J. Gastroenterol. 2014, 20, 9038–9049. [Google Scholar] [CrossRef]
- Pierantonelli, I.; Svegliati-Baroni, G. Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression from NAFLD to NASH. Transplantation 2019, 103, e1. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL–EASD–EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obes. Facts 2016, 9, 65–90. [Google Scholar] [CrossRef] [Green Version]
- Tilg, H.; Moschen, A.R. Evolution of Inflammation in Nonalcoholic Fatty Liver Disease: The Multiple Parallel Hits Hypothesis. Hepatology 2010, 52, 1836–1846. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Moschen, A.R. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited after a Decade. Hepatology 2021, 73, 833–842. [Google Scholar] [CrossRef]
- Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism 2016, 65, 1038–1048. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Godos, J.; Salomone, F. Lifestyle Changes for the Treatment of Nonalcoholic Fatty Liver Disease: A Review of Observational Studies and Intervention Trials. Ther. Adv. Gastroenterol. 2016, 9, 392–407. [Google Scholar] [CrossRef] [Green Version]
- Zelber-Sagi, S.; Salomone, F.; Mlynarsky, L. The Mediterranean Dietary Pattern as the Diet of Choice for Non-Alcoholic Fatty Liver Disease: Evidence and Plausible Mechanisms. Liver Int. 2017, 37, 936–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.C.; Suh, S.; Park, S.E.; Rhee, E.J.; Park, C.Y.; Oh, K.W.; Park, S.W.; Kim, S.W.; Hur, K.Y.; Kim, J.H.; et al. Regular Exercise Is Associated with a Reduction in the Risk of NAFLD and Decreased Liver Enzymes in Individuals with NAFLD Independent of Obesity in Korean Adults. PLoS ONE 2012, 7, e46819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bistrian, B.R. Dietary Composition During Weight-Loss Maintenance. JAMA 2012, 308, 1087. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Guo, R.; Fung, M.L.; Liong, E.C.; Tipoe, G.L. Therapeutic Approaches to Non-Alcoholic Fatty Liver Disease: Past Achievements and Future Challenges. Hepatobiliary Pancreat. Dis. Int. 2013, 12, 125–135. [Google Scholar] [CrossRef]
- Wong, V.W.-S.; Singal, A.K. Emerging Medical Therapies for Non-Alcoholic Fatty Liver Disease and for Alcoholic Hepatitis. Transl. Gastroenterol. Hepatol. 2019, 4, 53. [Google Scholar] [CrossRef]
- Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal Plants and Bioactive Natural Compounds in the Treatment of Non-Alcoholic Fatty Liver Disease: A Clinical Review. Pharmacol. Res. 2018, 130, 213–240. [Google Scholar] [CrossRef]
- Yan, T.; Yan, N.; Wang, P.; Xia, Y.; Hao, H.; Wang, G.; Gonzalez, F.J. Herbal Drug Discovery for the Treatment of Nonalcoholic Fatty Liver Disease. Acta Pharm. Sin. B 2020, 10, 3–18. [Google Scholar] [CrossRef]
- Xu, J.-Y.; Zhang, L.; Li, Z.-P.; Ji, G. Natural Products on Nonalcoholic Fatty Liver Disease. Curr. Drug Targets 2015, 16, 1347–1355. [Google Scholar] [CrossRef]
- Klatsky, A.L.; Armstrong, M.A. Alcohol, Smoking, Coffee, and Cirrhosis. Am. J. Epidemiol. 1992, 136, 1248–1257. [Google Scholar] [CrossRef] [Green Version]
- Anty, R.; Marjoux, S.; Iannelli, A.; Patouraux, S.; Schneck, A.-S.; Bonnafous, S.; Gire, C.; Amzolini, A.; Ben-Amor, I.; Saint-Paul, M.-C.; et al. Regular Coffee but Not Espresso Drinking Is Protective against Fibrosis in a Cohort Mainly Composed of Morbidly Obese European Women with NAFLD Undergoing Bariatric Surgery. J. Hepatol. 2012, 57, 1090–1096. [Google Scholar] [CrossRef]
- Saab, S.; Mallam, D.; Cox, G.A.; Tong, M.J. Impact of Coffee on Liver Diseases: A Systematic Review. Liver Int. 2014, 34, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Birerdinc, A.; Stepanova, M.; Pawloski, L.; Younossi, Z.M. Caffeine Is Protective in Patients with Non-Alcoholic Fatty Liver Disease. Aliment. Pharmacol. Ther. 2012, 35, 76–82. [Google Scholar] [CrossRef] [PubMed]
- PubChem Caffeine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2519 (accessed on 18 February 2022).
