Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses
Abstract
:1. Introduction
2. Results
2.1. Palmitate Promotes GRK2-Mediated Cell Death
2.2. Upregulation of GRK2 in Adult Cardiomyocytes Reduces Palmitate Catabolism
2.3. Chronic βAR Stimulation and GRK2 Levels in Cellular Compartments Is Increased in Grk2TG Hearts
2.4. Mitochondrial Functional Responses Are Altered in Response to βAR Stimulation and GRK2 Expression
3. Discussion
4. Materials and Methods
4.1. Animal Models
4.2. Mouse Adult Cardiomyocyte Isolation (ACMs)
4.3. Substrate-Specific Cell Culture Preparations
4.4. Live/Dead Assay
4.5. Mini-Osmotic Pump Implantation
4.6. Echocardiography
4.7. Mitochondria Respiration Measurement by Seahorse
4.8. Isotope Tracing Analysis
4.9. Subfractionation Preparation and Western Blot Analysis
4.10. Human Adult Cardiomyocytes (hACMs)
4.11. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sato, P.Y.; Chuprun, J.K.; Schwartz, M.; Koch, W.J. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol. Rev. 2015, 95, 377–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, J.; Zhai, R.; Lackey, A.I.; Sato, P.Y. Changes in Myocardial Metabolism Preceding Sudden Cardiac Death. Front. Physiol. 2020, 11, 640. [Google Scholar] [CrossRef] [PubMed]
- White, D.C.; Hata, J.A.; Shah, A.S.; Glower, D.D.; Lefkowitz, R.J.; Koch, W.J. Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc. Natl. Acad. Sci. USA 2000, 97, 5428–5433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iaccarino, G.; Barbato, E.; Cipolletta, E.; De Amicis, V.; Margulies, K.B.; Leosco, D.; Trimarco, B.; Koch, W.J. Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. Eur. Heart J. 2005, 26, 1752–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Sato, P.Y.; Chuprun, J.K.; Peroutka, R.J.; Otis, N.J.; Ibetti, J.; Pan, S.; Sheu, S.S.; Gao, E.; Koch, W.J. Prodeath signaling of G protein-coupled receptor kinase 2 in cardiac myocytes after ischemic stress occurs via extracellular signal-regulated kinase-dependent heat shock protein 90-mediated mitochondrial targeting. Circ. Res. 2013, 112, 1121–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusco, A.; Santulli, G.; Sorriento, D.; Cipolletta, E.; Garbi, C.; Dorn, G.W., 2nd; Trimarco, B.; Feliciello, A.; Iaccarino, G. Mitochondrial localization unveils a novel role for GRK2 in organelle biogenesis. Cell Signal. 2012, 24, 468–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrenovich, M.E.; Smith, M.A.; Siedlak, S.L.; Chen, S.G.; de la Torre, J.C.; Perry, G.; Aliev, G. Overexpression of GRK2 in Alzheimer disease and in a chronic hypoperfusion rat model is an early marker of brain mitochondrial lesions. Neurotox. Res. 2006, 10, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Sato, P.Y.; Chuprun, J.K.; Ibetti, J.; Cannavo, A.; Drosatos, K.; Elrod, J.W.; Koch, W.J. GRK2 compromises cardiomyocyte mitochondrial function by diminishing fatty acid-mediated oxygen consumption and increasing superoxide levels. J. Mol. Cell. Cardiol. 2015, 89, 360–364. [Google Scholar] [CrossRef] [Green Version]
- Pfleger, J.; Gross, P.; Johnson, J.; Carter, R.L.; Gao, E.; Tilley, D.G.; Houser, S.R.; Koch, W.J. G protein-coupled receptor kinase 2 contributes to impaired fatty acid metabolism in the failing heart. J. Mol. Cell. Cardiol. 2018, 123, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Kolwicz, S.C., Jr.; Purohit, S.; Tian, R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 2013, 113, 603–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedi, K.C., Jr.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; et al. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation 2016, 133, 706–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, W.J.; Rockman, H.A.; Samama, P.; Hamilton, R.A.; Bond, R.A.; Milano, C.A.; Lefkowitz, R.J. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 1995, 268, 1350–1353. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Collins-Nakai, R.L.; Itoi, T. Developmental changes in energy substrate use by the heart. Cardiovasc. Res. 1992, 26, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Nanchen, D.; Leening, M.J.; Locatelli, I.; Cornuz, J.; Kors, J.A.; Heeringa, J.; Deckers, J.W.; Hofman, A.; Franco, O.H.; Stricker, B.H.; et al. Resting heart rate and the risk of heart failure in healthy adults: The Rotterdam Study. Circ. Heart Fail. 2013, 6, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, P.Y.; Chuprun, J.K.; Grisanti, L.A.; Woodall, M.C.; Brown, B.R.; Roy, R.; Traynham, C.J.; Ibetti, J.; Lucchese, A.M.; Yuan, A.; et al. Restricting mitochondrial GRK2 post-ischemia confers cardioprotection by reducing myocyte death and maintaining glucose oxidation. Sci. Signal. 2018, 11, eaau0144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, A.J.; Feldman, D.R.; Trefely, S.; Worth, A.J.; Basu, S.S.; Snyder, N.W. LC-quadrupole/Orbitrap high-resolution mass spectrometry enables stable isotope-resolved simultaneous quantification and 13C-isotopic labeling of acyl-coenzyme A thioesters. Anal. Bioanal. Chem. 2016, 408, 3651–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, R.; Varner, E.L.; Rao, A.; Karhadkar, S.; Di Carlo, A.; Snyder, N.W.; Sato, P.Y. Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses. Int. J. Mol. Sci. 2022, 23, 2777. https://doi.org/10.3390/ijms23052777
Zhai R, Varner EL, Rao A, Karhadkar S, Di Carlo A, Snyder NW, Sato PY. Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses. International Journal of Molecular Sciences. 2022; 23(5):2777. https://doi.org/10.3390/ijms23052777
Chicago/Turabian StyleZhai, Ruxu, Erika L. Varner, Ajay Rao, Sunil Karhadkar, Antonio Di Carlo, Nathaniel W. Snyder, and Priscila Y. Sato. 2022. "Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses" International Journal of Molecular Sciences 23, no. 5: 2777. https://doi.org/10.3390/ijms23052777
APA StyleZhai, R., Varner, E. L., Rao, A., Karhadkar, S., Di Carlo, A., Snyder, N. W., & Sato, P. Y. (2022). Myocardial GRK2 Reduces Fatty Acid Metabolism and β-Adrenergic Receptor-Mediated Mitochondrial Responses. International Journal of Molecular Sciences, 23(5), 2777. https://doi.org/10.3390/ijms23052777