Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models
Abstract
:1. Introduction
2. Neural Stem Cell Proliferation and Differentiation Are Affected by BPA
Neural Structure/ Cell Type | Organism | Phenotype | Concentration | Reference |
---|---|---|---|---|
Central brain (larval) | Drosophila melanogaster | Reduced proliferation of neuroblasts | 1 mM (developmental) | Nguyen et al., 2021 [41] |
Hypothalamus | Danio rerio | Premature neurogenesis | 0.0068 μM (developmental) | Kinch et al., 2015 [67] |
Neural progenitor cells | Mus musculus | High concentration (>100 μM) resulted in decrease in proliferation | 1 nM–500 μM (in vitro) | Kim et al., 2007 [72] |
Fetal neural stem cells | Rattus norvegicus | Increased cell proliferation; decreased maturation of oligodendrocytes and neurons; increased astrocyte differentiation and morphological changes; reduced arborization by astrocytes, oligodendrocytes, and neurons | 0.05 μM, 0.25 μM, 10 μM, 50 μM, and 100 μM (in vitro) | Gill and Kumara., 2021 [68] |
Lateral ventricles | Rattus norvegicus | Enlargement of lateral ventricles | 100 μg/L; equivalent to 10 μg/kg/day (perinatal) | Santoro et al., 2021 [76] |
Primary neuronal cultures from embryonic rat brains | Rattus norvegicus | Reduced maturation of neural progenitor cells (at 200 µM) | 50, 100, or 200 μM (in vitro) | Cho et al., 2018 [69] |
Hippocampus and lateral ventricle (in vivo); hippocampal neural stem cells (in vitro) | Rattus norvegicus | Impaired neural stem cell proliferation and differentiation (hippocampus and subventricular zone); altered expression/protein levels of neurogenic genes (hippocampus); reduced Wnt pathway activity (hippocampus) | 4, 40, and 400 μg/kg/day (perinatal) | Tiwari et al., 2015 [54] |
Hippocampus (in vivo) and hippocampal neural stem cells (in vitro) | Rattus norvegicus | Inhibited hippocampal-derived neural stem cell proliferation and differentiation | 40 μg/kg/day (perinatal) | Agarwal et al., 2016 [71] |
Neural stem cells | Homo sapiens | Promoted cell proliferation (0.1 and 1 µM); inhibited differentiation (1 µM); reduced GFAP and MAP2 expression (1 µM); increased expression of nestin and Sox2 (1 µM) | 0.1, 1, 5, and 10 µM (in vitro) | Dong et al., 2021 [73] |
Fetal brain- derived neural progenitor cells | Homo sapiens | Reduced neuronal differentiation (decreased β III-tubulin mRNA levels and β III-tubulin-positive cells) | 10−16, 10−13, and 10−10 M (in vitro) | Fujiwara et al., 2018 [74] |
Neural stem cells from umbilical cord blood | Homo sapiens | Reduced NSC proliferation and differentiation | 50 and 100 μmol/L (in vitro) | Huang et al., 2019 [70] |
3. Synapse Formation Is Disrupted by BPA
4. Synaptic Plasticity Is Impaired by BPA
Brain Region | Organism | Phenotype | Exposure | Reference |
---|---|---|---|---|
Hippocampus | Mus musculus (males only) | Downregulated expression of PSD95 and synaptophysin; upregulated gephyrin (inhibitory); reduced excitatory to inhibitory protein ratio | 50 μg/kg/day (perinatal) | Kumar and Thakur, 2017 [109] |
Mus musculus (males only) | Reduced spine density | 40 or 400 μg/kg/day (prenatal) | Kimura et al., 2016 [108] | |
Mus musculus (males only) | Reduced synapsin I, PSD-95, NMDA receptor subunit NR1, AMPA receptor subunit GluR1 | 0.04, 0.4, or 4.0 mg/kg/day (perinatal) | Xu et al., 2013 [88] | |
Mus musculus (males only) | Downregulated NMDA receptor subunits NR1, NR2A, and 2B | 50, 5, 0.5, or 0.05 mg/kg/day (perinatal) | Xu et al., 2010 [110] | |
Rattus norvegicus | Reduced spine density in males; increased spine density in females at estrus, but reduced spine density at proestrus | 30 ug/kg/day (perinatal) | Kawato et al., 2021 [100] | |
Rattus norvegicus | Downregulated expression of p-NR2B, NR2B, p-GluA1, GluA1, PSD-95, synapsin I, PKC, p-ERK and p-CREB in males and females (greater reduction in males) | 1 and 10 μg/mL, equivalent to 0.14 or 1.4 mg/kg/day (perinatal) | Wu et al., 2020 [105] | |
Rattus norvegicus | Reduced spine density; increased mIPSC amplitude; reduced Arc (activity-regulated cytoskeleton-associated protein) expression | 0.15–7.5 mg/kg/day (prenatal and postnatal, through PND 87) | Liu et al., 2016 [101] | |
Rattus norvegicus (males only) | Reduced expressions of synaptophysin, PSD-95, spinophilin, GluR1 and NMDAR1 | 0.05, 0.5, 5, or 50 mg/kg/day (perinatal) | Wang et al., 2014 [106] | |
Macaca mulatta (females only) | Reduced spine synapses in CA1, but not PFC | 125 mg delivered subcutaneously to pregnant females or 50 days (resulted in mean serum level of 0.91 ± 0.13 ng/mL) | Elsworth et al., 2013 [107] | |
Primary visual cortex (V1) | Rattus norvegicus (males only) | Reduced spine density and maturity; decreased interleukin 1β (IL-1β) expression; reduced P38 phosphorylation | 1 mg/kg/day (perinatal and neonatal) | Hu et al., 2020 [102] |
Basal ganglia (dorsal striatum) | Rattus norvegicus (males only) | Caused deficits in development of LTP and LTD at dorsolateral striatum; dysregulated dopaminergic signaling (D1R and D2R) | 20 μg/kg/day (perinatal and neonatal) | Zhou et al., 2009 [104] |
Basolateral amygdala (BLA) | Rattus norvegicus (males only) | Increased neuronal excitability and facilitation of LTP induction in cortical-BLA pathway; GABAergic disinhibition; dopaminergic enhancement | 2 μg/kg/day (perinatal) | Zhou et al., 2011 [103] |
5. Behavior Is Impacted by BPA
Behavior | Organism | Phenotype | Exposure | Reference |
---|---|---|---|---|
Locomotor Behavior | Caenorhabditis elegans | Reduced activity | 0.01–10 mM (developmental) | Zhou et al., 2016 [128] |
Drosophila melanogaster | Increased activity | 0.1–1 mM (developmental) | Musachio et al., 2021 [122] | |
Drosophila melanogaster | Increased activity | 0.1–1 mM (developmental) | Nguyen et al., 2021 [41] | |
Drosophila melanogaster | Increased activity | 0.1–1 mM (developmental) | Kaur et al., 2015 [123] | |
