Role of Nuclear Receptors in Controlling Erythropoiesis
Abstract
:1. Introduction
1.1. Erythropoiesis
1.2. Nuclear Receptors
2. NRs Controlling Normal Erythropoiesis
2.1. The Developmental Control by Retinoic Acid: From the Emergence of HSCs to the Establishment of Erythropoietin-Dependent Erythropoiesis
Mouse Models
2.2. NRs Affecting Erythroid Differentiation
2.2.1. The Thyroid Hormone Receptor: NR1A1/2
Mouse Models
2.3. The Complex Role of Sexual Hormones in Erythropoiesis
2.3.1. Estrogen Receptors (ERα: NR3A1 and ERβ: NR3A2)
Mouse Models
2.3.2. Androgen Receptor (AR: NR3C)
2.3.3. Progesterone Receptor (PR: NR3C3)
3. NRs Controlling Stress Erythropoiesis Response
3.1. The Glucocorticoid Receptor (GR: NR3C1)
Mouse Models
3.2. Vitamin D Receptor (VDR: NR1I1)
Mouse Models
4. Orphan Nuclear Receptors
4.1. The Orphan Nuclear Receptors Controlling the Hemoglobin Switching
4.1.1. Testicular Receptors 2 and 4 (TR2: NR2C1; TR4: NR2C2)
Mouse Models
4.1.2. Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII, NR2F2)
4.2. Nurr77 (NR4A1) and the Negative Control of the Erythroid Potential of Murine Splenic Progenitors
Mouse Models
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzierzak, E.; Philipsen, S. Erythropoiesis: Development and Differentiation. Cold Spring Harb. Perspect. Med. 2013, 3, a011601. [Google Scholar] [CrossRef] [PubMed]
- Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schütz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; et al. The nuclear receptor superfamily: The second decade. Cell 1995, 83, 835–839. [Google Scholar] [CrossRef] [Green Version]
- Bookout, A.L.; Jeong, Y.; Downes, M.; Yu, R.T.; Evans, R.M.; Mangelsdorf, D.J. Anatomical Profiling of Nuclear Receptor Expression Reveals a Hierarchical Transcriptional Network. Cell 2006, 126, 789–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996, 10, 940–954. [Google Scholar] [CrossRef] [PubMed]
- Ghyselinck, N.B.; Duester, G. Retinoic acid signaling pathways. Development 2019, 146, dev167502. [Google Scholar] [CrossRef] [Green Version]
- Al Tanoury, Z.; Piskunov, A.; Rochette-Egly, C. Vitamin A and retinoid signaling: Genomic and nongenomic effects. J. Lipid Res. 2013, 54, 1761–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, N.J. EMBO Retinoids 2011: Mechanisms, Biology and Pathology of Signaling by Retinoic Acid and Retinoic Acid Receptors. Nucl. Recept. Signal. 2012, 10, e003. [Google Scholar] [CrossRef] [Green Version]
- Cañete, A.; Cano, E.; Muñoz-Chápuli, R.; Carmona, R. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis. Nutrients 2017, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- Goldie, L.C.; Lucitti, J.L.; Dickinson, M.E.; Hirschi, K.K. Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis. Blood 2008, 112, 3194–3204. [Google Scholar] [CrossRef] [Green Version]
- Chanda, B.; Ditadi, A.; Iscove, N.N.; Keller, G. Retinoic Acid Signaling Is Essential for Embryonic Hematopoietic Stem Cell Development. Cell 2013, 155, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Niederreither, K.; Subbarayan, V.; Dollé, P.; Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet. 1999, 21, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Bohnsack, B.; Niederreither, K.; Hirschi, K.K. Retinoic acid regulates endothelial cell proliferation during vasculogenesis. Development 2003, 130, 6465–6474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohnsack, B.L.; Lai, L.; Dolle, P.; Hirschi, K.K. Signaling hierarchy downstream of retinoic acid that independently regulates vascular remodeling and endothelial cell proliferation. Genes Dev. 2004, 18, 1345–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makita, T.; Hernandez-Hoyos, G.; Chen, T.H.-P.; Wu, H.; Rothenberg, E.V.; Sucov, H.M. A developmental transition in definitive erythropoiesis: Erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4. Genes Dev. 2001, 15, 889–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabezas-Wallscheid, N.; Buettner, F.; Sommerkamp, P.; Klimmeck, D.; Ladel, L.; Thalheimer, F.B.; Pastor-Flores, D.; Roma, L.P.; Renders, S.; Zeisberger, P.; et al. Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell 2017, 169, 807–823.e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semba, R.D.; Bloem, M.W. The anemia of vitamin A deficiency: Epidemiology and pathogenesis. Eur. J. Clin. Nutr. 2002, 56, 271–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labbaye, C.; Valtieri, M.; Testa, U.; Giampaolo, A.; Meccia, E.; Sterpetti, P.; Parolini, I.; Pelosi, E.; Bulgarini, D.; Cayre, Y.E. Retinoic acid downmodulates erythroid differentiation and GATA1 expression in purified adult-progenitor culture. Blood 1994, 83, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Ablain, J.; de The, H. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia. Int. J. Cancer 2014, 135, 2262–2272. [Google Scholar] [CrossRef]
- Li, E.; Sucov, H.; Lee, K.F.; Evans, R.; Jaenisch, R. Normal development and growth of mice carrying a targeted disruption of the alpha 1 retinoic acid receptor gene. Proc. Natl. Acad. Sci. USA 1993, 90, 1590–1594. [Google Scholar] [CrossRef] [Green Version]
- Dewamitta, S.R.; Joseph, C.; Purton, L.E.; Walkley, C.R. Erythroid-extrinsic regulation of normal erythropoiesis by retinoic acid receptors. Br. J. Haematol. 2014, 164, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Walkley, C.R.; Olsen, G.H.; Dworkin, S.; Fabb, S.A.; Swann, J.; McArthur, G.A.; Westmorel, S.V.; Chambon, P.; Scadden, D.T.; Purton, L.E. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 2007, 129, 1097–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makita, T.; Duncan, S.A.; Sucov, H.M. Retinoic acid, hypoxia, and GATA factors cooperatively control the onset of fetal liver erythropoietin expression and erythropoietic differentiation. Dev. Biol. 2005, 280, 59–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendling, O.; Chambon, P.; Mark, M. Retinoid X receptors are essential for early mouse development and placentogenesis. Proc. Natl. Acad. Sci. USA 1999, 96, 547–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krezel, W.; Dupe, V.; Mark, M.; Dierich, A.; Kastner, P.; Chambon, P. RXR gamma null mice are apparently normal and compound RXR alpha +/−/RXR beta −/−/RXR gamma −/− mutant mice are viable. Proc. Natl. Acad. Sci. USA 1996, 93, 9010–9014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranda, A.; Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev. 2001, 81, 1269–1304. [Google Scholar] [CrossRef]
- Aranda, A.; Alonso-Merino, E.; Zambrano, A. Receptors of thyroid hormones. Pediatr. Endocrinol. Rev. 2013, 11, 2–13. [Google Scholar]
- Pascual, A.; Aranda, A. Thyroid hormone receptors, cell growth and differentiation. Biochim. Biophys. Acta 2013, 1830, 3908–3916. [Google Scholar] [CrossRef]
- Dainiak, N.; Hoffman, R.; Maffei, L.A.; Forget, B.G. Potentiation of human erythropoiesis in vitro by thyroid hormone. Nature 1978, 272, 260–262. [Google Scholar] [CrossRef]
- Krause, R.L.; Sokoloff, L. Effects of thyroxine on initiation and completion of protein chains of hemoglobin in vitro. J. Biol. Chem. 1967, 242, 1431–1438. [Google Scholar] [CrossRef]
- Gandrillon, O.; Jurdic, P.; Pain, B.; Desbois, C.; Madjar, J.J.; Moscovici, M.G.; Moscovici, C.; Samarut, J. Expression of the v-erbA product, an altered nuclear hormone receptor, is sufficient to transform erythrocytic cells in vitro. Cell 1989, 58, 115–121. [Google Scholar] [CrossRef]
- Bauer, A.; Mikulits, W.; Lagger, G.; Stengl, G.; Brosch, G.; Beug, H. The thyroid hormone receptor functions as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors. EMBO J. 1998, 17, 4291–4303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartunek, P.; Zenke, M. Retinoid X receptor and c-cerbA/thyroid hormone receptor regulate erythroid cell growth and differentiation. Mol. Endocrinol. 1998, 12, 1269–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, S.T.; Ng, J.P. Hypothyroidism and anaemia. Biomed. Pharmacother. 1986, 40, 326–331. [Google Scholar] [PubMed]
- Van Gucht, A.L.M.; Meima, M.E.; Moran, C.; Agostini, M.; Tylki-Szymanska, A.; Krajewska-Walasek, M.; Chrzanowska, K.; Efthymiadou, A.; Chrysis, D.; Demir, K.; et al. Anemia in Patients With Resistance to Thyroid Hormone α: A Role for Thyroid Hormone Receptor α in Human Erythropoiesis. J. Clin. Endocrinol. Metab. 2017, 102, 3517–3525. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J.; Fan, L.; Shi, B. Erythrocytosis associated with hyperthyroidism: A rare case report and clinical study of possible mechanism. Endocr. Res. 2015, 40, 177–180. [Google Scholar] [CrossRef]