- Kennedy, O.J.; Roderick, P.; Poole, R.; Parkes, J. Coffee, Caffeine and Non-Alcoholic Fatty Liver Disease? Therap. Adv. Gastroenterol. 2016, 9, 417–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Teoh, N.C.; Chitturi, S.; Farrell, G.C. Coffee and Non-Alcoholic Fatty Liver Disease: Brewing Evidence for Hepatoprotection? J. Gastroenterol. Hepatol. 2014, 29, 435–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, U.; Siddiqui, A.A.; Okut, H.; Afroz, S.; Tasleem, S.; Haris, A. The Effect of Coffee Consumption on the Non-Alcoholic Fatty Liver Disease and Liver Fibrosis: A Meta-Analysis of 11 Epidemiological Studies. Ann. Hepatol. 2021, 20, 100254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-J.; Li, Y.-F.; Wang, G.-E.; Tan, R.-R.; Tsoi, B.; Mao, G.-W.; Zhai, Y.-J.; Cao, L.-F.; Chen, M.; Kurihara, H.; et al. Caffeine Ameliorates High Energy Diet-Induced Hepatic Steatosis: Sirtuin 3 Acts as a Bridge in the Lipid Metabolism Pathway. Food Funct. 2015, 6, 2578–2587. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Cai, X.; Hayashi, S.; Hao, S.; Sakiyama, H.; Wang, X.; Yang, Q.; Akira, S.; Nishiguchi, S.; Fujiwara, N.; et al. Caffeine-Stimulated Muscle IL-6 Mediates Alleviation of Non-Alcoholic Fatty Liver Disease. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2019, 1864, 271–280. [Google Scholar] [CrossRef]
- Bojar, D.; Scheller, L.; Hamri, G.C.-E.; Xie, M.; Fussenegger, M. Caffeine-Inducible Gene Switches Controlling Experimental Diabetes. Nat. Commun. 2018, 9, 2318. [Google Scholar] [CrossRef] [Green Version]
- Mitkov, J.; Kondeva-Burdina, M.; Zlatkov, A. Synthesis and Preliminary Hepatotoxicity Evaluation of New Caffeine-8-(2-Thio)-Propanoic Hydrazid-Hydrazone Derivatives. Pharmacia 2019, 66, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia Miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Liao, C.-C.; Ou, T.-T.; Huang, H.-P.; Wang, C.-J. The Inhibition of Oleic Acid Induced Hepatic Lipogenesis and the Promotion of Lipolysis by Caffeic Acid via Up-Regulation of AMP-Activated Kinase. J. Sci. Food Agric. 2014, 94, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- PubChem Caffeic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/689043 (accessed on 18 February 2022).
- Kim, H.M.; Kim, Y.; Lee, E.S.; Huh, J.H.; Chung, C.H. Caffeic Acid Ameliorates Hepatic Steatosis and Reduces ER Stress in High Fat Diet-Induced Obese Mice by Regulating Autophagy. Nutrition 2018, 55–56, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.-N.; Zhou, Q.; Yang, R.-Y.; Tang, W.-Q.; Li, H.-X.; Wang, S.-M.; Li, J.; Chen, W.-X.; Dong, J. Caffeic Acid Prevents Non-Alcoholic Fatty Liver Disease Induced by a High-Fat Diet through Gut Microbiota Modulation in Mice. Food Res. Int. 2021, 143, 110240. [Google Scholar] [CrossRef] [PubMed]
- Rafiei, H.; Omidian, K.; Bandy, B. Comparison of Dietary Polyphenols for Protection against Molecular Mechanisms Underlying Nonalcoholic Fatty Liver Disease in a Cell Model of Steatosis. Mol. Nutr. Food Res. 2017, 61, 1600781. [Google Scholar] [CrossRef]
- Vergani, L.; Vecchione, G.; Baldini, F.; Grasselli, E.; Voci, A.; Portincasa, P.; Ferrari, P.F.; Aliakbarian, B.; Casazza, A.A.; Perego, P. Polyphenolic Extract Attenuates Fatty Acid-Induced Steatosis and Oxidative Stress in Hepatic and Endothelial Cells. Eur. J. Nutr. 2018, 57, 1793–1805. [Google Scholar] [CrossRef]
- Lee, J.; Scagel, C.F. Chicoric Acid: Chemistry, Distribution, and Production. Front. Chem. 2013, 1, 40. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.Y.; Chung, K.-S.; Jin, J.S.; Bang, K.S.; Eom, Y.-J.; Hong, C.-H.; Nugroho, A.; Park, H.-J.; An, H.-J. Effect of Chicoric Acid on Mast Cell-Mediated Allergic Inflammation In Vitro and In Vivo. J. Nat. Prod. 2015, 78, 2956–2962. [Google Scholar] [CrossRef]
- Schlernitzauer, A.; Oiry, C.; Hamad, R.; Galas, S.; Cortade, F.; Chabi, B.; Casas, F.; Pessemesse, L.; Fouret, G.; Feillet-Coudray, C.; et al. Chicoric Acid Is an Antioxidant Molecule That Stimulates AMP Kinase Pathway in L6 Myotubes and Extends Lifespan in Caenorhabditis Elegans. PLoS ONE 2013, 8, e78788. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Dai, L.-H.; Wu, Y.-H.; Yu, X.-P.; Zhang, Y.-Y.; Guan, R.-F.; Liu, T.; Zhao, J. Evaluation of Hepatocyteprotective and Anti-Hepatitis B Virus Properties of Cichoric Acid from Cichorium Intybus Leaves in Cell Culture. Biol. Pharm. Bull. 2014, 37, 1214–1220. [Google Scholar] [CrossRef] [Green Version]