Danio rerio | Increased activity (specifically in response to 0.001 μM BPA) | 0.1 nM to 30 μM (developmental) | Olsvik et al., 2019 [124] | |
Danio rerio | Increased activity | 0.01, 0.1, or 1 μM (developmental) | Saili et al., 2012 [125] | |
Danio rerio | Increased activity | 0.1 or 1 μM BPA (developmental) | Kinch et al., 2015 [67] | |
Danio rerio | Reduced activity | 1, 5, or 15 μM (developmental) | Wang et al., 2013 [84] | |
Mus musculus | Increased activity in females (not affected in males) | 50 ng, 50 μg, or 50 mg BPA/kg/day (perinatal) | Anderson et al., 2013 [126] | |
Rattus norvegicus (males only) | Increased activity | 2 μg/kg/day (perinatal) | Zhou et al., 2011 [103] | |
Rattus norvegicus (males only) | Reduced activity | 0.05, 0.5, 5, or 50 mg/kg/day (perinatal) | Wang et al., 2014 [106] | |
Learning & Memory | Drosophila melanogaster (males only) | Impaired associative learning | 1 mM (developmental) | Welch et al., 2022 [85] |
Danio rerio | Impaired learning | 0.01, 0.1, or 1 μM (developmental) | Saili et al., 2012 [125] | |
Mus musculus | Enhanced fear memory in females; no observed effect in males | 250 ng/kg/day (perinatal) | Matsuda et al., 2013 [137] | |
Mus musculus (females only) | Impaired memory retention | 0.1–10 mg/kg/day (prenatal) | Jang et al., 2012 [129] | |
Mus musculus | No observed effect on spatial learning and memory | 20 μg/kg/day (perinatal) | Nakamura et al., 2012 [138] | |
Mus musculus (males only) | Impaired spatial and avoidance memory | 0.05–50 mg/kg/day (perinatal) | Xu et al., 2010 [110] | |
Peromyscus maniculatus (deer mice) | Impaired spatial learning in males at 5 and 50 mg/kg, no observed effect in females | One or three doses of BPA at 50 μg, 5 mg, and 50 mg/kg feed weight | Jašarević et al., 2012 [130] | |
Rattus norvegicus | Impaired spatial and recognition memory in males and females; Impaired passive avoidance memory in males | 1 and 10 μg/mL, equivalent to 0.14 or 1.4 mg/kg/day (perinatal) | Wu et al., 2020 [105] | |
Rattus norvegicus (males only) | Impaired object recognition memory | 0.05, 0.5, 5, or 50 mg/kg/day (prenatal) | Wang et al., 2016 [135] | |
Rattus norvegicus | Impaired spatial memory in both males and females | 0.15–7.5 mg/kg/day (prenatal and postnatal, through PND 87) | Liu et al., 2016 [101] | |
Rattus norvegicus | Impaired spatial recognition learning and memory in females at 2500 μg/kg/day | 2.5 μg, 25 μg, and 2500 μg/kg/day (perinatal) | Johnson et al., 2016 [131] | |
Rattus norvegicus | Altered spatial learning of females at 25 μg/kg/day (masculinization of female brain) | 0, 25 μg, 250 μg, 5 mg, or 50 mg/kg/day (perinatal) | Hass et al., 2016 [136] | |
Rattus norvegicus (males only) | Impaired working and reference memory | 0.05, 0.5, 5, or 50 mg/kg/day (perinatal) | Wang et al., 2014 [106] | |
Rattus norvegicus (males only) | Impaired spatial memory | 2.5 mg/kg/day (perinatal) | Xu et al., 2014 [132] | |
Rattus norvegicus | Impaired spatial memory in both males and females | 40 ug/kg/day (perinatal) | Poimenova et al., 2010 [133] | |
Rattus norvegicus | No effect on avoidance learning | 15 μg/kg/day (prenatal) | Fujimoto et al., 2006 [140] | |
Rattus norvegicus | Impaired working memory and object recognition memory | 100 or 500 μg/kg/day (perinatal) | Tian et al., 2010 [134] | |
Anxiety-Like Behavior | Mus musculus (males only) | Increased | 50 μg/kg/day (perinatal) | Kumar and Thakur, 2017 [109] |
Mus musculus | Increased in males, no effect in females | 50 mg/kg/day (prenatal) | Cox et al., 2010 [141] | |
Peromyscus maniculatus (deer mice) | Increased in males at 5 and 50 mg/kg, no observed effect in females | One or three doses of BPA at 50 μg, 5 mg, and 50 mg/kg feed weight | Jašarević et al., 2012 [130] | |
Rattus norvegicus | Increased in females, no effect in males | 40 ug/kg/day (perinatal) | Poimenova et al., 2010 [133] | |
Rattus norvegicus | No observed effect | 0.15, 1.5, 75, 750, and 2250 ppm (perinatal) | Stump et al., 2010 [139] | |
Rattus norvegicus | Reduced anxiety | 100 or 500 μg/kg/day (perinatal) | Tian et al., 2010 [134] | |
Rattus norvegicus | Increased in males, no effect in females | 15 μg/kg/day (prenatal) | Fujimoto et al., 2006 [140] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zablotsky, B.; Black, L.I.; Maenner, M.J.; Schieve, L.A.; Danielson, M.L.; Bitsko, R.H.; Blumberg, S.J.; Kogan, M.D.; Boyle, C.A. Prevalence and Trends of Developmental Disabilities among Children in the United States: 2009–2017. Pediatrics 2019, 144, e20190811. [Google Scholar] [CrossRef] [PubMed]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Robinson, C.R.; Rosenberg, C.R.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR. Surveill. Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Shaw, K.A.; Baio, J.; Washington, A.; Patrick, M.; DiRienzo, M.; Christensen, D.L.; Wiggins, L.D.; Pettygrove, S.; Andrews, J.G.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2020, 69, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.R. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr. Opin. Neurol. 2010, 23, 103–110. [Google Scholar] [CrossRef]
- Matelski, L.; Van de Water, J. Risk factors in autism: Thinking outside the brain. J. Autoimmun. 2016, 67, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C. Bisphenol A: Food Exposure and Impact on Human Health. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1503–1517. [Google Scholar] [CrossRef] [Green Version]
- De Cock, M.; Maas, Y.G.; Van De Bor, M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatr. 2012, 101, 811–818. [Google Scholar] [CrossRef]
- Minatoya, M.; Kishi, R. A Review of Recent Studies on Bisphenol A and Phthalate Exposures and Child Neurodevelopment. Int. J. Environ. Res. Public Health 2021, 18, 3585. [Google Scholar] [CrossRef]
- Mustieles, V.; Fernández, M.F. Bisphenol A shapes children’s brain and behavior: Towards an integrated neurotoxicity assessment including human data. Environ. Health 2020, 19, 66. [Google Scholar] [CrossRef]
