The Significance of Epidermal Growth Factor in Noninvasively Obtained Amniotic Fluid Predicting Respiratory Outcomes of Preterm Neonates
Abstract
:1. Introduction
2. Results
2.1. EGF Median Concentrations in Noninvasively Obtained Amniotic Fluid
2.2. EGF Predicting Models for Respiratory Outcomes
2.3. EGF Concentrations in Histological Chorioamnionitis, Fetal Inflammatory Response Syndrome
3. Discussion
4. Materials and Methods
4.1. Methods
4.2. Study Population
4.3. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, Regional, and National Causes of under-5 Mortality in 2000–15: An Updated Systematic Analysis with Implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and Causes of Preterm Birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- American College of Obstetritians and Gynecologist Prelabor Rupture of Membranes: ACOG Practice Bulletin, Number 217. Obstet. Gynecol. 2020, 135, e80–e97. [CrossRef] [PubMed]
- Platt, M.J. Outcomes in Preterm Infants. Public Health 2014, 128, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, G.; Shankaran, S. Short- and Long-Term Outcomes of Moderate and Late Preterm Infants. Am. J. Perinatol. 2016, 33, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.M. Short and Long-Term Outcomes for Extremely Preterm Infants. Am. J. Perinatol. 2016, 33, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manuck, T.A.; Rice, M.M.; Bailit, J.L.; Grobman, W.A.; Reddy, U.M.; Wapner, R.J.; Thorp, J.M.; Caritis, S.N.; Prasad, M.; Tita, A.T.N.; et al. Preterm Neonatal Morbidity and Mortality by Gestational Age: A Contemporary Cohort. Am. J. Obstet. Gynecol. 2016, 215, 103.e1–103.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, N.; Kothari, R.; Morris, N.; Müller, W.; Resch, B. The Fetal Inflammatory Response Syndrome Is a Risk Factor for Morbidity in Preterm Neonates. Am. J. Obstet. Gynecol. 2013, 209, 542.e1–542.e11. [Google Scholar] [CrossRef] [PubMed]
- Thébaud, B.; Goss, K.N.; Laughon, M.; Whitsett, J.A.; Abman, S.H.; Steinhorn, R.H.; Aschner, J.L.; Davis, P.G.; McGrath-Morrow, S.A.; Soll, R.F.; et al. Bronchopulmonary Dysplasia. Nat. Rev. Dis. Primers 2019, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Cousins, M.; Hart, K.; Gallacher, D.; Palomino, M.A.; Kotecha, S. Long-Term Respiratory Outcomes Following Preterm Birth. Rev. Méd. Clín. Las Condes 2018, 29, 87–97. [Google Scholar] [CrossRef]
- Jung, E.; Romero, R.; Yeo, L.; Diaz-Primera, R.; Marin-Concha, J.; Para, R.; Lopez, A.M.; Pacora, P.; Gomez-Lopez, N.; Yoon, B.H.; et al. The Fetal Inflammatory Response Syndrome: The Origins of a Concept, Pathophysiology, Diagnosis, and Obstetrical Implications. Semin. Fetal Neonatal Med. 2020, 25, 101146. [Google Scholar] [CrossRef] [PubMed]
