Cardiovascular, Metabolic and Inflammatory Changes after Ovariectomy and Estradiol Substitution in Hereditary Hypertriglyceridemic Rats
Abstract
:1. Introduction
2. Results
2.1. Changes of Cardiovascular Parameters after Ovariectomy and Estradiol Substitution
2.2. Changes in Other Organs after Ovariectomy and Estradiol Substitution
2.3. Circulating Metabolic, Inflammatory and Hormonal Parameters after Ovariectomy and Estradiol Substitution
2.4. Summary of Changes of Parameters with Regard to Ovariectomy and Estradiol Substitution
3. Discussion
4. Materials and Methods
4.1. Animals and Diet
4.2. Ultrasound Studies
4.3. Analytical Methods and Biochemical Analyses
4.4. Gene Expression
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALT | Alanine aminotransferase |
AMH | Anti-Mullerian hormone |
AST | Aspartate aminotransferase |
CVD | cardiovascular disease |
Cx37 | Connexin 37 |
FFA | Free fatty acids |
HDL | High density lipoprotein |
HHTg | Hereditary Hypertriglyceridemic |
IL-6 | Interleukin 6 |
LDL | Low density lipoprotein |
NOS | Nitric oxide synthase (circulating) |
Nos3 | Nitric oxide 3 synthase (gene) |
Ovx | Ovariectomy |
Ovx + E | Ovariectomy followed by estradiol substitution |
TAG | Triacylglycerols |
US | Ultrasound |
Appendix A
Sham n = 5 | Ovariectomy n = 6 | Ovariectomy + Estradiol n = 6 | One-Way ANOVA | p Ovx vs. Sham | p Ovx + E vs. Ovx | |
---|---|---|---|---|---|---|
Strain in suprarenal aorta | 0.148± 0.022 | 0.128 ± 0.025 | 0.182 ± 0.021 | 0.01 | 0.197 | 0.002 (0.020 vs. Sham) |
Strain infrarenal aorta | 0.090 ± 0.026 | 0.061 ± 0.020 | 0.101± 0.032 | 0.01 | 0.067 | 0.027 |
Nitric oxide synthase 3 gene expression in abdominal aorta | 1.006 ± 0.113 | 0.616 ± 0.212 | 0.951 ± 0.266 | 0.01 | 0.05 | 0.05 |
Connexin 37 gene expression in abdominal aorta | 1.272 ± 0.490 | 1.183 ± 0.775 | 1.656 ± 1.043 | n.s. | n.s. | n.s. |
Circulating Nitric oxide synthase | 6.746 ± 1.149 | 5.246 ± 1.873 | 6.284 ± 0.806 | n.s. | n.s. | n.s. |
Myocardium (g/100 g bwt) | 0.269 ± 0.013 | 0.225 ± 0.005 | 0.280 ± 0.012 | 0.001 | 0.001 | 0.001 |
Left ventricle (g/100 g bwt) | 0.175 ± 0.021 | 0.140 ± 0.006 | 0.182 ± 0.016 | 0.001 | 0.01 | 0.001 |
The content of triglycerides in the myocardium (μmol/g) | 3.350 ± 0.762 | 3.509 ± 0.317 | 4.487 ± 0.602 | 0.01 | n.s. | 0.05 |
References
- Vogel, B.; Acevedo, M.; Appelman, Y.; Merz, C.N.B.; Chieffo, A.; Figtree, G.A.; Guerrero, M.; Kunadian, V.; Lam, C.S.P.; Maas, A.H.E.M.; et al. The Lancet women and cardiovascular disease Commission: Reducing the global burden by 2030. Lancet 2021, 397, 2385–2438. [Google Scholar] [CrossRef]
- Woodward, M. Cardiovascular Disease and the Female Disadvantage. Int. J. Environ. Res. Public Health 2019, 16, 1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarkson, T.B. Estrogen effects on arteries vary with stage of reproductive life and extent of subclinical atherosclerosis progression. Menopause 2018, 25, 1262–1274. [Google Scholar] [CrossRef]