- Kendrick, T.S.; Payne, C.J.; Epis, M.R.; Schneider, J.R.; Leedman, P.J.; Klinken, S.P.; Ingley, E. Erythroid defects in TRalpha−/− mice. Blood 2008, 111, 3245–3248. [Google Scholar] [CrossRef]
- Park, S.; Han, C.R.; Park, J.W.; Zhao, L.; Zhu, X.; Willingham, M.; Bodine, D.M.; Cheng, S.-Y. Defective erythropoiesis caused by mutations of the thyroid hormone receptor α gene. PLoS Genet. 2017, 13, e1006991. [Google Scholar] [CrossRef] [Green Version]
- Han, C.R.; Park, S.; Cheng, S.-Y. NCOR1 modulates erythroid disorders caused by mutations of thyroid hormone receptor α1. Sci. Rep. 2017, 7, 18080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Harst, P.; Zhang, W.; Leach, I.M.; Rendon, A.; Verweij, N.; Sehmi, J.; Paul, D.S.; Elling, U.; Allayee, H.; Li, X.; et al. Seventy-five genetic loci influencing the human red blood cell. Nature 2012, 492, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Sadow, P.M.; Refetoff, S.; Weiss, R.E. Tissue responses to thyroid hormone in a kindred with resistance to thyroid hormone harboring a commonly occurring mutation in the thyroid hormone receptor beta gene (P453T). J. Lab. Clin. Med. 2005, 146, 85–94. [Google Scholar] [CrossRef]
- Dumitrescu, A.M.; Refetoff, S. The syndromes of reduced sensitivity to thyroid hormone. Biochim. Biophys. Acta 2013, 1830, 3987–4003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Lee, H.-Y.; Li, W.; Platt, R.; Barrasa, M.I.; Ma, Q.; Elmes, R.R.; Rosenfeld, M.G.; Lodish, H.F. Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. Proc. Natl. Acad. Sci. USA 2017, 114, 10107–10112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santana-Codina, N.; Gableske, S.; Del Rey, M.Q.; Małachowska, B.; Jedrychowski, M.P.; Biancur, D.E.; Schmidt, P.J.; Fleming, M.D.; Fendler, W.; Harper, J.W.; et al. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica 2019, 104, 1342–1354. [Google Scholar] [CrossRef] [Green Version]
- Nai, A.; Pettinato, M.; Federico, G.; Olivari, V.; Carlomagno, F.; Silvestri, L. Tamoxifen erythroid toxicity revealed by studying the role of nuclear receptor co-activator 4 in erythropoiesis. Haematologica 2019, 104, e383–e384. [Google Scholar] [CrossRef] [Green Version]
- Santana-Codina, N.; Gableske, S.; Fleming, M.D.; Harper, J.W.; Kimmelman, A.C.; Mancias, J.D. The role of nuclear receptor co-activator 4 in erythropoiesis (Reply to Nai et al.). Haematologica 2019, 104, e585–e586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrest, D.; Hanebuth, E.; Smeyne, R.J.; Everds, N.; Stewart, C.L.; Wehner, J.M.; Curran, T. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: Evidence for tissue-specific modulation of receptor function. EMBO J. 1996, 15, 3006–3015. [Google Scholar] [CrossRef] [PubMed]
- Wikström, L.; Johansson, C.; Saltó, C.; Barlow, C.; Barros, A.C.; Baas, F.; Forrest, D.; Thorén, P.; Vennström, B. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J. 1998, 17, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, K.; Chassande, O.; Plateroti, M.; Roux, J.P.; Legrand, C.; Pain, B.; Rousset, B.; Weiss, R.; Trouillas, J.; Samarut, J. Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. EMBO J. 1999, 18, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Göthe, S.; Wang, Z.; Ng, L.; Kindblom, J.M.; Barros, A.C.; Ohlsson, C.; Vennström, B.; Forrest, D. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev. 1999, 13, 1329–1341. [Google Scholar] [CrossRef] [Green Version]