- Desai, T.J.; Cardoso, W. Growth Factors in Lung Development and Disease: Friends or Foe? Respir. Res. 2002, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Currie, A.E.; Vyas, J.R.; MacDonald, J.; Field, D.; Kotecha, S. Epidermal Growth Factor in the Lungs of Infants Developing Chronic Lung Disease. Eur. Respir. J. 2001, 18, 796–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haigh, R.; D’souza, S.W.; Micklewright, L.; Gregory, H.; Butler, S.J.; Hollingsworth, M.; Donnai, P.; Boyd, R.D.H. Human Amniotic Fluid Urogastrone (Epidermal Growth Factor) and Fetal Lung Phospholipids. BJOG Int. J. Obstet. Gynaecol. 1989, 96, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Pesonen, K.; Viinikka, L.; Koskimies, A.; Banks, A.R.; Nicolson, M.; Perheentupa, J. Size Heterogeneity of Epidermal Growth Factor in Human Body Fluids. Life Sci. 1987, 40, 2489–2494. [Google Scholar] [CrossRef]
- Underwood, M.; Gilbert, W.; Sherman, M. Amniotic Fluid: Not Just Fetal Urine Anymore. J. Perinatol. 2005, 25, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, S.; Masuzaki, H.; Miura, K.; Gotoh, H.; Moriyama, S.; Fujishita, A.; Ishimaru, T. Effect of Epidermal Growth Factor on Lung Growth in Experimental Fetal Pulmonary Hypoplasia. Early Hum. Dev. 2000, 57, 61–69. [Google Scholar] [CrossRef]
- Edwards, L.A.; Read, L.C.; Nishio, S.J.; Weir, A.J.; Hull, W.; Barry, S.; Styne, D.; Whitsett, J.A.; Tarantal, A.F.; George-Nascimento, C. Comparison of the Distinct Effects of Epidermal Growth Factor and Betamethasone on the Morphogenesis of the Gas Exchange Region and Differentiation of Alveolar Type II Cells in Lungs of Fetal Rhesus Monkeys. J. Pharmacol. Exp. Ther. 1995, 274, 1025–1032. [Google Scholar] [PubMed]
- Plopper, C.; St George, J.; Read, L.C.; Nishio, S.J.; Weir, A.J.; Edwards, L.; Tarantal, A.F.; Pinkerton, K.E.; Merritt, T.A.; Whitsett, J.A. Acceleration of Alveolar Type II Cell Differentiation in Fetal Rhesus Monkey Lung by Administration of EGF. Am. J. Physiol. 1992, 262, L313–L321. [Google Scholar] [CrossRef] [PubMed]
- Hundertmark, S.; Lorenz, U.; Weitzel, H.K.; Ragosch, V. Effect of Epidermal Growth Factor on Enzymes of Phospholipid Biosynthesis in Lung and Liver of Fetal Rat in Vivo and in Vitro. Horm. Metab. Res. 1999, 31, 8–13. [Google Scholar] [CrossRef]
- Ma, L.; Wang, A.; Frieda, L.; He, H.; Ma, G.; Wang, H.; Lin, L. Effect of Epidermal Growth Factor and Dexamethasone on Fetal Rat Lung Development. Chin. Med. J. 2009, 122, 2013–2016. [Google Scholar] [PubMed]
- Goetzman, B.W.; Read, L.; Plopper, C.; Tarantal, A.F.; George-Nascimento, C.; Merritt, T.; Whitsett, J.; Styne, D. Prenatal Exposure to Epidermal Growth Factor Attenuates Respiratory Distress Syndrome in Rhesus Infants. Pediatr. Res. 1994, 35, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varner, M.; Dildy, G.; Hunter, C.; Dudley, D.; Clark, S.; Mitchell, M. Amniotic Fluid Epidermal Growth Factor Levels in Normal and Abnormal Pregnancies. J. Soc. Gynecol. Investig. 1996, 3, 17–19. [Google Scholar] [CrossRef]