- Hodis, H.N.; Mack, W.J. The Timing Hypothesis and Hormone Replacement Therapy: A Paradigm Shift in the Primary Prevention of Coronary Heart Disease in Women. Part 1: Comparison of Therapeutic Efficacy. J. Am. Geriatr. Soc. 2013, 61, 1005–1010. [Google Scholar] [CrossRef] [Green Version]
- Hodis, H.N.; Mack, W.J.; Henderson, V.W.; Shoupe, D.; Budoff, M.J.; Hwang-Levine, J.; Li, Y.; Feng, M.; Dustin, L.; Kono, N.; et al. Vascular Effects of Early versus Late Postmenopausal Treatment with Estradiol. N. Engl. J. Med. 2016, 374, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Grady, D.; Herrington, D.; Bittner, V.; Blumenthal, R.; Davidson, M.; Hlatky, M.; Hsia, J.; Hulley, S.; Herd, A.; Khan, S.; et al. Cardiovascular Outcomes During 6.8 Years of Hormone Therapy: Heart and Estrogen/Progestin Replacement Study Follow-Up (HERS II). JAMA 2002, 57, 678. [Google Scholar] [CrossRef]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.; Howard, B.V.; Johnson, K.C.; et al. Writing Group for the Women’s Health Initiative I: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA 2002, 288, 321–333. [Google Scholar]
- Mack, W.J.; Hameed, A.B.; Xiang, M.; Roy, S.; Slater, C.C.; Stanczyk, F.Z.; Lobo, R.A.; Liu, C.R.; Liu, C.H.; Hodis, H.N. Does elevated body mass modify the influence of postmenopausal estrogen replacement on atherosclerosis progression: Results from the estrogen in the prevention of atherosclerosis trial. Atherosclerosis 2003, 168, 91–98. [Google Scholar] [CrossRef]
- Pitha, J.; Lesná, K.; Sekerkova, A.; Poledne, R.; Kovář, J.; Lejsková, M.; Dvořáková, H.; Adámková, S.; Lánská, V.; Bobak, M. Menopausal transition enhances the atherogenic risk of smoking in middle aged women. Int. J. Cardiol. 2013, 168, 190–196. [Google Scholar] [CrossRef]
- Pitha, J.; Kovar, J.; Skodova, Z.; Cifkova, R.; Stavek, P.; Cervenka, L.; Sejda, T.; Lanska, V.; Poledne, R. Association of in-tima-media thickness of carotid arteries with remnant lipoproteins in men and women. Physiol. Res. 2015, 64, S377–S384. [Google Scholar] [CrossRef]
- Pitha, J.; Bobková, D.; Kovar, J.; Havlíčková, J.; Poledne, R. Antiatherogenic effect of simvastatin is not due to decrease of ldl cholesterol in ovariectomized golden syrian hamster. Physiol. Res. 2010, 59, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.B.; Phillips, E.H.; Riggins, T.E.; Sangha, G.S.; Chakraborty, S.; Lee, J.Y.; Lycke, R.J.; Hernandez, C.L.; Soepriatna, A.H.; Thorne, B.R.; et al. Imaging of small animal peripheral artery disease models: Recent advancements and translational potential. Int. J. Mol. Sci. 2015, 16, 11131–11177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrana, A.; Kazdova, L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transpl. Proc. 1990, 22, 2579. [Google Scholar] [PubMed]
- Zhang, L.; Li, C.; Yang, L.; Adzika, G.K.; Machuki, J.O.; Shi, M.; Sun, Q.; Sun, H. Estrogen Protects Vasomotor Functions in Rats During Catecholamine Stress. Front. Cardiovasc. Med. 2021, 8, 679240. [Google Scholar] [CrossRef]