- Angelin-Duclos, C.; Domenget, C.; Kolbus, A.; Beug, H.; Jurdic, P.; Samarut, J. Thyroid hormone T3 acting through the thyroid hormone α receptor is necessary for implementation of erythropoiesis in the neonatal spleen environment in the mouse. Development 2005, 132, 925–934. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, Z.; Yu, S.; Han, X.; Deng, Y.; Wang, F.; Chen, Y.; Liu, X.; Zhou, J.; Zhu, J. 3,3′,5-Triiodothyroacetic acid (TRIAC) induces embryonic zeta-globin expression via thyroid hormone receptor alpha. J. Hematol. Oncol. 2021, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Fañanas-Baquero, S.; Orman, I.; Aparicio, F.B.; de Miguel, S.B.; Merino, J.G.; Yañez, R.; Sainz, Y.F.; Sánchez, R.; Dessy-Rodríguez, M.; Alberquilla, O.; et al. Natural estrogens enhance the engraftment of human hematopoietic stem and progenitor cells in immunodeficient mice. Haematologica 2020, 106, 1659–1670. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-R.; Lee, J.-H.; Heo, H.-R.; Yang, S.-R.; Haengseok, S.; Park, W.S.; Han, E.-T.; Song, H.; Hong, S.-H. Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway. Cell Biosci. 2016, 6, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirand, E.A.; Gordon, A.S. Mechanism of estrogen action in erythropoiesis. Endocrinology 1966, 78, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.S.; Trobough, F.E., Jr. Effects of estrogen on erythropoiesis and granuloid progenitor cell (CFU-C) proliferation in mice. J. Lab. Clin. Med. 1978, 91, 960–968. [Google Scholar]
- Dukes, P.P.; Goldwasser, E. Inhibition of erythropoiesis by estrogens. Endocrinology 1961, 69, 21–29. [Google Scholar] [CrossRef]
- Azad, P.; Villafuerte, F.C.; Bermudez, D.; Patel, G.; Haddad, G.G. Protective role of estrogen against excessive erythrocytosis in Monge’s disease. Exp. Mol. Med. 2021, 53, 125–135. [Google Scholar] [CrossRef]
- Blobel, G.A.; Sieff, C.A.; Orkin, S.H. Ligand-dependent repression of the erythroid transcription factor GATA-1 by the estrogen receptor. Mol. Cell. Biol. 1995, 15, 3147–3153. [Google Scholar] [CrossRef] [Green Version]
- Blobel, G.A.; Orkin, S.H. Estrogen-induced apoptosis by inhibition of the erythroid transcription factor GATA-1. Mol. Cell. Biol. 1996, 16, 1687–1694. [Google Scholar] [CrossRef] [Green Version]
- Lubahn, D.B.; Moyer, J.S.; Golding, T.S.; Couse, J.F.; Korach, K.S.; Smithies, O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA 1993, 90, 11162–11166. [Google Scholar] [CrossRef] [Green Version]
- Dupont, S.; Krust, A.; Gansmuller, A.; Dierich, A.; Chambon, P.; Mark, M. Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 2000, 127, 4277–4291. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, S.C.; Korach, K.S. Estrogen Receptors: New Directions in the New Millennium. Endocr. Rev. 2018, 39, 664–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, G.J.; Wang, L.; Andersson, S.; Nagy, N.; Kis, L.L.; Zhang, Q.; Mäkelä, S.; Warner, M.; Gustafsson, J.-A. Disruption of the estrogen receptor beta gene in mice causes myeloproliferative disease resembling chronic myeloid leukemia with lymphoid blast crisis. Proc. Natl. Acad. Sci. USA 2003, 100, 6694–6699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahlquist, B. The cause of the sexual differences in erythrocyte, hemoglobin and serum iron levels in human adults. Blood 1950, 5, 874–875. [Google Scholar] [CrossRef] [PubMed]
- Leberbauer, C.; Boulmé, F.; Unfried, G.; Huber, J.; Beug, H.; Müllner, E.W. Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. Blood 2005, 105, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Coviello, A.D.; Kaplan, B.; Lakshman, K.M.; Chen, T.; Singh, A.B.; Bhasin, S. Effects of Graded Doses of Testosterone on Erythropoiesis in Healthy Young and Older Men. J. Clin. Endocrinol. Metab. 2008, 93, 914–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahani, S.; Braga-Basaria, M.; Maggio, M.; Basaria, S. Androgens and erythropoiesis: Past and present. J. Endocrinol. Investig. 2009, 32, 704–716. [Google Scholar] [CrossRef]
- Al-Sharefi, A.; Mohammed, A.; Abdalaziz, A.; Jayasena, C.N. Androgens and Anemia: Current Trends and Future Prospects. Front. Endocrinol. 2019, 10, 754. [Google Scholar] [CrossRef]
- McManus, J.F.; Nguyen, N.N.; Davey, R.A.; MacLean, H.E.; Pomilio, G.; McCormack, M.P.; Chiu, W.S.; Wei, A.H.; Zajac, J.D.; Curtis, D.J. Androgens stimulate erythropoiesis through the DNA-binding activity of the androgen receptor in non-hematopoietic cells. Eur. J. Haematol. 2020, 105, 247–254. [Google Scholar] [CrossRef]
- Lavrijsen, K.L.; Verwilghen, R.L. The effect of progesterone on hemoglobin synthesis in suspension cultures of fetal erythroid cells from calf liver. Biochim. Biophys. Acta 1984, 803, 290–301. [Google Scholar] [CrossRef]