- Scott, S.; Buenaflor, G.; Orth, D. Immunoreactive Human Epidermal Growth Factor Concentrations in Amniotic Fluid, Umbilical Artery and Vein Serum, and Placenta in Full-Term and Preterm Infants. Biol. Neonate 1989, 56, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, G.; Abramowicz, J. Epidermal Growth Factor (EGF) Concentrations in Amniotic Fluid and Maternal Urine during Pregnancy. Acta Obstet. Gynecol. Scand. 1990, 69, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; Wu, Y.; Oyarzun, E.; Hobbins, J.; Mitchell, M. A Potential Role for Epidermal Growth Factor/Alpha-Transforming Growth Factor in Human Parturition. Eur. J. Obstet. Gynecol. Reprod. Biol. 1989, 33, 55–60. [Google Scholar] [CrossRef]
- Kunze, M.; Klar, M.; Morfeld, C.A.; Thorns, B.; Schild, R.L.; Markfeld-Erol, F.; Rasenack, R.; Proempeler, H.; Hentschel, R.; Schaefer, W.R. Cytokines in Noninvasively Obtained Amniotic Fluid as Predictors of Fetal Inflammatory Response Syndrome. Am. J. Obstet. Gynecol. 2016, 215, 96.e1–96.e8. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Capponi, A.; Rinaldo, D.; Tedeschi, D.; Arduini, D.; Romanini, C. Interleukin-6 Concentrations in Cervical Secretions Identify Microbial Invasion of the Amniotic Cavity in Patients with Preterm Labor and Intact Membranes. Am. J. Obstet. Gynecol. 1996, 175, 812–817. [Google Scholar] [CrossRef]
- Oh, K.J.; Lee, J.H.; Romero, R.; Park, H.S.; Hong, J.S.; Yoon, B.H. A New Rapid Bedside Test to Diagnose and Monitor Intraamniotic Inflammation in Preterm PROM Using Transcervically Collected Fluid. Am. J. Obstet. Gynecol. 2020, 223, 423.e1–423.e15. [Google Scholar] [CrossRef] [PubMed]
- Musilova, I.; Bestvina, T.; Hudeckova, M.; Michalec, I.; Cobo, T.; Jacobsson, B.; Kacerovsky, M. Vaginal Fluid Interleukin-6 Concentrations as a Point-of-Care Test Is of Value in Women with Preterm Prelabor Rupture of Membranes. Am. J. Obstet. Gynecol. 2016, 215, 619.e1–619.e12. [Google Scholar] [CrossRef] [PubMed]
- Holmström, E.; Myntti, T.; Sorsa, T.; Kruit, H.; Juhila, J.; Paavonen, J.; Rahkonen, L.; Stefanovic, V. Cervical and Amniotic Fluid Matrix Metalloproteinase-8 and Interleukin-6 Concentrations in Preterm Pregnancies with or without Preterm Premature Rupture of Membranes. Fetal Diagn. Ther. 2019, 46, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balciuniene, G.; Gulbiniene, V.; Dumalakiene, I.; Viliene, V.; Bartkeviciene, D.; Pilypiene, I.; Drasutiene, G.; Ramasauskaite, D. Prognostic Markers for Chorioamnionitis: IL-6, TNF-α, and MMP-8 in Vaginally Obtained Amniotic Fluid. J. Clin. Med. 2021, 10, 1136. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chen, M.; Feng, T.; Zhan, L.; Zhou, L.; Yu, G. Use Ggbreak to Effectively Utilize Plotting Space to Deal with Large Datasets and Outliers. Front. Genet. 2021, 2122. [Google Scholar] [CrossRef] [PubMed]
- Shobokshi, A.; Shaarawy, M. Maternal Serum and Amniotic Fluid Cytokines in Patients with Preterm Premature Rupture of Membranes with and without Intrauterine Infection. Int. J. Gynecol. Obstet. 2002, 79, 209–215. [Google Scholar] [CrossRef]