- Bourassa, P.A.; Milos, P.M.; Gaynor, B.J.; Breslow, J.L.; Aiello, R.J. Estrogen reduces atherosclerotic lesion development in apolipoprotein E-deficient mice. Proc. Natl. Acad. Sci. USA 1996, 93, 10022–10027. [Google Scholar] [CrossRef] [Green Version]
- Bendale, D.S.; Karpe, P.A.; Chhabra, R.; Shete, S.P.; Shah, H.; Tikoo, K. 17-beta Oestradiol prevents cardiovascular dys-function in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br. J. Pharmacol. 2013, 170, 779–795. [Google Scholar] [CrossRef] [Green Version]
- Ceylan-Isik, A.F.; Erdogan-Tulmac, O.B.; Ari, N.; Ozansoy, G.; Ren, J. Effect of 17beta-oestradiol replacement on vascular responsiveness in ovariectomized diabetic rats. Clin. Exp. Pharmacol. Physiol. 2009, 36, e65–e71. [Google Scholar] [CrossRef]
- Reed, K.E.; Westphale, E.M.; Larson, D.M.; Wang, H.Z.; Veenstra, R.D.; Beyer, E.C. Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein. J. Clin. Investig. 1993, 91, 997–1004. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Lou, Y.; Jin, W.; Liu, Y.; Lu, L.; Chen, Q.; Zhang, R. The Connexin37 gene C1019T polymorphism and risk of coronary artery disease: A meta-analysis. Arch. Med. Res. 2014, 45, 21–30. [Google Scholar] [CrossRef]
- Guo, S.; Yang, Y.; Yang, Z.; You, H.; Shi, Y.; Hu, Z.; Meng, Z.; Xiao, J. Improving myocardial fractional flow reserve in coronary atherosclerosis via CX37 gene silence: A preclinical validation study in pigs. Interact. Cardiovasc. Thorac. Surg. 2017, 26, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Derouette, J.-P.; Wong, C.; Burnier, L.; Morel, S.; Sutter, E.; Galan, K.; Brisset, A.C.; Roth, I.; Chadjichristos, C.E.; Kwak, B.R. Molecular role of Cx37 in advanced atherosclerosis: A micro-array study. Atherosclerosis 2009, 206, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Pitha, J.; Kralova Lesna, I.; Hubacek, J.A.; Sekerkova, A.; Lanska, V.; Adamkova, V.; Dorobantu, M.; Nicolescu, R.; Steiner, R.; Ivic, V.; et al. Smoking impairs and circulating stem cells favour the protective effect of the T allele of the con-nexin37 gene in ischemic heart disease—A multinational study. Atherosclerosis 2016, 244, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Pitha, J.; Hubácek, J.A.; Cífková, R.; Skodová, Z.; Stávek, P.; Lánská, V.; Kovar, J.; Poledne, R. The association between subclinical atherosclerosis in carotid arteries and Connexin 37 gene polymorphism (1019C>T.; Pro319Ser) in women. Int. Angiol. 2011, 30, 221–226. [Google Scholar] [PubMed]
- Hubacek, J.A.; Staněk, V.; Gebauerová, M.; Pilipčincová, A.; Poledne, R.; Aschermann, M.; Skalická, H.; Matoušková, J.; Kruger, A.; Pěnička, M.; et al. Lack of an association between connexin-37, stromelysin-1, plasminogen activator-inhibitor type 1 and lymphotoxin-alpha genes and acute coronary syndrome in Czech Caucasians. Exp. Clin. Cardiol. 2010, 15, e52. [Google Scholar]
- Looft-Wilson, R.C.; Billig, J.E.; Sessa, W.C. Shear Stress Attenuates Inward Remodeling in Cultured Mouse Thoracodorsal Arteries in an eNOS-Dependent, but Not Hemodynamic Manner, and Increases Cx37 Expression. J. Vasc. Res. 2019, 56, 284–295. [Google Scholar] [CrossRef]