- Casanova, L.M.; da Silva, D.; Sola-Penna, M.; de Magalhaes Camargo, L.M.; de Moura Celestrini, D.; Tinoco, L.W.; Costa, S.S. Identification of Chicoric Acid as a Hypoglycemic Agent from Ocimum Gratissimum Leaf Extract in a Biomonitoring In Vivo Study. Fitoterapia 2014, 93, 132–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landmann, M.; Kanuri, G.; Spruss, A.; Stahl, C.; Bergheim, I. Oral Intake of Chicoric Acid Reduces Acute Alcohol-Induced Hepatic Steatosis in Mice. Nutrition 2014, 30, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Yoo, G.; Randy, A.; Kim, H.S.; Nho, C.W. Chicoric Acid Attenuate a Nonalcoholic Steatohepatitis by Inhibiting Key Regulators of Lipid Metabolism, Fibrosis, Oxidation, and Inflammation in Mice with Methionine and Choline Deficiency. Mol. Nutr. Food Res. 2017, 61, 1600632. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Jian, T.; Li, J.; Lv, H.; Tong, B.; Li, J.; Meng, X.; Ren, B.; Chen, J. Chicoric Acid Ameliorates Nonalcoholic Fatty Liver Disease via the AMPK/Nrf2/NFκB Signaling Pathway and Restores Gut Microbiota in High-Fat-Diet-Fed Mice. Oxidative Med. Cell. Longev. 2020, 2020, 9734560. [Google Scholar] [CrossRef]
- Mohammadi, M.; Abbasalipourkabir, R.; Ziamajidi, N. Fish Oil and Chicoric Acid Combination Protects Better against Palmitate-Induced Lipid Accumulation via Regulating AMPK-Mediated SREBP-1/FAS and PPARα/UCP2 Pathways. Arch. Physiol. Biochem. 2020, 1–9. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, B.; Wang, Y.; Wu, D.; Wang, Y.; Yu, Y.; Yan, Y.; Zhang, W.; Liu, Z.; Liu, X. Cichoric Acid Prevents Free-Fatty-Acid-Induced Lipid Metabolism Disorders via Regulating Bmal1 in HepG2 Cells. J. Agric. Food Chem. 2018, 66, 9667–9678. [Google Scholar] [CrossRef]
- Velázquez, A.M.; Roglans, N.; Bentanachs, R.; Gené, M.; Sala-Vila, A.; Lázaro, I.; Rodríguez-Morató, J.; Sánchez, R.M.; Laguna, J.C.; Alegret, M. Effects of a Low Dose of Caffeine Alone or as Part of a Green Coffee Extract, in a Rat Dietary Model of Lean Non-Alcoholic Fatty Liver Disease without Inflammation. Nutrients 2020, 12, 3240. [Google Scholar] [CrossRef]
- Mansour, A.; Mohajeri-Tehrani, M.R.; Samadi, M.; Qorbani, M.; Merat, S.; Adibi, H.; Poustchi, H.; Hekmatdoost, A. Effects of Supplementation with Main Coffee Components Including Caffeine and/or Chlorogenic Acid on Hepatic, Metabolic, and Inflammatory Indices in Patients with Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Nutr. J. 2021, 20, 35. [Google Scholar] [CrossRef]
- Veronese, N.; Notarnicola, M.; Cisternino, A.M.; Reddavide, R.; Inguaggiato, R.; Guerra, V.; Rotolo, O.; Zinzi, I.; Leandro, G.; Correale, M.; et al. Coffee Intake and Liver Steatosis: A Population Study in a Mediterranean Area. Nutrients 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Dai, W.; Chen, X.; Wang, K.; Zhang, W.; Liu, L.; Hou, J. Caffeine Reduces Hepatic Lipid Accumulation through Regulation of Lipogenesis and ER Stress in Zebrafish Larvae. J. Biomed. Sci. 2015, 22, 105. [Google Scholar] [CrossRef] [Green Version]
- Panchal, S.K.; Poudyal, H.; Waanders, J.; Brown, L. Coffee Extract Attenuates Changes in Cardiovascular and Hepatic Structure and Function without Decreasing Obesity in High-Carbohydrate, High-Fat Diet-Fed Male Rats. J. Nutr. 2012, 142, 690–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graeter, T.; Niedermayer, P.C.; Mason, R.A.; Oeztuerk, S.; Haenle, M.M.; Koenig, W.; Boehm, B.O.; Kratzer, W.; EMIL-Study Group. Coffee Consumption and NAFLD: A Community Based Study on 1223 Subjects. BMC Res. Notes 2015, 8, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helal, M.G.; Ayoub, S.E.; Elkashefand, W.F.; Ibrahim, T.M. Caffeine Affects HFD-Induced Hepatic Steatosis by Multifactorial Intervention. Hum. Exp. Toxicol. 2018, 37, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Molloy, J.W.; Calcagno, C.J.; Williams, C.D.; Jones, F.J.; Torres, D.M.; Harrison, S.A. Association of Coffee and Caffeine Consumption with Fatty Liver Disease, Nonalcoholic Steatohepatitis, and Degree of Hepatic Fibrosis. Hepatology 2012, 55, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Takahashi, T.; Ogawa, H.; Uehara, H.; Tsunematsu, T.; Baba, H.; Morimoto, Y.; Tsuneyama, K. Daily Coffee Intake Inhibits Pancreatic Beta Cell Damage and Nonalcoholic Steatohepatitis in a Mouse Model of Spontaneous Metabolic Syndrome, Tsumura-Suzuki Obese Diabetic Mice. Metab. Syndr. Relat. Disord. 2017, 15, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Olech, M.; Ziemichód, W.; Nowacka-Jechalke, N. The Occurrence and Biological Activity of Tormentic Acid—A Review. Molecules 2021, 26, 3797. [Google Scholar] [CrossRef] [PubMed]
- PubChem Tormentic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/73193 (accessed on 18 February 2022).