- Wetherill, Y.B.; Akingbemi, B.T.; Kanno, J.; McLachlan, J.A.; Nadal, A.; Sonnenschein, C.; Watson, C.S.; Zoeller, R.T.; Belcher, S.M. In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol. 2007, 24, 178–198. [Google Scholar] [CrossRef]
- Bonefeld-Jørgensen, E.C.; Long, M.; Hofmeister, M.V.; Vinggaard, A.M. Endocrine-Disrupting Potential of Bisphenol A, Bisphenol A Dimethacrylate, 4-N-Nonylphenol, and 4-N-Octylphenolin Vitro: New Data and a Brief Review. Environ. Health Perspect. 2007, 115, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Hataya, Y.; Shimatsu, A.; Kuzuya, H.; Nakao, K. Thyroid Hormone Action Is Disrupted by Bisphenol A as an Antagonist. J. Clin. Endocrinol. Metab. 2002, 87, 5185–5190. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Shen, O.-X.; Wang, X.-R.; Zhou, L.; Zhen, S.-Q.; Chen, X.-D. Anti-thyroid hormone activity of bisphenol A, tetrabromobisphenol A and tetrachlorobisphenol A in an improved reporter gene assay. Toxicol. Vitr. 2009, 23, 950–954. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.; Hou, M.; Pan, X.; Li, X. The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11β-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children. Int. J. Obes. 2012, 37, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, G.K.; Divya, L.M.; Sadasivan, C. Bisphenol-A can bind to human glucocorticoid receptor as an agonist: An in silico study. J. Appl. Toxicol. 2010, 30, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Atlas, E.; Pope, L.; Wade, M.G.; Kawata, A.; Boudreau, A.; Boucher, J.G. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter. Adipocyte 2014, 3, 170–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, P.; Dong, J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: A potential novel mechanism of endocrine disruption. J. Steroid Biochem. Mol. Biol. 2006, 102, 175–179. [Google Scholar] [CrossRef]
- Pereira-Fernandes, A.; Demaegdt, H.; Vandermeiren, K.; Hectors, T.L.M.; Jorens, P.G.; Blust, R.; Vanparys, C. Evaluation of a Screening System for Obesogenic Compounds: Screening of Endocrine Disrupting Compounds and Evaluation of the PPAR Dependency of the Effect. PLoS ONE 2013, 8, e77481. [Google Scholar] [CrossRef] [Green Version]
- Somm, E.; Schwitzgebel, V.M.; Toulotte, A.; Cederroth, C.R.; Combescure, C.; Nef, S.; Aubert, M.L.; Hüppi, P.S. Perinatal Exposure to Bisphenol A Alters Early Adipogenesis in the Rat. Environ. Health Perspect. 2009, 117, 1549–1555. [Google Scholar] [CrossRef] [Green Version]
- Vogel, S.A. The Politics of Plastics: The Making and Unmaking of Bisphenol A “Safety”. Am. J. Public Health 2009, 99, S559–S566. [Google Scholar] [CrossRef]
- Dodds, E.C.; Lawson, W. Synthetic strogenic Agents without the Phenanthrene Nucleus. Nature 1936, 137, 996. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Maffini, M.V.; Sonnenschein, C.; Rubin, B.S.; Soto, A.M. Bisphenol-A and the Great Divide: A Review of Controversies in the Field of Endocrine Disruption. Endocr. Rev. 2009, 30, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Nerín, C.; Fernández, C.; Domeño, C.; Salafranca, J. Determination of Potential Migrants in Polycarbonate Containers Used for Microwave Ovens by High-Performance Liquid Chromatography with Ultraviolet and Fluorescence Detection. J. Agric. Food Chem. 2003, 51, 5647–5653. [Google Scholar] [CrossRef] [PubMed]
- Brede, C.; Fjeldal, P.; Skjevrak, I.; Herikstad, H. Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit. Contam. 2003, 20, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, A.; Rutkowska, A.; Rachoń, D. Health risk of exposure to Bisphenol A (BPA). Rocz. Panstw. Zakl. Hig. 2015, 66, 5–11. [Google Scholar]
- Liao, C.; Kannan, K. Concentrations and Profiles of Bisphenol A and Other Bisphenol Analogues in Foodstuffs from the United States and Their Implications for Human Exposure. J. Agric. Food Chem. 2013, 61, 4655–4662. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. A Survey of Alkylphenols, Bisphenols, and Triclosan in Personal Care Products from China and the United States. Arch. Environ. Contam. Toxicol. 2014, 67, 50–59. [Google Scholar] [CrossRef]
- Pivnenko, K.; Pedersen, G.A.; Eriksson, E.; Astrup, T. Bisphenol A and its structural analogues in household waste paper. Waste Manag. 2015, 44, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, B.; Henare, K.; Thorstensen, E.B.; Ponnampalam, A.P.; Mitchell, M.D. Transfer of bisphenol A across the human placenta. Am. J. Obstet. Gynecol. 2010, 202, 393.e1–393.e7. [Google Scholar] [CrossRef]
- Sun, Y.; Nakashima, M.N.; Takahashi, M.; Kuroda, N.; Nakashima, K. Determination of bisphenol A in rat brain by microdialysis and column switching high-performance liquid chromatography with fluorescence detection. Biomed. Chromatogr. 2002, 16, 319–326. [Google Scholar] [CrossRef]
- Nishikawa, M.; Iwano, H.; Yanagisawa, R.; Koike, N.; Inoue, H.; Yokota, H. Placental Transfer of Conjugated Bisphenol A and Subsequent Reactivation in the Rat Fetus. Environ. Health Perspect. 2010, 118, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- LaKind, J.S.; Levesque, J.; Dumas, P.; Bryan, S.N.; Clarke, J.; Naiman, D.Q. Comparing United States and Canadian population exposures from National Biomonitoring Surveys: Bisphenol A intake as a case study. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eladak, S.; Grisin, T.; Moison, D.; Guerquin, M.-J.; N’Tumba-Byn, T.; Pozzi-Gaudin, S.; Benachi, A.; Livera, G.; Rouiller-Fabre, V.; Habert, R. A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 2015, 103, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hessel, E.V.; Ezendam, J.; van Broekhuizen, F.A.; Hakkert, B.; DeWitt, J.; Granum, B.; Guzylack, L.; Lawrence, B.P.; Penninks, A.; Rooney, A.A.; et al. Assessment of recent developmental immunotoxicity studies with bisphenol A in the context of the 2015 EFSA t-TDI. Reprod. Toxicol. 2016, 65, 448–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negri-Cesi, P. Bisphenol A Interaction with Brain Development and Functions. Dose-Response 2015, 13, 1559325815590394. [Google Scholar] [CrossRef] [PubMed]