- Pfenniger, A.; Meens, M.J.; Pedrigi, R.M.; Foglia, B.; Sutter, E.; Pelli, G.; Rochemont, V.; Petrova, T.V.; Krams, R.; Kwak, B.R. Shear stress-induced atherosclerotic plaque composition in ApoE(-/-) mice is modulated by connexin37. Atherosclerosis 2015, 243, 1–10. [Google Scholar] [CrossRef]
- Bozdogan, O.; Bozcaarmutlu, A.; Kaya, S.T.; Sapmaz, C.; Ozarslan, T.O.; Eksioglu, D.; Yasar, S. Decreasing myocardial estrogen receptors and antioxidant activity may be responsible for increasing ischemia- and reperfusion-induced ventricular arrhythmia in older female rats. Life Sci. 2021, 271, 119190. [Google Scholar] [CrossRef]
- Aryan, L.; Younessi, D.; Zargari, M.; Banerjee, S.; Agopian, J.; Rahman, S.; Borna, R.; Ruffenach, G.; Umar, S.; Eghbali, M. The Role of Estrogen Receptors in Cardiovascular Disease. Int. J. Mol. Sci. 2020, 21, 4314. [Google Scholar] [CrossRef]
- Murphy, E. Estrogen Signaling and Cardiovascular Disease. Circ. Res. 2011, 109, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Matarrese, P.; Maccari, S.; Vona, R.; Gambardella, L.; Stati, T.; Marano, G. Role of β-Adrenergic Receptors and Estrogen in Cardiac Repair after Myocardial Infarction: An Overview. Int. J. Mol. Sci. 2021, 22, 8957. [Google Scholar] [CrossRef]
- Squiers, G.T.; McLellan, M.A.; Ilinykh, A.; Branca, J.; Rosenthal, N.; Pinto, A.R. Cardiac cellularity is dependent upon biological sex and is regulated by gonadal hormones. Cardiovasc. Res. 2020, 117, 2252–2262. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, G.-J.; Papp, R.; DeFranco, D.B.; Zeng, F.; Salama, G. Oestrogen upregulates L-type Ca2+ channels via oestrogenreceptor-α by a regional genomic mechanism in female rabbit hearts. J. Physiol. 2012, 590, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Nelson, M.D.; Szczepaniak, E.W.; Smith, L.; Mehta, P.K.; Thomson, L.E.; Berman, D.S.; Li, D.; Bairey Merz, C.N.; Szczepaniak, L.S. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H14–H19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.-T.; Grayburn, P.; Karim, A.; Shimabukuro, M.; Higa, M.; Baetens, D.; Orci, L.; Unger, R.H. Lipotoxic heart disease in obese rats: Implications for human obesity. Proc. Natl. Acad. Sci. USA 2000, 97, 1784–1789. [Google Scholar] [CrossRef] [Green Version]
- Varela, R.; Rauschert, I.; Romanelli, G.; Alberro, A.; Benech, J.C. Hyperglycemia and hyperlipidemia can induce mor-phophysiological changes in rat cardiac cell line. Biochem. Biophys. Rep. 2021, 26, 100983. [Google Scholar]
- Wang, S.; Wong, L.-Y.; Neumann, D.; Liu, Y.; Sun, A.; Antoons, G.; Strzelecka, A.; Glatz, J.F.; Nabben, M.; Luiken, J.J. Augmenting Vacuolar H+-ATPase Function Prevents Cardiomyocytes from Lipid-Overload Induced Dysfunction. Int. J. Mol. Sci. 2020, 21, 1520. [Google Scholar] [CrossRef] [Green Version]
- Miklankova, D.; Markova, I.; Hüttl, M.; Zapletalova, I.; Poruba, M.; Malinska, H. Metformin Affects Cardiac Arachidonic Acid Metabolism and Cardiac Lipid Metabolite Storage in a Prediabetic Rat Model. Int. J. Mol. Sci. 2021, 22, 7680. [Google Scholar] [CrossRef]