- Zhang, T.-T.; Yang, L.; Jiang, J.-G. Tormentic Acid in Foods Exerts Anti-Proliferation Efficacy through Inducing Apoptosis and Cell Cycle Arrest. J. Funct. Foods 2015, 19, 575–583. [Google Scholar] [CrossRef]
- Park, H.-J.; Nam, J.-H.; Jung, H.-J.; Lee, M.-S.; Lee, K.-T.; Jung, M.-H.; Choi, J.-W. Inhibitory Effect of Euscaphic Acid and Tormentic Acid from the Roots of Rosa rugosa on High Fat Diet-Induced Obesity in the Rat. Korean J. Pharmacogn. 2005, 36, 324–331. [Google Scholar]
- Shih, C.-C.; Ciou, J.-L.; Lin, C.-H.; Wu, J.-B.; Ho, H.-Y. Cell Suspension Culture of Eriobotrya Japonica Regulates the Diabetic and Hyperlipidemic Signs of High-Fat-Fed Mice. Molecules 2013, 18, 2726–2753. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-B.; Kuo, Y.-H.; Lin, C.-H.; Ho, H.-Y.; Shih, C.-C. Tormentic Acid, a Major Component of Suspension Cells of Eriobotrya Japonica, Suppresses High-Fat Diet-Induced Diabetes and Hyperlipidemia by Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation. J. Agric. Food Chem. 2014, 62, 10717–10726. [Google Scholar] [CrossRef]
- Kumar, D.; Ghosh, R.; Pal, B.C. α-Glucosidase Inhibitory Terpenoids from Potentilla Fulgens and Their Quantitative Estimation by Validated HPLC Method. J. Funct. Foods 2013, 3, 1135–1141. [Google Scholar] [CrossRef]
- Zhao, B.T.; Nguyen, D.H.; Le, D.D.; Choi, J.S.; Min, B.S.; Woo, M.H. Protein Tyrosine Phosphatase 1B Inhibitors from Natural Sources. Arch. Pharm. Res. 2018, 41, 130–161. [Google Scholar] [CrossRef] [PubMed]
- Tian Zhao, B.; Hung Nguyen, D.; Mi Lee, B.; Hui Seong, S.; Sue Choi, J.; Sun Min, B.; Hee Woo, M. PTP1B Inhibitory and Cytotoxic Activities of Triterpenoids from the Aerial Parts of Agrimonia Pilosa. Med. Chem. Res. 2017, 26, 2870–2878. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Sun, G.-Y.; Zhang, Y.; He, J.-J.; Zheng, S.; Lin, J.-N. Tormentic Acid Inhibits H2O2-Induced Oxidative Stress and Inflammation in Rat Vascular Smooth Muscle Cells via Inhibition of the NF-ΚB Signaling Pathway. Mol. Med. Rep. 2016, 14, 3559–3564. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.-P.; Huang, S.-S.; Matsuda, Y.; Saito, H.; Uramaru, N.; Ho, H.-Y.; Wu, J.-B.; Huang, G.-J. Protective Effects of Tormentic Acid, a Major Component of Suspension Cultures of Eriobotrya Japonica Cells, on Acetaminophen-Induced Hepatotoxicity in Mice. Molecules 2017, 22, 830. [Google Scholar] [CrossRef] [Green Version]
- Jian, C.-X.; Li, M.-Z.; Zheng, W.-Y.; He, Y.; Ren, Y.; Wu, Z.-M.; Fan, Q.-S.; Hu, Y.-H.; Li, C.-J. Tormentic Acid Inhibits LPS-Induced Inflammatory Response in Human Gingival Fibroblasts via Inhibition of TLR4-Mediated NF-κB and MAPK Signalling Pathway. Arch. Oral Biol. 2015, 60, 1327–1332. [Google Scholar] [CrossRef]
- Ma, A.; Wang, Y.; Zhang, Q. Tormentic Acid Reduces Inflammation in BV-2 Microglia by Activating the Liver X Receptor Alpha. Neuroscience 2015, 287, 9–14. [Google Scholar] [CrossRef]
- Lin, X.; Li, Y.; Zhang, X.; Wei, Y.; Wen, S.; Lu, Z.; Huang, Q.; Wei, J. Tormentic Acid Inhibits Hepatic Stellate Cells Activation via Blocking PI3K/Akt/MTOR and NF-κB Signalling Pathways. Cell Biochem. Funct. 2021, 39, 77–87. [Google Scholar] [CrossRef]
- Villar, A.; Payá, M.; Hortigüela, M.D.; Cortes, D. Tormentic Acid, a New Hypoglycemic Agent from Poterium Ancistroides. Planta Med. 1986, 52, 43–45. [Google Scholar] [CrossRef]
- Ivorra, M.D.; Paya, M.; Villar, A. Hypoglycemic and Insulin Release Effects of Tormentic Acid: A New Hypoglycemic Natural Product. Planta Med. 1988, 54, 282–286. [Google Scholar] [CrossRef]
- PubChem Verbascoside. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5459010 (accessed on 18 February 2022).