- Geens, T.; Roosens, L.; Neels, H.; Covaci, A. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere 2009, 76, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response 2015, 13, 1559325815598308. [Google Scholar] [CrossRef] [Green Version]
- Nahar, M.S.; Liao, C.; Kannan, K.; Dolinoy, D.C. Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans. J. Biochem. Mol. Toxicol. 2012, 27, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Vandenberg, L.N. Non-Monotonic Dose Responses in Studies of Endocrine Disrupting Chemicals: Bisphenol a as a Case Study. Dose-Response 2013, 12, 259–276. [Google Scholar] [CrossRef]
- Villar-Pazos, S.; Martinez-Pinna, J.; Castellano-Muñoz, M.; Magdalena, P.A.; Marroqui, L.; Quesada, I.; Gustafsson, J.-A.; Nadal, A. Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on Ca2+ entry in mouse pancreatic β-cells. Sci. Rep. 2017, 7, 11700. [Google Scholar] [CrossRef]
- Nguyen, U.; Tinsley, B.; Sen, Y.; Stein, J.; Palacios, Y.; Ceballos, A.; Welch, C.; Nzenkue, K.; Penn, A.; Murphy, L.; et al. Exposure to bisphenol A differentially impacts neurodevelopment and behavior in Drosophila melanogaster from distinct genetic backgrounds. Neuro Toxicol. 2020, 82, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.C. Neuroendocrine targets of endocrine disruptors. Hormones 2010, 9, 16–27. [Google Scholar] [CrossRef]
- Casas, M.; Forns, J.; Martínez, D.; Avella-García, C.; Valvi, D.; Ballesteros-Gómez, A.; Luque, N.; Rubio, S.; Julvez, J.; Sunyer, J.; et al. Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environ. Res. 2015, 142, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Chien, C.-J.; Tsai, M.-S.; Hsieh, C.-J.; Hsieh, W.-S.; Chen, P.-C. Prenatal phenolic compounds exposure and neurobehavioral development at 2 and 7 years of age. Sci. Total Environ. 2017, 605–606, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Mustieles, V.; Bleses, D.; Frederiksen, H.; Trecca, F.; Schoeters, G.; Andersen, H.R.; Grandjean, P.; Kyhl, H.B.; Juul, A.; et al. Prenatal bisphenol A exposure is associated with language development but not with ADHD-related behavior in toddlers from the Odense Child Cohort. Environ. Res. 2019, 170, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Stacy, S.; Papandonatos, G.; Calafat, A.M.; Chen, A.; Yolton, K.; Lanphear, B.P.; Braun, J.M. Early life bisphenol A exposure and neurobehavior at 8 years of age: Identifying windows of heightened vulnerability. Environ. Int. 2017, 107, 258–265. [Google Scholar] [CrossRef]
- Perera, F.; Nolte, E.L.R.; Wang, Y.; Margolis, A.E.; Calafat, A.M.; Wang, S.; Garcia, W.; Hoepner, L.A.; Peterson, B.S.; Rauh, V.; et al. Bisphenol A exposure and symptoms of anxiety and depression among inner city children at 10–12 years of age. Environ. Res. 2016, 151, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Stein, T.P.; Schluter, M.D.; Steer, R.A.; Guo, L.; Ming, X. Bisphenol A Exposure in Children With Autism Spectrum Disorders. Autism Res. 2015, 8, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, M.H.; Swingle, H.M.; Christian, M.A.; Hessabi, M.; Lee, M.; Pitcher, M.R.; Campbell, S.; Mitchell, A.; Krone, R.; Loveland, K.A.; et al. Environmental Exposure to Dioxins, Dibenzofurans, Bisphenol A, and Phthalates in Children with and without Autism Spectrum Disorder Living near the Gulf of Mexico. Int. J. Environ. Res. Public Health 2017, 14, 1425. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Kuang, H.; Fan, R.; Cha, C.; Li, G.; Luo, Z.; Pang, Q. Relationship between bisphenol A exposure and attention-deficit/ hyperactivity disorder: A case-control study for primary school children in Guangzhou, China. Environ. Pollut. 2018, 235, 141–149. [Google Scholar] [CrossRef]
- Tewar, S.; Auinger, P.; Braun, J.M.; Lanphear, B.; Yolton, K.; Epstein, J.N.; Ehrlich, S.; Froehlich, T.E. Association of Bisphenol A exposure and Attention-Deficit/Hyperactivity Disorder in a national sample of U.S. children. Environ. Res. 2016, 150, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Grohs, M.N.; the APrON Study Team; Reynolds, J.E.; Liu, J.; Martin, J.; Pollock, T.; Lebel, C.; Dewey, D. Prenatal maternal and childhood bisphenol a exposure and brain structure and behavior of young children. Environ. Health 2019, 18, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Zhou, X.; Yu, H.-L.; He, X.-X.; Guo, W.-X.; Xiong, W.-C.; Zhu, X.-J. Regulation of neural stem cell proliferation and differentiation by Kinesin family member 2a. PLoS ONE 2017, 12, e0179047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Ray, R.S.; Mishra, V.N.; Chaturvedi, R.K. Inhibitory Effects of Bisphenol-A on Neural Stem Cells Proliferation and Differentiation in the Rat Brain Are Dependent on Wnt/β-Catenin Pathway. Mol. Neurobiol. 2015, 52, 1735–1757. [Google Scholar] [CrossRef] [PubMed]
- Urbã¡n, N.; Guillemot, F. Neurogenesis in the embryonic and adult brain: Same regulators, different roles. Front. Cell. Neurosci. 2014, 8, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shohayeb, B.; Diab, M.; Ahmed, M.; Ng, D.C.H. Factors that influence adult neurogenesis as potential therapy. Transl. Neurodegener. 2018, 7, 4. [Google Scholar] [CrossRef]
- Ernst, C. Proliferation and Differentiation Deficits are a Major Convergence Point for Neurodevelopmental Disorders. Trends Neurosci. 2016, 39, 290–299. [Google Scholar] [CrossRef]
- Stevens, H.E.; Smith, K.M.; Rash, B.; Vaccarino, F.M. Neural stem cell regulation, fibroblast growth factors, and the developmental origins of neuropsychiatric disorders. Front. Neurosci. 2010, 4, 59. [Google Scholar] [CrossRef] [Green Version]
- Smith, I.; Nakashima, K. Mechanisms of Neural Stem Cell Fate Determination: Extracellular Cues and Intracellular Programs. Curr. Stem Cell Res. Ther. 2006, 1, 267–277. [Google Scholar] [CrossRef]