- Duarte, A.D.S.S.; Sales, T.S.I.; Mengel, J.O.; Costa, F.F.; Saad, S.T.O. Progesterone Upregulates GATA-1 on Erythroid Progenitors Cells in Liquid Culture. Blood Cells Mol. Dis. 2002, 29, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Ying, W.; Wang, H.; Bazer, F.W.; Zhou, B. Pregnancy-Secreted Acid Phosphatase, Uteroferrin, Enhances Fetal Erythropoiesis. Endocrinology 2014, 155, 4521–4530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Socolovsky, M. Molecular insights into stress erythropoiesis. Curr. Opin. Hematol. 2007, 14, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Paulson, R.F.; Shi, L.; Wu, D.-C. Stress erythropoiesis: New signals and new stress progenitor cells. Curr. Opin. Hematol. 2011, 18, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biddie, S.C.; John, S.; Sabo, P.J.; Thurman, R.E.; Johnson, T.A.; Schiltz, R.L.; Miranda, T.B.; Sung, M.-H.; Trump, S.; Lightman, S.; et al. Transcription Factor AP1 Potentiates Chromatin Accessibility and Glucocorticoid Receptor Binding. Mol. Cell 2011, 43, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Thompson, E.B. Gene regulation by the glucocorticoid receptor: Structure:function relationship. J. Steroid Biochem. Mol. Biol. 2005, 94, 383–394. [Google Scholar] [CrossRef]
- Wikström, A.-C. Glucocorticoid action and novel mechanisms of steroid resistance: Role of glucocorticoid receptor-interacting proteins for glucocorticoid responsiveness. J. Endocrinol. 2003, 178, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Weikum, E.R.; Knuesel, M.T.; Ortlund, E.A.; Yamamoto, M.T.K.K.R. Glucocorticoid receptor control of transcription: Precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 2017, 18, 159–174. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Gelehrter, T.D. Identification of glucocorticoid receptor domains involved in transrepression of transforming growth factor-beta action. J. Biol. Chem. 2003, 278, 41779–41788. [Google Scholar] [CrossRef] [Green Version]
- Stöcklin, E.; Wissler, M.; Gouilleux, F.; Groner, B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature 1996, 383, 726–728. [Google Scholar] [CrossRef]
- Cidlowski, J.A.; Malchoff, C.D.; Malchoff, D.M. Glucocorticoid Receptors, Their Mechanisms of Action, and Glucocorticoid Resistance Physiology; Jameson, J.L., De Groot, L.J., de Kretser, D.M., Eds.; Saunders: Philadelphia, PA, USA, 2015. [Google Scholar]
- Flygare, J.; Estrada, V.R.; Shin, C.; Gupta, S.; Lodish, H.F. HIF1α synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood 2011, 117, 3435–3444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Prak, L.; Rayon-Estrada, V.; Thiru, P.; Flygare, J.; Lim, B.; Lodish, H.F. ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors. Nature 2013, 499, 92–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Lindern, M.; Zauner, W.; Mellitzer, G.; Steinlein, P.; Fritsch, G.; Huber, K.; Löwenberg, B.; Beug, H. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 1999, 94, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Wessely, O.; Deiner, E.M.; Beug, H.; Von Lindern, M. The glucocorticoid receptor is a key regulator of the decision between self-renewal and differentiation in erythroid progenitors. EMBO J. 1997, 16, 267–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golde, D.W.; Bersch, N.; Cline, M.J. Potentiation of erythropoiesis in vitro by dexamethasone. J. Clin. Investig. 1976, 57, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.L.; Tyrell, J.B. The Adrenal Cortex; Miller, W.L., Tyrell, J.B., Felig, P., Baxter, J., Frohman, L., Eds.; McGraw-Hill: New York, NY, USA, 1995; pp. 555–711. [Google Scholar]
- Iskander, D.; Wang, G.; Heuston, E.F.; Christodoulidou, C.; Psaila, B.; Ponnusamy, K.; Ren, H.; Mokhtari, Z.; Robinson, M.; Chaidos, A.; et al. Single-cell profiling of human bone marrow progenitors reveals mechanisms of failing erythropoiesis in Diamond-Blackfan anemia. Sci. Transl. Med. 2021, 13, 0113. [Google Scholar] [CrossRef]
- Vlachos, A.; Muir, E. How I treat Diamond-Blackfan anemia. Blood 2010, 116, 3715–3723. [Google Scholar] [CrossRef] [Green Version]
- Bartels, M.; Bierings, M. How I manage children with Diamond-Blackfan anaemia. Br. J. Haematol. 2019, 184, 123–133. [Google Scholar] [CrossRef]