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside—A Review of Its Occurrence, (Bio)Synthesis and Pharmacological Significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, K. Verbascoside Inhibits the Progression of Atherosclerosis in High Fat Diet Induced Atherosclerosis Rat Model. J. Physiol. Pharmacol. 2021, 72. [Google Scholar] [CrossRef]
- Herranz-López, M.; Olivares-Vicente, M.; Boix-Castejón, M.; Caturla, N.; Roche, E.; Micol, V. Differential Effects of a Combination of Hibiscus Sabdariffa and Lippia Citriodora Polyphenols in Overweight/Obese Subjects: A Randomized Controlled Trial. Sci. Rep. 2019, 9, 2999. [Google Scholar] [CrossRef] [Green Version]
- Galli, A.; Marciani, P.; Marku, A.; Ghislanzoni, S.; Bertuzzi, F.; Rossi, R.; Di Giancamillo, A.; Castagna, M.; Perego, C. Verbascoside Protects Pancreatic β-Cells against ER-Stress. Biomedicines 2020, 8, 582. [Google Scholar] [CrossRef] [PubMed]
- El-Marasy, S.A.; El-Shenawy, S.M.; Moharram, F.A.; El-Sherbeeny, N.A. Antidiabetic and Antioxidant Effects of Acteoside from Jacaranda Mimosifolia Family Biognoniaceae in Streptozotocin–Nicotinamide Induced Diabetes in Rats. Open Access Maced. J. Med. Sci. 2020, 8, 125–133. [Google Scholar] [CrossRef]
- Burgos, C.; Muñoz-Mingarro, D.; Navarro, I.; Martín-Cordero, C.; Acero, N. Neuroprotective Potential of Verbascoside Isolated from Acanthus Mollis L. Leaves through Its Enzymatic Inhibition and Free Radical Scavenging Ability. Antioxidants 2020, 9, 1207. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chen, C.-H.; Hsieh, P.-F.; Lee, Y.-H.; Kuo, W.W.-T.; Wu, R.C.-Y.; Hung, C.-H.; Yang, Y.-L.; Lin, V.C. Verbascoside Inhibits the Epithelial-Mesenchymal Transition of Prostate Cancer Cells through High-Mobility Group Box 1/Receptor for Advanced Glycation End-Products/TGF-β Pathway. Environ. Toxicol. 2021, 36, 1080–1089. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, F.; Dong, R.; Yu, J.; Luo, M.; Zha, Y. Verbascoside Alleviates Renal Fibrosis in Unilateral Ureteral Obstruction Rats by Inhibiting Macrophage Infiltration. Iran. J. Basic Med. Sci. 2021, 24, 752–759. [Google Scholar] [CrossRef]
- Hackett, E.S.; Twedt, D.C.; Gustafson, D.L. Milk Thistle and Its Derivative Compounds: A Review of Opportunities for Treatment of Liver Disease. J. Vet. Intern. Med. 2013, 27, 10–16. [Google Scholar] [CrossRef]
- Abenavoli, L.; Capasso, R.; Milic, N.; Capasso, F. Milk Thistle in Liver Diseases: Past, Present, Future. Phytother. Res. 2010, 24, 1423–1432. [Google Scholar] [CrossRef]
- PubChem Silymarin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5213 (accessed on 21 February 2022).