- Kong, S.-Y.; Park, M.-H.; Lee, M.; Kim, J.-O.; Lee, H.-R.; Han, B.W.; Svendsen, C.N.; Sung, S.H.; Kim, H.-J. Kuwanon V Inhibits Proliferation, Promotes Cell Survival and Increases Neurogenesis of Neural Stem Cells. PLoS ONE 2015, 10, e0118188. [Google Scholar] [CrossRef] [Green Version]
- Longo, F.M.; Yang, T.; Xie, Y.; Massa, S.M. Small Molecule Approaches for Promoting Neurogenesis. Curr. Alzheimer Res. 2006, 3, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Rosenfeld, M.G. Epigenetic control of stem cell fate to neurons and glia. Arch. Pharmacal Res. 2010, 33, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Jin, C.Y. Stem Cells in Drug Screening for Neurodegenerative Disease. Korean J. Physiol. Pharmacol. 2012, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.J.; Kong, S.-Y.; Park, M.-H.; Cho, Y.; Kim, S.-E.; Shin, J.-Y.; Jung, S.; Lee, J.; Farhanullah; Kim, H.-J.; et al. Aminopropyl carbazole analogues as potent enhancers of neurogenesis. Bioorganic Med. Chem. 2013, 21, 7165–7174. [Google Scholar] [CrossRef]
- Kim, H.J.; Leeds, P.; Chuang, D.-M. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J. Neurochem. 2009, 110, 1226–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxe, J.P.; Wu, H.; Kelly, T.K.; Phelps, M.E.; Sun, Y.E.; Kornblum, H.I.; Huang, J. A Phenotypic Small-Molecule Screen Identifies an Orphan Ligand-Receptor Pair that Regulates Neural Stem Cell Differentiation. Chem. Biol. 2007, 14, 1019–1030. [Google Scholar] [CrossRef] [Green Version]
- Kinch, C.D.; Ibhazehiebo, K.; Jeong, J.-H.; Habibi, H.R.; Kurrasch, D.M. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proc. Natl. Acad. Sci. USA 2015, 112, 1475–1480. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Kumara, V. Comparative Neurodevelopment Effects of Bisphenol A and Bisphenol F on Rat Fetal Neural Stem Cell Models. Cells 2021, 10, 793. [Google Scholar] [CrossRef]
- Cho, J.-H.; Kim, A.H.; Lee, S.; Lee, Y.; Lee, W.J.; Chang, S.-C.; Lee, J. Sensitive neurotoxicity assessment of bisphenol A using double immunocytochemistry of DCX and MAP2. Arch. Pharmacal Res. 2018, 41, 1098–1107. [Google Scholar] [CrossRef]
- Huang, M.; Li, Y.; Wu, K.; Hao, S.; Cai, Q.; Zhou, Z.; Yang, H. Effects of environmental chemicals on the proliferation and differentiation of neural stem cells. Environ. Toxicol. 2019, 34, 1285–1291. [Google Scholar] [CrossRef]
- Agarwal, S.; Yadav, A.; Tiwari, S.K.; Seth, B.; Chauhan, L.K.S.; Khare, P.; Ray, R.S.; Chaturvedi, R.K. Dynamin-related Protein 1 Inhibition Mitigates Bisphenol A-mediated Alterations in Mitochondrial Dynamics and Neural Stem Cell Proliferation and Differentiation. J. Biol. Chem. 2016, 291, 15923–15939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Son, T.G.; Kim, S.J.; Kim, H.S.; Kim, T.S.; Han, S.Y.; Lee, J. Suppressive Effects of Bisphenol A on the Proliferation of Neural Progenitor Cells. J. Toxicol. Environ. Health Part A 2007, 70, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Ye, G.; Tu, X.; Luo, Y.; Cui, W.; Ma, Y.; Wei, L.; Tian, X.; Wang, Q. Roles of ERRα and TGF-β signaling in stemness enhancement induced by 1 µM bisphenol A exposure via human neural stem cells. Exp. Ther. Med. 2021, 23, 164. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Miyazaki, W.; Koibuchi, N.; Katoh, T. The Effects of Low-Dose Bisphenol A and Bisphenol F on Neural Differentiation of a Fetal Brain-Derived Neural Progenitor Cell Line. Front. Endocrinol. 2018, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Azari, H.; Reynolds, B.A. In Vitro Models for Neurogenesis. Cold Spring Harb. Perspect. Biol. 2015, 8, a021279. [Google Scholar] [CrossRef] [Green Version]
- Santoro, A.; Scafuro, M.; Troisi, J.; Piegari, G.; Di Pietro, P.; Mele, E.; Cappetta, D.; Marino, M.; De Angelis, A.; Vecchione, C.; et al. Multi-Systemic Alterations by Chronic Exposure to a Low Dose of Bisphenol A in Drinking Water: Effects on Inflammation and NAD+-Dependent Deacetylase Sirtuin1 in Lactating and Weaned Rats. Int. J. Mol. Sci. 2021, 22, 9666. [Google Scholar] [CrossRef]
- Mulligan, K.A.; Cheyette, B.N. Neurodevelopmental Perspectives on Wnt Signaling in Psychiatry. Mol. Neuropsychiatry 2016, 2, 219–246. [Google Scholar] [CrossRef] [Green Version]
- Mulligan, K.A.; Cheyette, B.N.R. Wnt Signaling in Vertebrate Neural Development and Function. J. Neuroimmune Pharmacol. 2012, 7, 774–787. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, Y.; Gotoh, Y. Epigenetic control of neural precursor cell fate during development. Nat. Rev. Neurosci. 2010, 11, 377–388. [Google Scholar] [CrossRef]
- Batool, S.; Raza, H.; Zaidi, J.; Riaz, S.; Hasan, S.; Syed, N.I. Synapse formation: From cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders. J. Neurophysiol. 2019, 121, 1381–1397. [Google Scholar] [CrossRef]
- Poggio, T. A Theory of How the Brain Might Work. Cold Spring Harb. Symp. Quant. Biol. 1990, 55, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Taverna, E.; Götz, M.; Huttner, W.B. The Cell Biology of Neurogenesis: Toward an Understanding of the Development and Evolution of the Neocortex. Annu. Rev. Cell Dev. Biol. 2014, 30, 465–502. [Google Scholar] [CrossRef] [PubMed]
- Morrice, J.R.; Gregory-Evans, C.Y.; Shaw, C.A. Modeling Environmentally-Induced Motor Neuron Degeneration in Zebrafish. Sci. Rep. 2018, 8, 4890. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Dong, Q.; Chen, Y.; Jiang, H.; Xiao, Q.; Wang, Y.; Li, W.; Bai, C.; Huang, C.; Yang, D. Bisphenol A affects axonal growth, musculature and motor behavior in developing zebrafish. Aquat. Toxicol. 2013, 142–143, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.; Johnson, E.; Tupikova, A.; Anderson, J.; Tinsley, B.; Newman, J.; Widman, E.; Alfareh, A.; Davis, A.; Rodriguez, L.; et al. Bisphenol A affects neurodevelopment gene expression, cognitive function, and neuromuscular synaptic morphology in Drosophila melanogaster. Neurotoxicology 2022, 89, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yin, N.; Liang, S.; Yang, R.; Liu, S.; Lu, Y.; Jiang, L.; Zhou, Q.; Jiang, G.; Faiola, F. Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length. Food Chem. Toxicol. 2020, 135, 111015. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Y.; Zhang, G.; Chen, L.; Tian, D.; Shen, X.; Yang, Y.; Dong, F. Bisphenol A promotes dendritic morphogenesis of hippocampal neurons through estrogen receptor-mediated ERK1/2 signal pathway. Chemosphere 2014, 96, 129–137. [Google Scholar] [CrossRef]