- Lonetti, A.; Indio, V.; Dianzani, I.; Ramenghi, U.; Da Costa, L.; Pospíšilová, D.; Migliaccio, A.R. The Glucocorticoid Receptor Polymorphism Landscape in Patients with Diamond Blackfan Anemia Reveals an Association Between Two Clinically Relevant Single Nucleotide Polymorphisms and Time to Diagnosis. Front. Physiol. 2021, 12, 745032. [Google Scholar] [CrossRef]
- Cole, T.J.; Blendy, J.A.; Monaghan, A.P.; Krieglstein, K.; Schmid, W.; Aguzzi, A.; Fantuzzi, G.; Hummler, E.; Unsicker, K.; Schütz, G. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev. 1995, 9, 1608–1621. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.; Tronche, F.; Wessely, O.; Kellendonk, C.; Reichardt, H.M.; Steinlein, P.; Schütz, G.; Beug, H. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999, 13, 2996–3002. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, H.M.; Kaestner, K.H.; Tuckermann, J.; Kretz, O.; Wessely, O.; Bock, R.; Gass, P.; Schmid, W.; Herrlich, P.; Angel, P.; et al. DNA Binding of the Glucocorticoid Receptor Is Not Essential for Survival. Cell 1998, 93, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-Y.; Gao, X.; Barrasa, M.I.; Li, H.; Elmes, R.R.; Peters, L.L.; Lodish, H.F. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature 2015, 522, 474–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pike, J.W.; Meyer, M.B. Fundamentals of vitamin D hormone-regulated gene expression. J. Steroid Biochem. Mol. Biol. 2014, 144 Pt A, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.M.; Tangpricha, V. Vitamin D and anemia: Insights into an emerging association. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 432–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napolitano, L.M. Vitamin D supplementation and hemoglobin: Dosing matters in prevention/treatment of anemia. Nutr. J. 2021, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Aucella, F.; Scalzulli, R.P.; Gatta, G.; Vigilante, M.; Carella, A.M.; Stallone, C. Calcitriol increases burst-forming unit-erythroid proliferation in chronic renal failure. A synergistic effect with r-HuEpo. Nephron Clin. Pract. 2003, 95, c121–c127. [Google Scholar] [CrossRef]
- Barminko, J.; Reinholt, B.M.; Emmanuelli, A.; Lejeune, A.N.; Baron, M.H. Activation of the vitamin D receptor transcription factor stimulates the growth of definitive erythroid progenitors. Blood Adv. 2018, 2, 1207–1219. [Google Scholar] [CrossRef] [Green Version]
- Ben Alon, D.B.; Chaimovitz, C.; Dvilansky, A.; Lugassy, G.; Douvdevani, A.; Shany, S.; Nathan, I. Novel role of 1,25(OH)(2)D(3)in induction of erythroid progenitor cell proliferation. Exp. Hematol. 2002, 30, 403–409. [Google Scholar] [CrossRef]
- Campbell, M.J.; Trump, D.L. Vitamin D Receptor Signaling and Cancer. Endocrinol. Metab. Clin. N. Am. 2017, 46, 1009–1038. [Google Scholar] [CrossRef]
- Samuel, S.; Sitrin, M.D. Vitamin D’s role in cell proliferation and differentiation. Nutr. Rev. 2008, 66 (Suppl. 2), S116–S124. [Google Scholar] [CrossRef] [PubMed]
- Paubelle, E.; Zylbersztejn, F.; Maciel, T.T.; Carvalho, C.; Mupo, A.; Cheok, M.; Lieben, L.; Sujobert, P.; Decroocq, J.; Yokoyama, A.; et al. Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow. Cell Rep. 2020, 30, 739–754.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.C.; Pirro, A.E.; Amling, M.; Delling, G.; Baron, R.; Bronson, R.; Demay, M.B. Targeted ablation of the vitamin D receptor: An animal model of vitamin D-dependent rickets type II with alopecia. Proc. Natl. Acad. Sci. USA 1997, 94, 9831–9835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, Y.; Kishimoto, J.; Demay, M.B. Metabolic and cellular analysis of alopecia in vitamin D receptor knockout mice. J. Clin. Investig. 2001, 107, 961–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Kelly, J.; Hisatake, J.; Hisatake, Y.; Bishop, J.; Norman, A.; Koeffler, H.P. Normal myelopoiesis but abnormal T lymphocyte responses in vitamin D receptor knockout mice. J. Clin. Investig. 2002, 109, 1091–1099. [Google Scholar] [CrossRef]