- Katiyar, S.K. Silymarin and Skin Cancer Prevention: Anti-Inflammatory, Antioxidant and Immunomodulatory Effects (Review). Int. J. Oncol. 2005, 26, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Flora, K.; Hahn, M.; Rosen, H.; Benner, K. Milk Thistle (Silybum marianum) for the Therapy of Liver Disease. Am. J. Gastroenterol. 1998, 93, 139–143. [Google Scholar] [CrossRef]
- Pradhan, S.C.; Girish, C. Hepatoprotective Herbal Drug, Silymarin from Experimental Pharmacology to Clinical Medicine. Indian J. Med. Res. 2006, 124, 491–504. [Google Scholar]
- Saller, R.; Meier, R.; Brignoli, R. The Use of Silymarin in the Treatment of Liver Diseases. Drugs 2001, 61, 2035–2063. [Google Scholar] [CrossRef]
- Greenlee, H.; Abascal, K.; Yarnell, E.; Ladas, E. Clinical Applications of Silybum marianum in Oncology. Integr. Cancer Ther. 2007, 6, 158–165. [Google Scholar] [CrossRef]
- Agarwal, R.; Agarwal, C.; Ichikawa, H.; Singh, R.P.; Aggarwal, B.B. Anticancer Potential of Silymarin: From Bench to Bed Side. Anticancer Res. 2006, 26, 4457–4498. [Google Scholar]
- Deep, G.; Agarwal, R. Antimetastatic Efficacy of Silibinin: Molecular Mechanisms and Therapeutic Potential against Cancer. Cancer Metastasis Rev. 2010, 29, 447–463. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Kim, S.G.; Kim, H.K.; Lee, T.-H.; Jeong, Y.-I.; Lee, C.-M.; Yoon, M.-S.; Na, Y.J.; Suh, D.-S.; Park, N.C.; et al. Silibinin Polarizes Th1/Th2 Immune Responses through the Inhibition of Immunostimulatory Function of Dendritic Cells. J. Cell. Physiol. 2007, 210, 385–397. [Google Scholar] [CrossRef]
- Krecman, V.; Skottová, N.; Walterová, D.; Ulrichová, J.; Simánek, V. Silymarin Inhibits the Development of Diet-Induced Hypercholesterolemia in Rats. Planta Med. 1998, 64, 138–142. [Google Scholar] [CrossRef]
- Skottová, N.; Krecman, V. Silymarin as a Potential Hypocholesterolaemic Drug. Physiol. Res. 1998, 47, 1–7. [Google Scholar]
- Fehér, J.; Láng, I.; Nékám, K.; Csomós, G.; Müzes, G.; Deák, G. Effect of Silibinin on the Activity and Expression of Superoxide Dismutase in Lymphocytes from Patients with Chronic Alcoholic Liver Disease. Free Radic. Res. Commun. 1987, 3, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Altorjay, I.; Dalmi, L.; Sári, B.; Imre, S.; Balla, G. The Effect of Silibinin (Legalon) on the the Free Radical Scavenger Mechanisms of Human Erythrocytes In Vitro. Acta Physiol. Hung. 1992, 80, 375–380. [Google Scholar] [PubMed]
- Zhang, W.; Hong, R.; Tian, T. Silymarin’s Protective Effects and Possible Mechanisms on Alcoholic Fatty Liver for Rats. Biomol. Ther. 2013, 21, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müzes, G.; Deák, G.; Láng, I.; Nékám, K.; Gergely, P.; Fehér, J. Effect of the Bioflavonoid Silymarin on the In Vitro Activity and Expression of Superoxide Dismutase (SOD) Enzyme. Acta Physiol. Hung. 1991, 78, 3–9. [Google Scholar] [PubMed]
- Velussi, M.; Cernigoi, A.M.; De Monte, A.; Dapas, F.; Caffau, C.; Zilli, M. Long-Term (12 Months) Treatment with an Anti-Oxidant Drug (Silymarin) Is Effective on Hyperinsulinemia, Exogenous Insulin Need and Malondialdehyde Levels in Cirrhotic Diabetic Patients. J. Hepatol. 1997, 26, 871–879. [Google Scholar] [CrossRef]
- Prakash, P.; Singh, V.; Jain, M.; Rana, M.; Khanna, V.; Barthwal, M.K.; Dikshit, M. Silymarin Ameliorates Fructose Induced Insulin Resistance Syndrome by Reducing de Novo Hepatic Lipogenesis in the Rat. Eur. J. Pharmacol. 2014, 727, 15–28. [Google Scholar] [CrossRef]
- Salamone, F.; Galvano, F.; Cappello, F.; Mangiameli, A.; Barbagallo, I.; Li Volti, G. Silibinin Modulates Lipid Homeostasis and Inhibits Nuclear Factor Kappa B Activation in Experimental Nonalcoholic Steatohepatitis. Transl. Res. 2012, 159, 477–486. [Google Scholar] [CrossRef]
- Nakamura, A.; Tajima, K.; Zolzaya, K.; Sato, K.; Inoue, R.; Yoneda, M.; Fujita, K.; Nozaki, Y.; Kubota, K.C.; Haga, H.; et al. Protection from Non-Alcoholic Steatohepatitis and Liver Tumourigenesis in High Fat-Fed Insulin Receptor Substrate-1-Knockout Mice despite Insulin Resistance. Diabetologia 2012, 55, 3382–3391. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Liong, E.C.; Ching, Y.P.; Chang, R.C.C.; Fung, M.L.; Xu, A.M.; So, K.F.; Tipoe, G.L. Lycium Barbarum Polysaccharides Protect Rat Liver from Non-Alcoholic Steatohepatitis-Induced Injury. Nutr. Diabetes 2013, 3, e81. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Lahair, M.M.; Franklin, R.A. Reactive Oxygen Species-Induced Activation of the MAP Kinase Signaling Pathways. Antioxid. Redox Signal. 2006, 8, 1775–1789. [Google Scholar] [CrossRef]