- Xu, X.; Xie, L.; Hong, X.; Ruan, Q.; Lu, H.; Zhang, Q.; Zhang, G.; Liu, X. Perinatal exposure to bisphenol-A inhibits synaptogenesis and affects the synaptic morphological development in offspring male mice. Chemosphere 2013, 91, 1073–1081. [Google Scholar] [CrossRef]
- Yin, Z.; Hua, L.; Chen, L.; Hu, D.; Li, J.; An, Z.; Tian, T.; Ning, H.; Ge, Y. Bisphenol-A exposure induced neurotoxicity and associated with synapse and cytoskeleton in Neuro-2a cells. Toxicol. Vitr. 2020, 67, 104911. [Google Scholar] [CrossRef]
- Van Battum, E.Y.; Brignani, S.; Pasterkamp, R.J. Axon guidance proteins in neurological disorders. Lancet Neurol. 2015, 14, 532–546. [Google Scholar] [CrossRef]
- McFadden, K.; Minshew, N.J. Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front. Hum. Neurosci. 2013, 7, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, P.M.R.; Cossins, J.; Beeson, D.; Vincent, A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front. Mol. Neurosci. 2020, 13, 610964. [Google Scholar] [CrossRef] [PubMed]
- Zoghbi, H.Y.; Bear, M.F. Synaptic Dysfunction in Neurodevelopmental Disorders Associated with Autism and Intellectual Disabilities. Cold Spring Harb. Perspect. Biol. 2012, 4, a009886. [Google Scholar] [CrossRef] [Green Version]
- Washbourne, P. Synapse Assembly and Neurodevelopmental Disorders. Neuropsychopharmacology 2014, 40, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 2015, 16, 551–563. [Google Scholar] [CrossRef]
- Stuchlik, A. Dynamic learning and memory, synaptic plasticity and neurogenesis: An update. Front. Behav. Neurosci. 2014, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Davidson, R.J.; McEwen, B.S. Social influences on neuroplasticity: Stress and interventions to promote well-being. Nat. Neurosci. 2012, 15, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Segal, M. Dendritic spines: Morphological building blocks of memory. Neurobiol. Learn. Mem. 2017, 138, 3–9. [Google Scholar] [CrossRef]
- Hasegawa, S.; Sakuragi, S.; Tominaga-Yoshino, K.; Ogura, A. Dendritic spine dynamics leading to spine elimination after repeated inductions of LTD. Sci. Rep. 2015, 5, 7707. [Google Scholar] [CrossRef] [Green Version]
- Kawato, S.; Ogiue-Ikeda, M.; Soma, M.; Yoshino, H.; Kominami, T.; Saito, M.; Aou, S.; Hojo, Y. Perinatal Exposure of Bisphenol A Differently Affects Dendritic Spines of Male and Female Grown-Up Adult Hippocampal Neurons. Front. Neurosci. 2021, 15, 712261. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Ding, J.-J.; Yang, Q.-Q.; Song, H.-Z.; Chen, X.-T.; Xu, Y.; Xiao, G.; Wang, H.-L. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats. Sci. Rep. 2016, 6, 32492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.; Zhang, L.; Li, T.; Wang, H.; Liang, W.; Zhou, Y. Bisphenol-A Exposure during Gestation and Lactation Causes Visual Perception Deficits in Rat Pups Following a Decrease in Interleukin 1β Expression in the Primary Visual Cortex. Neuroscience 2020, 434, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Bai, Y.; Yang, R.; Zhu, Y.; Chi, X.; Li, L.; Chen, L.; Sokabe, M.; Chen, L. Abnormal synaptic plasticity in basolateral amygdala may account for hyperactivity and attention-deficit in male rat exposed perinatally to low-dose bisphenol-A. Neuropharmacology 2011, 60, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhang, Z.; Zhu, Y.; Chen, L.; Sokabe, M. Deficits in development of synaptic plasticity in rat dorsal striatum following prenatal and neonatal exposure to low-dose bisphenol A. Neuroscience 2009, 159, 161–171. [Google Scholar] [CrossRef]
- Wu, D.; Wu, F.; Lin, R.; Meng, Y.; Wei, W.; Sun, Q.; Jia, L. Impairment of learning and memory induced by perinatal exposure to BPA is associated with ERα-mediated alterations of synaptic plasticity and PKC/ERK/CREB signaling pathway in offspring rats. Brain Res. Bull. 2020, 161, 43–54. [Google Scholar] [CrossRef]
- Wang, C.; Niu, R.; Zhu, Y.; Han, H.; Luo, G.; Zhou, B.; Wang, J. Changes in memory and synaptic plasticity induced in male rats after maternal exposure to bisphenol A. Toxicology 2014, 322, 51–60. [Google Scholar] [CrossRef]
- Elsworth, J.D.; Jentsch, J.D.; VandeVoort, C.A.; Roth, R.H., Jr. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neuro Toxicol. 2013, 35, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Kimura, E.; Matsuyoshi, C.; Miyazaki, W.; Benner, S.; Hosokawa, M.; Yokoyama, K.; Kakeyama, M.; Tohyama, C. Prenatal exposure to bisphenol A impacts neuronal morphology in the hippocampal CA1 region in developing and aged mice. Arch. Toxicology 2016, 90, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Thakur, M. Anxiety like behavior due to perinatal exposure to Bisphenol-A is associated with decrease in excitatory to inhibitory synaptic density of male mouse brain. Toxicology 2017, 378, 107–113. [Google Scholar] [CrossRef]
- Xu, X.-H.; Zhang, J.; Wang, Y.-M.; Ye, Y.-P.; Luo, Q.-Q. Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N-methyl-d-aspartate receptors of hippocampus in male offspring mice. Horm. Behav. 2010, 58, 326–333. [Google Scholar] [CrossRef]