- Hidalgo, A.A.; Trump, D.L.; Johnson, C.S. Glucocorticoid regulation of the vitamin D receptor. J. Steroid Biochem. Mol. Biol. 2010, 121, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, A.A.; Deeb, K.K.; Pike, J.W.; Johnson, C.S.; Trump, D.L. Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription. J. Biol. Chem. 2011, 286, 36228–36237. [Google Scholar] [CrossRef] [Green Version]
- Zella, L.A.; Meyer, M.B.; Nerenz, R.D.; Lee, S.M.; Martowicz, M.L.; Pike, J.W. Multifunctional Enhancers Regulate Mouse and Human Vitamin D Receptor Gene Transcription. Mol. Endocrinol. 2010, 24, 128–147. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Thein, S.L. Switching from fetal to adult hemoglobin. Nat. Genet. 2018, 50, 478–480. [Google Scholar] [CrossRef]
- Tanabe, O.; Katsuoka, F.; Campbell, A.D.; Song, W.; Yamamoto, M.; Tanimoto, K.; Engel, J.D. An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J. 2002, 21, 3434–3442. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, O.; McPhee, D.; Kobayashi, S.; Shen, Y.; Brandt, W.; Jiang, X.; Campbell, A.D.; Chen, Y.-T.; Chang, C.S.; Yamamoto, M.; et al. Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO J. 2007, 26, 2295–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabe, O.; Shen, Y.; Liu, Q.; Campbell, A.D.; Kuroha, T.; Yamamoto, M.; Engel, J.D. The TR2 and TR4 orphan nuclear receptors repress Gata1 transcription. Genes Dev. 2007, 21, 2832–2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.P.; Tanabe, O.; Shi, L.; Jearawiriyapaisarn, N.; Lucas, D.; Engel, J.D. The orphan nuclear receptor TR4 regulates erythroid cell proliferation and maturation. Blood 2017, 130, 2537–2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shyr, C.-R.; Kang, H.-Y.; Tsai, M.-Y.; Liu, N.-C.; Ku, P.-Y.; Huang, K.-E.; Chang, C. Roles of Testicular Orphan Nuclear Receptors 2 and 4 in Early Embryonic Development and Embryonic Stem Cells. Endocrinology 2009, 150, 2454–2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, S.; Tanabe, O.; Sierant, M.; Shi, L.; Campbell, A.; Lim, K.C.; Engel, J.D. Compound loss of function of nuclear receptors Tr2 and Tr4 leads to induction of murine embryonic beta-type globin genes. Blood 2015, 125, 1477–1487. [Google Scholar] [CrossRef] [Green Version]
- Pereira, F.A.; Qiu, Y.; Tsai, M.-J.; Tsai, S.Y. Chicken ovalbumin upstream promoter transcription factor (COUP-TF): Expression during mouse embryogenesis. J. Steroid Biochem. Mol. Biol. 1995, 53, 503–508. [Google Scholar] [CrossRef]
- Kruse, S.W.; Suino-Powell, K.; Zhou, X.E.; Kretschman, J.E.; Reynolds, R.; Vonrhein, C.; Xu, Y.; Wang, L.; Tsai, S.Y.; Tsai, M.-J.; et al. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid–Activated Receptor. PLOS Biol. 2008, 6, e227. [Google Scholar] [CrossRef]
- Yoon, K.; Chen, C.-C.; Orr, A.A.; Barreto, P.N.; Tamamis, P.; Safe, S. Activation of COUP-TFI by a Novel Diindolylmethane Derivative. Cells 2019, 8, 220. [Google Scholar] [CrossRef] [Green Version]
- Le Guével, R.; Oger, F.; Martinez-Jimenez, C.P.; Bizot, M.; Gheeraert, C.; Firmin, F.; Ploton, M.; Kretova, M.; Palierne, G.; Staels, B.; et al. Inactivation of the Nuclear Orphan Receptor COUP-TFII by Small Chemicals. ACS Chem. Biol. 2017, 12, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cheng, C.-M.; Qin, J.; Xu, M.; Kao, C.-Y.; Shi, J.; You, E.; Gong, W.; Rosa, L.P.; Chase, P.; et al. Small-molecule inhibitor targeting orphan nuclear receptor COUP-TFII for prostate cancer treatment. Sci. Adv. 2020, 6, eaaz8031. [Google Scholar] [CrossRef]
- Lin, F.-J.; Qin, J.; Tang, K.; Tsai, S.Y.; Tsai, M.-J. Coup d’Etat: An Orphan Takes Control. Endocr. Rev. 2011, 32, 404–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fugazza, C.; Barbarani, G.; Elangovan, S.; Marini, M.G.; Giolitto, S.; Font-Monclus, I.; Marongiu, M.F.; Manunza, L.; Strouboulis, J.; Cantu, C.; et al. The Coup-TFII orphan nuclear receptor is an activator of the gamma-globin gene. Haematologica 2021, 106, 474–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipe, A.; Li, Q.; Deveaux, S.; Godin, I.; Romeo, P.