- Wullaert, A.; van Loo, G.; Heyninck, K.; Beyaert, R. Hepatic Tumor Necrosis Factor Signaling and Nuclear Factor-KappaB: Effects on Liver Homeostasis and Beyond. Endocr. Rev. 2007, 28, 365–386. [Google Scholar] [CrossRef] [PubMed]
- Papa, S.; Bubici, C.; Zazzeroni, F.; Franzoso, G. Mechanisms of Liver Disease: Cross-Talk between the NF-KappaB and JNK Pathways. Biol. Chem. 2009, 390, 965–976. [Google Scholar] [CrossRef] [Green Version]
- Trappoliere, M.; Caligiuri, A.; Schmid, M.; Bertolani, C.; Failli, P.; Vizzutti, F.; Novo, E.; di Manzano, C.; Marra, F.; Loguercio, C.; et al. Silybin, a Component of Sylimarin, Exerts Anti-Inflammatory and Anti-Fibrogenic Effects on Human Hepatic Stellate Cells. J. Hepatol. 2009, 50, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Cacciapuoti, F.; Scognamiglio, A.; Palumbo, R.; Forte, R.; Cacciapuoti, F. Silymarin in Non Alcoholic Fatty Liver Disease. World J. Hepatol. 2013, 5, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Aghazadeh, S.; Amini, R.; Yazdanparast, R.; Ghaffari, S.H. Anti-Apoptotic and Anti-Inflammatory Effects of Silybum marianum in Treatment of Experimental Steatohepatitis. Exp. Toxicol. Pathol. 2011, 63, 569–574. [Google Scholar] [CrossRef]
- Feldstein, A.E.; Canbay, A.; Angulo, P.; Taniai, M.; Burgart, L.J.; Lindor, K.D.; Gores, G.J. Hepatocyte Apoptosis and Fas Expression Are Prominent Features of Human Nonalcoholic Steatohepatitis. Gastroenterology 2003, 125, 437–443. [Google Scholar] [CrossRef]
- Wieckowska, A.; Zein, N.N.; Yerian, L.M.; Lopez, A.R.; McCullough, A.J.; Feldstein, A.E. In Vivo Assessment of Liver Cell Apoptosis as a Novel Biomarker of Disease Severity in Nonalcoholic Fatty Liver Disease. Hepatology 2006, 44, 27–33. [Google Scholar] [CrossRef]
- Manna, S.K.; Mukhopadhyay, A.; Van, N.T.; Aggarwal, B.B. Silymarin Suppresses TNF-Induced Activation of NF-Kappa B, c-Jun N-Terminal Kinase, and Apoptosis. J. Immunol. 1999, 163, 6800–6809. [Google Scholar]
- Jia, J.D.; Bauer, M.; Cho, J.J.; Ruehl, M.; Milani, S.; Boigk, G.; Riecken, E.O.; Schuppan, D. Antifibrotic Effect of Silymarin in Rat Secondary Biliary Fibrosis Is Mediated by Downregulation of Procollagen Alpha1(I) and TIMP-1. J. Hepatol. 2001, 35, 392–398. [Google Scholar] [CrossRef]
- Boigk, G.; Stroedter, L.; Herbst, H.; Waldschmidt, J.; Riecken, E.O.; Schuppan, D. Silymarin Retards Collagen Accumulation in Early and Advanced Biliary Fibrosis Secondary to Complete Bile Duct Obliteration in Rats. Hepatology 1997, 26, 643–649. [Google Scholar] [CrossRef]
- Kim, M.; Yang, S.-G.; Kim, J.M.; Lee, J.-W.; Kim, Y.S.; Lee, J.I. Silymarin Suppresses Hepatic Stellate Cell Activation in a Dietary Rat Model of Non-Alcoholic Steatohepatitis: Analysis of Isolated Hepatic Stellate Cells. Int. J. Mol. Med. 2012, 30, 473–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marra, F.; Arrighi, M.C.; Fazi, M.; Caligiuri, A.; Pinzani, M.; Romanelli, R.G.; Efsen, E.; Laffi, G.; Gentilini, P. Extracellular Signal-Regulated Kinase Activation Differentially Regulates Platelet-Derived Growth Factor’s Actions in Hepatic Stellate Cells, and Is Induced by In Vivo Liver Injury in the Rat. Hepatology 1999, 30, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, J.H.; Lim, H.I.; Lee, S.-K.; Kim, W.W.; Kim, J.S.; Kim, J.-H.; Choe, J.-H.; Yang, J.-H.; Nam, S.J.; et al. Silibinin Prevents TPA-Induced MMP-9 Expression and VEGF Secretion by Inactivation of the Raf/MEK/ERK Pathway in MCF-7 Human Breast Cancer Cells. Phytomedicine 2009, 16, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zhi, M.; Gao, X.; Hu, P.; Li, C.; Yang, X. Effect and the Probable Mechanisms of Silibinin in Regulating Insulin Resistance in the Liver of Rats with Non-Alcoholic Fatty Liver. Braz. J. Med. Biol. Res. 2013, 46, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loguercio, C.; Festi, D. Silybin and the Liver: From Basic Research to Clinical Practice. World J. Gastroenterol. 2011, 17, 2288–2301. [Google Scholar] [CrossRef]
- Fraschini, F.; Demartini, G.; Esposti, D. Pharmacology of Silymarin. Clin. Drug Investig. 2002, 22, 51–65. [Google Scholar] [CrossRef]