- Schneider, H.; Pitossi, F.; Balschun, D.; Wagner, A.; del Rey, A.; Besedovsky, H.O. A neuromodulatory role of interleukin-1 in the hippocampus. Proc. Natl. Acad. Sci. USA 1998, 95, 7778–7783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisinger, R.; Urdaneta, M.; Foote, K.; Okun, M.S.; Gunduz, A. Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology. Front. Neurosci. 2018, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Leranth, C.; Hajszan, T.; Szigeti-Buck, K.; Bober, J.; MacLusky, N. Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc. Natl. Acad. Sci. USA 2008, 105, 14187–14191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsworth, J.D.; Jentsch, J.D.; Groman, S.M.; Roth, R.H., Jr.; Leranth, C. Low circulating levels of bisphenol-A induce cognitive deficits and loss of asymmetric spine synapses in dorsolateral prefrontal cortex and hippocampus of adult male monkeys. J. Comp. Neurol. 2015, 523, 1248–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leranth, C.; Szigeti-Buck, K.; MacLusky, N.; Hajszan, T. Bisphenol A Prevents the Synaptogenic Response to Testosterone in the Brain of Adult Male Rats. Endocrinology 2007, 149, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Eilam-Stock, T.; Serrano, P.; Frankfurt, M.; Luine, V. Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behav. Neurosci. 2012, 126, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Frankfurt, M.; Luine, V. Estrogen-Induced Memory Enhancements Are Blocked by Acute Bisphenol A in Adult Female Rats: Role of Dendritic Spines. Endocrinology 2012, 153, 3357–3367. [Google Scholar] [CrossRef] [Green Version]
- Bowman, R.E.; Hagedorn, J.; Madden, E.; Frankfurt, M. Effects of adolescent Bisphenol-A exposure on memory and spine density in ovariectomized female rats: Adolescence vs. adulthood. Horm. Behav. 2019, 107, 26–34. [Google Scholar] [CrossRef]
- Huarui, G.; Li, T.; Gong, H.; Chen, Z.; Jin, Y.; Xu, G.; Wang, M. Bisphenol A Impairs Synaptic Plasticity by Both Pre- and Postsynaptic Mechanisms. Adv. Sci. 2017, 4, 1600493. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y.; Hyun, S.-A.; Ko, M.Y.; Kim, H.R.; Rho, J.; Kim, K.K.; Kim, W.-Y.; Ka, M. Maternal Bisphenol A (BPA) Exposure Alters Cerebral Cortical Morphogenesis and Synaptic Function in Mice. Cereb. Cortex 2021, 31, 5598–5612. [Google Scholar] [CrossRef]
- Aldridge, J.E.; Gibbons, J.A.; Flaherty, M.M.; Kreider, M.L.; Romano, J.A.; Levin, E.D. Heterogeneity of Toxicant Response: Sources of Human Variability. Toxicol. Sci. 2003, 76, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Musachio, E.A.S.; Couto, S.D.F.; Poetini, M.R.; Bortolotto, V.C.; Dahleh, M.M.M.; Janner, D.E.; Araujo, S.M.; Ramborger, B.P.; Rohers, R.; Guerra, G.P.; et al. Bisphenol A exposure during the embryonic period: Insights into dopamine relationship and behavioral disorders in Drosophila melanogaster. Food Chem. Toxicol. 2021, 157, 112526. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Simon, A.; Chauhan, V.; Chauhan, A. Effect of bisphenol A on Drosophila melanogaster behavior—A new model for the studies on neurodevelopmental disorders. Behav. Brain Res. 2015, 284, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Olsvik, P.A.; Whatmore, P.; Penglase, S.J.; Skjærven, K.H.; D’Auriac, M.A.; Ellingsen, S. Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Front. Genet. 2019, 10, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saili, K.S.; Corvi, M.M.; Weber, D.N.; Patel, A.U.; Das, S.R.; Przybyla, J.; Anderson, K.A.; Tanguay, R.L. Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology 2012, 291, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Anderson, O.S.; Peterson, K.E.; Sanchez, B.N.; Zhang, Z.; Mancuso, P.; Dolinoy, D.C. Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course. FASEB J. 2013, 27, 1784–1792. [Google Scholar] [CrossRef] [Green Version]
- Plessen, K.J.; Bansal, R.; Zhu, H.; Whiteman, R.; Amat, J.; Quackenbush, G.A.; Martin, L.; Durkin, K.; Blair, C.; Royal, J.; et al. Hippocampus and Amygdala Morphology in Attention-Deficit/Hyperactivity Disorder. Arch. Gen. Psychiatry 2006, 63, 795–807. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Yang, J.; Li, H.; Lu, Q.; Liu, Y.-D.; Lin, K.-F. Ecotoxicological evaluation of low-concentration bisphenol A exposure on the soil nematode Caenorhabditis elegansand intrinsic mechanisms of stress response in vivo. Environ. Toxicol. Chem. 2016, 35, 2041–2047. [Google Scholar] [CrossRef]
- Jang, Y.J.; Park, H.R.; Kim, T.H.; Yang, W.-J.; Lee, J.-J.; Choi, S.Y.; Oh, S.B.; Lee, E.; Park, J.-H.; Kim, H.-P.; et al. High dose bisphenol A impairs hippocampal neurogenesis in female mice across generations. Toxicology 2012, 296, 73–82. [Google Scholar] [CrossRef]
- Jašarević, E.; Williams, S.A.; Vandas, G.M.; Ellersieck, M.R.; Liao, C.; Kannan, K.; Roberts, R.M.; Geary, D.C.; Rosenfeld, C.S. Sex and dose-dependent effects of developmental exposure to bisphenol A on anxiety and spatial learning in deer mice (Peromyscus maniculatus bairdii) offspring. Horm. Behav. 2012, 63, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.A.; Javurek, A.B.; Painter, M.S.; Ellersieck, M.R.; Welsh, T.H.; Camacho, L.; Lewis, S.M.; Vanlandingham, M.M.; Ferguson, S.; Rosenfeld, C.S. Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: A CLARITY-BPA study. Horm. Behav. 2016, 80, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.-B.; He, Y.; Song, C.; Ke, X.; Fan, S.-J.; Peng, W.-J.; Tan, R.; Kawata, M.; Matsuda, K.-I.; Pan, B.-X.; et al. Bisphenol a regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor. Hippocampus 2014, 24, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Poimenova, A.; Markaki, E.; Rahiotis, C.; Kitraki, E. Corticosterone-regulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience 2010, 167, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-H.; Baek, J.-H.; Lee, S.-Y.; Jang, C.-G. Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse 2010, 64, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Z.; Han, H.; Luo, G.; Zhou, B.; Wang, S.; Wang, J. Impairment of object recognition memory by maternal bisphenol A exposure is associated with inhibition of Akt and ERK/CREB/BDNF pathway in the male offspring hippocampus. Toxicology 2016, 341–343, 56–64. [Google Scholar] [CrossRef]