-H.; Stamatoyannopoulos, G.; Mignotte, V. Regulation of embryonic/fetal globin genes by nuclear hormone receptors: A novel perspective on hemoglobin switching. EMBO J. 1999, 18, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Liberati, C.; Cera, M.R.; Secco, P.; Santoro, C.; Mantovani, R.; Ottolenghi, S.; Ronchi, A. Cooperation and competition between the binding of COUP-TFII and NF-Y on human epsilon- and gamma-globin gene promoters. J. Biol. Chem. 2001, 276, 41700–41709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronchi, A.E.; Bottardi, S.; Mazzucchelli, C.; Ottolenghi, S.; Santoro, C. Differential binding of the NFE3 and CP1/NFY transcription factors to the human gamma- and epsilon-globin CCAAT boxes. J. Biol. Chem. 1995, 270, 21934–21941. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, V.G.; Menne, T.F.; Xu, J.; Akie, T.E.; Lettre, G.; Van Handel, B.; Mikkola, H.K.A.; Hirschhorn, J.N.; Cantor, A.B.; Orkin, S.H. Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-Specific Repressor BCL11A. Science 2008, 322, 1839–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Hargreaves, V.V.; Zhu, Q.; Kurland, J.V.; Hong, J.; Kim, W.; Sher, F.; Macias-Trevino, C.; Rogers, J.M.; Kurita, R.; et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 2018, 173, 430–442.e17. [Google Scholar] [CrossRef] [Green Version]
- Pearen, M.A.; Muscat, G.E. Minireview: Nuclear hormone receptor 4A signaling: Implications for metabolic disease. Mol. Endocrinol. 2010, 24, 1891–1903. [Google Scholar] [CrossRef] [Green Version]
- Safe, S.; Karki, K. The Paradoxical Roles of Orphan Nuclear Receptor 4A (NR4A) in Cancer. Mol. Cancer Res. 2021, 19, 180–191. [Google Scholar] [CrossRef]
- Lee, S.-O.; Li, X.; Khan, S.; Safe, S. Targeting NR4A1 (TR3) in cancer cells and tumors. Expert Opin. Ther. Targets 2011, 15, 195–206. [Google Scholar] [CrossRef]
- Hsu, H.C.; Zhou, T.; Mountz, J.D. Nur77 family of nuclear hormone receptors. Curr. Drug Targets Inflamm. Allergy 2004, 3, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Benoit, G.; Liu, J.; Prasad, S.; Aarnisalo, P.; Liu, X.; Xu, H.; Walker, N.P.C.; Perlmann, T. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 2003, 423, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Woronicz, J.D.; Calnan, B.; Ngo, V.; Winoto, A. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 1994, 367, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, T.; Kashiwagi, I.; Inoue, N.; Morita, R.; Hori, S.; Waldmann, H.; Rudensky, A.Y.; Ichinose, H.; Metzger, D.; Chambon, P.; et al. The nuclear orphan receptor Nr4a2 induces Foxp3 and regulates differentiation of CD4+ T cells. Nat. Commun. 2011, 2, 269. [Google Scholar] [CrossRef] [Green Version]
- Mullican, S.E.; Zhang, S.; Konopleva, M.; Ruvolo, V.; Andreeff, M.; Milbrandt, J.; Conneely, O.M. Abrogation of nuclear receptors Nr4a3 andNr4a1 leads to development of acute myeloid leukemia. Nat. Med. 2007, 13, 730–735. [Google Scholar] [CrossRef]
- Freire, P.R.; Conneely, O.M. NR4A1 and NR4A3 restrict HSC proliferation via reciprocal regulation of C/EBPalpha and inflammatory signaling. Blood 2018, 131, 1081–1093. [Google Scholar] [CrossRef]
- Mumau, M.D.; Vanderbeck, A.N.; Lynch, E.D.; Golec, S.B.; Emerson, S.G.; Punt, J.A. Identification of a Multipotent Progenitor Population in the Spleen That Is Regulated by NR4A1. J. Immunol. 2018, 200, 1078–1087. [Google Scholar] [CrossRef] [Green Version]
- Pellegrin, S.; Severn, C.E.; Toye, A.M. Towards manufactured red blood cells for the treatment of inherited anemia. Haematologica 2021, 106, 2304–2311. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastori, V.; Pozzi, S.; Labedz, A.; Ahmed, S.; Ronchi, A.E. Role of Nuclear Receptors in Controlling Erythropoiesis. Int. J. Mol. Sci. 2022, 23, 2800. https://doi.org/10.3390/ijms23052800
Pastori V, Pozzi S, Labedz A, Ahmed S, Ronchi AE. Role of Nuclear Receptors in Controlling Erythropoiesis. International Journal of Molecular Sciences. 2022; 23(5):2800. https://doi.org/10.3390/ijms23052800
Chicago/Turabian StylePastori, Valentina, Serena Pozzi, Agata Labedz, Sajeela Ahmed, and Antonella Ellena Ronchi. 2022. "Role of Nuclear Receptors in Controlling Erythropoiesis" International Journal of Molecular Sciences 23, no. 5: 2800. https://doi.org/10.3390/ijms23052800
APA StylePastori, V., Pozzi, S., Labedz, A., Ahmed, S., & Ronchi, A. E. (2022). Role of Nuclear Receptors in Controlling Erythropoiesis. International Journal of Molecular Sciences, 23(5), 2800. https://doi.org/10.3390/ijms23052800