- Malinská, H.; Hüttl, M.; Miklánková, D.; Trnovská, J.; Zapletalová, I.; Poruba, M.; Marková, I. Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia. Int. J. Mol. Sci. 2021, 22, 4527. [Google Scholar] [CrossRef]
- Huang, J.; Wang, D.; Huang, L.H.; Huang, H. Roles of Reconstituted High-Density Lipoprotein Nanoparticles in Cardi-ovascular Disease: A New Paradigm for Drug Discovery. Int. J. Mol. Sci. 2020, 21, 739. [Google Scholar] [CrossRef] [Green Version]
- Oschry, Y.; Eisenberg, S. Rat plasma lipoproteins: Re-evaluation of a lipoprotein system in an animal devoid of cholesteryl ester transfer activity. J. Lipid Res. 1982, 23, 1099–1106. [Google Scholar] [CrossRef]
- Kjeldsen, E.; Nordestgaard, L.; Frikke-Schmidt, R. HDL Cholesterol and Non-Cardiovascular Disease: A Narrative Review. Int. J. Mol. Sci. 2021, 22, 4547. [Google Scholar] [CrossRef]
- Agacayak, E.; Basaranoglu, S.; Tunc, S.; Kaplan, I.; Evliyaoglu, O.; Gul, T.; Icen, M.S.; Findik, F.M. Oxidant/antioxidant status, paraoxonase activity, and lipid profile in plasma of ovariectomized rats under the influence of estrogen, estrogen combined with progesterone, and genistein. Drug Des. Dev. Ther. 2015, 9, 2975–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiss, A.B.; Siegart, N.M.; De Leon, J. Interleukin-6 in atherosclerosis: Atherogenic or atheroprotective? Clin. Lipidol. 2017, 12, 14–23. [Google Scholar]
- Rachon, D.; Mysliwska, J.; Suchecka-Rachon, K.; Wieckiewicz, J.; Mysliwski, A. Effects of oestrogen deprivation on in-terleukin-6 production by peripheral blood mononuclear cells of postmenopausal women. J. Endocrinol. 2002, 172, 387–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, O.Y.; Chae, J.S.; Paik, J.K.; Seo, H.S.; Jang, Y.; Cavaillon, J.-M.; Lee, J.H. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. AGE 2011, 34, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Khoa, N.D.; Montesinos, M.C.; Reiss, A.B.; Delano, D.L.; Awadallah, N.W.; Cronstein, B. Inflammatory Cytokines Regulate Function and Expression of Adenosine A2A Receptors in Human Monocytic THP-1 Cells. J. Immunol. 2001, 167, 4026–4032. [Google Scholar] [CrossRef] [Green Version]
- Palomer, X.; Salvado, L.; Barroso, E.; Vazquez-Carrera, M. An overview of the crosstalk between inflammatory process-es and metabolic dysregulation during diabetic cardiomyopathy. Int. J. Cardiol. 2013, 168, 3160–3172. [Google Scholar] [CrossRef]
- Knipp, B.S.; Ailawadi, G.; Sullivan, V.V.; Roelofs, K.J.; Henke, P.K.; Stanley, J.C.; Upchurch, G.R., Jr. Ultrasound meas-urement of aortic diameters in rodent models of aneurysm disease. J. Surg. Res. 2003, 112, 97–101. [Google Scholar] [CrossRef]
- Long, T.; Yao, J.K.; Li, J.; Kirshner, Z.Z.; Nelson, D.; Dougherty, G.G.; Gibbs, R.B. Estradiol and selective estrogen receptor agonists differentially affect brain monoamines and amino acids levels in transitional and surgical menopausal rat models. Mol. Cell Endocrinol. 2019, 496, 110533. [Google Scholar] [CrossRef]