- Hass, U.; Christiansen, S.; Boberg, J.; Rasmussen, M.G.; Mandrup, K.; Axelstad, M. Low-dose effect of developmental bisphenol A exposure on sperm count and behaviour in rats. Andrology 2016, 4, 594–607. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, S.; Matsuzawa, D.; Ishii, D.; Tomizawa, H.; Sajiki, J.; Shimizu, E. Perinatal exposure to bisphenol A enhances contextual fear memory and affects the serotoninergic system in juvenile female mice. Horm. Behav. 2013, 63, 709–716. [Google Scholar] [CrossRef]
- Nakamura, K.; Itoh, K.; Dai, H.; Han, L.; Wang, X.; Kato, S.; Sugimoto, T.; Fushiki, S. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior. Brain Dev. 2012, 34, 57–63. [Google Scholar] [CrossRef]
- Stump, D.G.; Beck, M.J.; Radovsky, A.; Garman, R.H.; Freshwater, L.L.; Sheets, L.P.; Marty, M.S.; Waechter, J.M.; Dimond, S.S.; Van Miller, J.P.; et al. Developmental Neurotoxicity Study of Dietary Bisphenol A in Sprague-Dawley Rats. Toxicol. Sci. 2010, 115, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, T.; Kubo, K.; Aou, S. Prenatal exposure to bisphenol A impairs sexual differentiation of exploratory behavior and increases depression-like behavior in rats. Brain Res. 2006, 1068, 49–55. [Google Scholar] [CrossRef]
- Cox, K.H.; Gatewood, J.D.; Howeth, C.; Rissman, E.F. Gestational exposure to bisphenol A and cross-fostering affect behaviors in juvenile mice. Horm. Behav. 2010, 58, 754–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R. Common Mechanisms of Excitatory and Inhibitory Imbalance in Schizophrenia and Autism Spectrum Disorders. Curr. Mol. Med. 2015, 15, 146–167. [Google Scholar] [CrossRef] [PubMed]
- Selten, M.; Van Bokhoven, H.; Kasri, N.N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research 2018, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Mamiya, P.; Arnett, A.; Stein, M. Precision Medicine Care in ADHD: The Case for Neural Excitation and Inhibition. Brain Sci. 2021, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Mhaouty-Kodja, S.; Belzunces, L.P.; Canivenc, M.-C.; Schroeder, H.; Chevrier, C.; Pasquier, E. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED. Mol. Cell. Endocrinol. 2018, 475, 54–73. [Google Scholar] [CrossRef] [PubMed]
- CLARITY-BPA Research Program. NTP Research Report on the Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA): A Compendium of Published Findings: Research Report 18. 2021. Available online: https://pubmed.ncbi.nlm.nih.gov/34910417/ (accessed on 4 March 2022).
- Rebolledo-Solleiro, D.; Flores, L.Y.C.; Solleiro-Villavicencio, H. Impact of BPA on behavior, neurodevelopment and neurodegeneration Daniela. Front. Biosci. 2021, 26, 363–400. [Google Scholar] [CrossRef]
- Bakoyiannis, I.; Kitraki, E.; Stamatakis, A. Endocrine-disrupting chemicals and behaviour: A high risk to take? Best Pr. Res. Clin. Endocrinol. Metab. 2021, 35, 101517. [Google Scholar] [CrossRef]
- Nesan, D.; Kurrasch, D.M. Gestational Exposure to Common Endocrine Disrupting Chemicals and Their Impact on Neurodevelopment and Behavior. Annu. Rev. Physiol. 2020, 82, 177–202. [Google Scholar] [CrossRef] [Green Version]
- Xin, F.; Fischer, E.; Krapp, C.; Krizman, E.N.; Lan, Y.; Mesaros, C.; Snyder, N.W.; Bansal, A.; Robinson, M.B.; Simmons, R.A.; et al. Mice exposed to bisphenol A exhibit depressive-like behavior with neurotransmitter and neuroactive steroid dysfunction. Horm. Behav. 2018, 102, 93–104. [Google Scholar] [CrossRef]
- Santoro, A.; Chianese, R.; Troisi, J.; Richards, S.; Nori, S.L.; Fasano, S.; Guida, M.; Plunk, E.; Viggiano, A.; Pierantoni, R.; et al. Neuro-toxic and Reproductive Effects of BPA. Curr. Neuropharmacol. 2019, 17, 1109–1132. [Google Scholar] [CrossRef]
Neural Structure/Cell Type | Organism | Phenotype | Exposure | Reference |
---|---|---|---|---|
Mushroom body | Drosophila melanogaster | Increased axon midline crossing (axon guidance defect) | 0.1 and 1 mM (developmental) | Nguyen et al., 2021 [41] |
Neuromuscular junction (NMJ) | Drosophila melanogaster | Increased axonal branches | 1 mM (developmental) | Welch et al., 2022 [85] |
Motor neuron | Danio rerio | Reduced motor axon length and branching; reduced NMJ integrity | 50 μM (developmental) | Morrice et al., 2018 [83] |
Motor neuron | Danio rerio | Decreased ventral and dorsal axons from secondary motoneurons (specifically at 15 μM) | 1, 5, and 15 μM (developmental) | Wang et al., 2013 [84] |
Neuroblasts (Neuro-2A cell line) | Mus musculus | Cell shrinkage, rounding, and reduced number of synapses; decreased relative protein and mRNA expression levels of Dbn, MAP2 and Tau; increased the relative protein and mRNA expression levels of SYP | 50, 100, 150, or 200 μM (in vitro) | Yin et al., 2020 [89] |
Hippocampus (CA1 area) | Mus musculus (males only) | Inhibited synaptogenesis; altered synaptic structure | 0.04, 0.4, and 4.0 mg/kg/day (perinatal) | Xu et al., 2013 [88] |
Hippocampal neurons | Rattus norvegicus | Increased total length of dendrites; increased motility and density of dendritic filipodia | 1, 10, and 100 nM (in vitro) | Xu et al., 2014 [87] |
Embryonic stem cell-derived neural stem cells | Homo sapiens | Decreased neurite outgrowth | 1, 10, and 100 nM (in vitro) | Liang et al., 2020 [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welch, C.; Mulligan, K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int. J. Mol. Sci. 2022, 23, 2894. https://doi.org/10.3390/ijms23052894
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. International Journal of Molecular Sciences. 2022; 23(5):2894. https://doi.org/10.3390/ijms23052894
Chicago/Turabian StyleWelch, Chloe, and Kimberly Mulligan. 2022. "Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models" International Journal of Molecular Sciences 23, no. 5: 2894. https://doi.org/10.3390/ijms23052894
APA StyleWelch, C., & Mulligan, K. (2022). Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. International Journal of Molecular Sciences, 23(5), 2894. https://doi.org/10.3390/ijms23052894