- Voinovich, D.; Perissutti, B.; Grassi, M.; Passerini, N.; Bigotto, A. Solid State Mechanochemical Activation of Silybum marianum Dry Extract with Betacyclodextrins: Characterization and Bioavailability of the Coground Systems. J. Pharm. Sci. 2009, 98, 4119–4129. [Google Scholar] [CrossRef]
- Salamone, F.; Galvano, F.; Marino Gammazza, A.; Marino, A.; Paternostro, C.; Tibullo, D.; Bucchieri, F.; Mangiameli, A.; Parola, M.; Bugianesi, E.; et al. Silibinin Improves Hepatic and Myocardial Injury in Mice with Nonalcoholic Steatohepatitis. Dig. Liver Dis. 2012, 44, 334–342. [Google Scholar] [CrossRef]
- Loguercio, C.; Andreone, P.; Brisc, C.; Brisc, M.C.; Bugianesi, E.; Chiaramonte, M.; Cursaro, C.; Danila, M.; de Sio, I.; Floreani, A.; et al. Silybin Combined with Phosphatidylcholine and Vitamin E in Patients with Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial. Free Radic. Biol. Med. 2012, 52, 1658–1665. [Google Scholar] [CrossRef] [Green Version]
- Rosso, N.; Marin, V.; Giordani, A.; Persiani, S.; Sala, F.; Cavicchioli, L.; Rovati, L.C.; Tiribelli, C. The Pros and the Cons for the Use of Silybin-Rich Oral Formulations in Treatment of Liver Damage (NAFLD in Particular). Curr. Med. Chem. 2015, 22, 2954–2971. [Google Scholar]
- Africa, J.A.; Newton, K.P.; Schwimmer, J.B. Lifestyle Interventions Including Nutrition, Exercise, and Supplements for Nonalcoholic Fatty Liver Disease in Children. Dig. Dis. Sci. 2016, 61, 1375–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouet, S.; Hano, C. Biosynthesis and Regulation of Antioxidant Flavonolignans in Milk Thistle; IntechOpen: London, UK, 2021; ISBN 978-1-83968-865-2. [Google Scholar]
- Drouet, S.; Doussot, J.; Garros, L.; Mathiron, D.; Bassard, S.; Favre-Réguillon, A.; Molinié, R.; Lainé, É.; Hano, C. Selective Synthesis of 3-O-Palmitoyl-Silybin, a New-to-Nature Flavonolignan with Increased Protective Action against Oxidative Damages in Lipophilic Media. Molecules 2018, 23, 2594. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hai, J.; Cao, M.; Zhang, Y.; Pei, S.; Wang, J.; Zhang, Q. Silibinin Ameliorates Steatosis and Insulin Resistance during Non-Alcoholic Fatty Liver Disease Development Partly through Targeting IRS-1/PI3K/Akt Pathway. Int. Immunopharmacol. 2013, 17, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Bouderba, S.; Sanchez-Martin, C.; Villanueva, G.R.; Detaille, D.; Koceïr, E.A. Beneficial Effects of Silibinin against the Progression of Metabolic Syndrome, Increased Oxidative Stress, and Liver Steatosis in Psammomys obesus, a Relevant Animal Model of Human Obesity and Diabetes. J. Diabetes 2014, 6, 184–192. [Google Scholar] [CrossRef]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee Consumption and Health: Umbrella Review of Meta-Analyses of Multiple Health Outcomes. BMJ 2017, 359, j5024. [Google Scholar] [CrossRef] [Green Version]
- Tfouni, S.A.V.; Serrate, C.S.; Carreiro, L.B.; Camargo, M.C.R.; Teles, C.R.A.; Cipolli, K.M.V.A.B.; Furlani, R.P.Z. Effect of Roasting on Chlorogenic Acids, Caffeine and Polycyclic Aromatic Hydrocarbons Levels in Two Coffea Cultivars: Coffea Arabica Cv. Catuaí Amarelo IAC-62 and Coffea Canephora Cv. Apoatã IAC-2258. Int. J. Food Sci. Technol. 2012, 47, 406–415. [Google Scholar] [CrossRef]
- Martín, M.J.; Pablos, F.; González, A.G. Discrimination between Arabica and Robusta Green Coffee Varieties According to Their Chemical Composition. Talanta 1998, 46, 1259–1264. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvoza, N.; Giraudi, P.J.; Tiribelli, C.; Rosso, N. Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates. Int. J. Mol. Sci. 2022, 23, 2764. https://doi.org/10.3390/ijms23052764
Salvoza N, Giraudi PJ, Tiribelli C, Rosso N. Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates. International Journal of Molecular Sciences. 2022; 23(5):2764. https://doi.org/10.3390/ijms23052764
Chicago/Turabian StyleSalvoza, Noel, Pablo J. Giraudi, Claudio Tiribelli, and Natalia Rosso. 2022. "Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates" International Journal of Molecular Sciences 23, no. 5: 2764. https://doi.org/10.3390/ijms23052764
APA StyleSalvoza, N., Giraudi, P. J., Tiribelli, C., & Rosso, N. (2022). Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates. International Journal of Molecular Sciences, 23(5), 2764. https://doi.org/10.3390/ijms23052764