- Polito, F.; Marini, H.; Bitto, A.; Irrera, N.; Vaccaro, M.; Adamo, E.B.; Micali, A.; Squadrito, F.; Minutoli, L.; Altavilla, D. Genistein aglycone, a soy-derived isoflavone, improves skin changes induced by ovariectomy in rats. Br. J. Pharmacol. 2011, 165, 994–1005. [Google Scholar] [CrossRef] [Green Version]
- Buleon, M.; Cuny, M.; Grellier, J.; Charles, P.Y.; Belliere, J.; Casemayou, A.; Arnal, J.F.; Schanstra, J.P.; Tack, I. A single dose of estrogen during hemorrhagic shock protects against Kidney Injury whereas estrogen restoration in ovariectomized mice is ineffective. Sci. Rep. 2020, 10, 17240. [Google Scholar] [CrossRef] [PubMed]
- Strom, J.O.; Theodorsson, E.; Holm, L.; Theodorsson, A. Different methods for administering 17beta-estradiol to ovari-ectomized rats result in opposite effects on ischemic brain damage. BMC Neurosci. 2010, 11, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Contreras, J.; Villalobos-Molina, R.; Zarain-Herzberg, A.; Balderas-Villalobos, J. Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol. Cell. Biochem. 2020, 475, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.J.; Lane-Cordova, A.D.; Wee, S.O.; White, D.W.; Hilgenkamp, T.I.M.; Fernhall, B.; Baynard, T. Healthy aging and carotid performance: Strain measures and β-stiffness index. Hypertens. Res. 2018, 41, 748–755. [Google Scholar] [CrossRef]
- Iino, H.; Okano, T.; Daimon, M.; Sasaki, K.; Chigira, M.; Nakao, T.; Mizuno, Y.; Yamazaki, T.; Kurano, M.; Yatomi, Y.; et al. Usefulness of Carotid Arterial Strain Values for Evaluating the Arteriosclerosis. J. Atheroscler. Thromb. 2019, 26, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Okayama, H.; Inoue, K.; Yoshii, T.; Hiasa, G.; Sumimoto, T.; Nishimura, K.; Ogimoto, A.; Higaki, J. Carotid arterial circumferential strain by two-dimensional speckle tracking: A novel parameter of arterial elasticity. Hypertens. Res. 2012, 35, 897–902. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Matheny, M.; Nicolson, M.; Tumer, N.; Scarpace, P.J. Leptin gene expression increases with age independent of increasing adiposity in rats. Diabetes 1997, 46, 2035–2039. [Google Scholar] [CrossRef]
Sham n = 5 | Ovx n = 6 | Ovx + Estradiol n = 6 | One-Way ANOVA | p Ovx vs. Sham | p Ovx + E vs. Ovx | |
---|---|---|---|---|---|---|
Body weight (g) | 242.4 ± 8.2 | 272.2 ± 12.9 | 238.0 ± 12.9 | 0.001 | 0.001 | 0.001 |
Uterus (g/100 g bwt) | 0.226 ± 0.029 | 0.098 ± 0.034 | 0.290 ± 0.069 | 0.001 | 0.001 | 0.001 |
Adiposity index (g/100 g bwt) | 2.051 ± 0.453 | 2.253 ± 0.397 | 1.620 ± 0.336 | 0.05 | n.s. | 0.05 |
Liver (g/100 g bwt) | 3.283 ± 0.095 | 2.556 ± 0.042 | 3.769 ± 0.094 | 0.001 | 0.001 | 0.001 |
Hepatic content of triglycerides (μmol/g) | 7.885 ± 1.853 | 12.970 ± 1.533 | 10.215 ± 0.851 | 0.001 | 0.001 | 0.01 |
Hepatic content of cholesterol (μmol/g) | 6.581 ± 0.826 | 9.950 ± 0.593 | 6.763 ± 1.029 | 0.001 | 0.001 | 0.001 |
Kidneys (g/100 g bwt) | 0.570 ± 0.015 | 0.438 ± 0.009 | 0.620 ± 0.027 | 0.001 | 0.001 | 0.001 |
Content of triglycerides in the renal cortex (μmol/g) | 0.771 ± 0.067 | 1.075 ± 0.112 | 0.824 ± 0.049 | 0.001 | 0.001 | 0.001 |
Content of triglycerides in the skeletal muscles (μmol/g) | 1.223 ± 0.242 | 1.467 ± 0.205 | 1.491 ± 0.621 | n.s. | n.s. | n.s. |
Sham n = 5 | Ovx n = 6 | Ovx + Estradiol n = 6 | One-Way ANOVA | p Ovx vs. Sham | p Ovx + E vs. Ovx | |
---|---|---|---|---|---|---|
17β-estradiol (pg/mL) | 35.16 ± 4.40 | 23.37 ± 3.58 | 314.95 ± 104.33 | 0.001 | n.s. | 0.001 |
Progesterone (ng/mL) | 1.542 ± 0.366 | 0.417 ± 0.083 | 0.563 ± 0.061 | 0.001 | 0.001 | n.s. |
Anti-Mullerian hormone (ng/mL) | 6.725 ± 1.645 | 6.654 ± 2.201 | 5.884 ± 0.636 | n.s. | n.s. | n.s. |
Cholesterol (mmol/L) | 1.564 ± 0.265 | 1.795 ± 0.181 | 2.027 ± 0.244 | 0.01 | n.s. | n.s. |
Triglycerides (mmol/L) | 4.826 ± 1.073 | 2.220 ± 0.706 | 4.187 ± 0.698 | 0.001 | 0.001 | 0.01 |
HDL-cholesterol (mmol/L) | 0.808 ± 0.085 | 1.025 ± 0.138 | 1.230 ± 0.078 | 0.001 | 0.01 | 0.01 |
Free fatty acids (mmol/L) | 0.520 ± 0.132 | 0.625 ± 0.109 | 0.528 ± 0.091 | n.s. | n.s. | n.s. |
Non-fasting glucose (mmol/L) | 8.260 ± 0.666 | 8.350 ± 0.709 | 8.317 ± 0.741 | n.s. | n.s. | n.s. |
Insulin (nmol/L) | 0.191 ± 0.059 | 0.160 ± 0.034 | 0.151 ± 0.030 | n.s. | n.s. | n.s. |
Glucagon (pg/mL) | 201.8 ± 25.5 | 214.1 ± 37.1 | 219.2 ± 18.6 | n.s. | n.s. | n.s. |
Alanine aminotransferase (μkat/L) | 0.960 ± 0.082 | 1.250 ± 0.096 | 1.222 ± 0.118 | 0.001 | 0.001 | n.s. |
Aspartate aminotransferase, (μkat/L) | 2.540 ± 0.179 | 3.202 ± 0.309 | 2.977 ± 0.226 | 0.01 | 0.001 | n.s. |
Circulating Interleukin 6 (pg/mL) | 106.65 ± 7.47 | 72.73 ± 14.98 | 173.31 ± 22.06 | 0.001 | 0.01 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitha, J.; Huttl, M.; Malinska, H.; Miklankova, D.; Bartuskova, H.; Hlinka, T.; Markova, I. Cardiovascular, Metabolic and Inflammatory Changes after Ovariectomy and Estradiol Substitution in Hereditary Hypertriglyceridemic Rats. Int. J. Mol. Sci. 2022, 23, 2825. https://doi.org/10.3390/ijms23052825
Pitha J, Huttl M, Malinska H, Miklankova D, Bartuskova H, Hlinka T, Markova I. Cardiovascular, Metabolic and Inflammatory Changes after Ovariectomy and Estradiol Substitution in Hereditary Hypertriglyceridemic Rats. International Journal of Molecular Sciences. 2022; 23(5):2825. https://doi.org/10.3390/ijms23052825
Chicago/Turabian StylePitha, Jan, Martina Huttl, Hana Malinska, Denisa Miklankova, Hana Bartuskova, Tomas Hlinka, and Irena Markova. 2022. "Cardiovascular, Metabolic and Inflammatory Changes after Ovariectomy and Estradiol Substitution in Hereditary Hypertriglyceridemic Rats" International Journal of Molecular Sciences 23, no. 5: 2825. https://doi.org/10.3390/ijms23052825
APA StylePitha, J., Huttl, M., Malinska, H., Miklankova, D., Bartuskova, H., Hlinka, T., & Markova, I. (2022). Cardiovascular, Metabolic and Inflammatory Changes after Ovariectomy and Estradiol Substitution in Hereditary Hypertriglyceridemic Rats. International Journal of Molecular Sciences, 23(5), 2825. https://doi.org/10.3390/ijms23052825