- Candilera, V.; Bouchè, C.; Schleef, J.; Pederiva, F. Lung Growth Factors in the Amniotic Fluid of Normal Pregnancies and with Congenital Diaphragmatic Hernia. J. Matern. Neonatal Med. 2016, 29, 2104–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, D.; Tan, J.; Maleken, A.S.; Muljadi, R.; Chan, S.T.; Lau, S.N.; Elgass, K.; Leaw, B.; Mockler, J.; Chambers, D.; et al. Human Amnion Cells Reverse Acute and Chronic Pulmonary Damage in Experimental Neonatal Lung Injury. Stem Cell Res. Ther. 2017, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Aschner, J.L.; Gien, J.; Ambalavanan, N.; Kinsella, J.P.; Konduri, G.G.; Lakshminrusimha, S.; Saugstad, O.D.; Steinhorn, R.H. Challenges, Priorities and Novel Therapies for Hypoxemic Respiratory Failure and Pulmonary Hypertension in the Neonate. J. Perinatol. 2016, 36, S32–S36. [Google Scholar] [CrossRef]
- Lal, C.V.; Ambalavanan, N. Biomarkers, Early Diagnosis, and Clinical Predictors of BPD. Clin. Perinatol. 2015, 42, 739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Pas, A.T.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.A.; Mong, D.A.; Biko, D.M.; Maschhoff, K.L.; Kirpalani, H. Common Etiologies of Respiratory Distress in Infants. In Assisted Ventilation of the Neonate: An Evidence-Based Approach to Newborn Respiratory Care; Goldsmith, J.P., Karotkin, E.H., Keszler, M., Suresh, G.K., Eds.; Elsevier: Philadelphia, PA, USA, 2016; p. 72. ISBN 9780323392150. [Google Scholar]
- March of Dimes; PMNCH; Save the Children; WHO. Born Too Soon: The Global Action Report on Preterm Birth; Howson, C.P., Kinney, M.V., Lawn, J.E., Eds.; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria; Available online: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/fisher.test (accessed on 27 September 2021).
Cut-Off EGF (pg/mL) | Respiratory Outcomes | Estimate | Standard Error | p-Value | OR | CI |
---|---|---|---|---|---|---|
<200 | Severe RDS | 0.6004 | 0.6568 | 0.36 | 1.82 | 0.57–8.15 |
The need for Surfactant | 0.8015 | 0.5823 | 0.17 | 2.23 | 0.78–8.06 | |
RS for >4 days | 0.8596 | 0.5365 | 0.11 | 2.36 | 0.89–7.51 | |
Mechanical ventilation | 1.0012 | 0.7729 | 0.20 | 2.72 | 0.73–17.72 | |
BPD | 0.4520 | 0.7884 | 0.57 | 1.57 | 0.40–10.42 | |
<100 | Severe RDS | 0.6286 | 0.4760 | 0.19 | 1.88 | 0.77–5.08 |
The need for Surfactant | 0.9354 | 0.4269 | 0.03 | 2.55 | 1.14–6.17 | |
RS for >4 days | 0.8972 | 0.3910 | 0.02 | 2.45 | 1.14–6.17 | |
Mechanical ventilation | 0.7422 | 0.5021 | 0.14 | 2.10 | 0.83–6.09 | |
BPD | 0.6804 | 0.6003 | 0.26 | 1.97 | 0.66–7.32 | |
<90 | Severe RDS | 1.0815 | 0.4740 | 0.02 | 2.95 | 1.21–7.97 |
The need for Surfactant | 1.2675 | 0.4139 | <0.01 | 3.55 | 1.62–8.33 | |
RS for >4 days | 1.3103 | 0.3832 | <0.001 | 3.71 | 1.78–8.08 | |
Mechanical ventilation | 1.1872 | 0.5002 | 0.02 | 3.28 | 1.29–9.49 | |
BPD | 1.0999 | 0.5987 | 0.07 | 3.00 | 1.001–11.12 | |
<75 | Severe RDS | 1.3146 | 0.4589 | <0.01 | 3.72 | 1.56–9.64 |
The need for Surfactant | 1.6245 | 0.4086 | <0.0001 | 5.08 | 2.34–11.71 | |
RS for >4 days | 1.7634 | 0.385 | <0.0001 | 5.44 | 2.79–12.75 | |
Mechanical ventilation | 1.1676 | 0.4639 | 0.02 | 3.21 | 1.33–8.38 | |
BPD | 1.5124 | 0.5994 | 0.01 | 4.54 | 1.51–16.81 | |
<50 | Severe RDS | 1.1635 | 0.4330 | <0.01 | 3.20 | 1.37–7.59 |
The need for Surfactant | 1.6482 | 0.3978 | <0.0001 | 5.20 | 2.41–11.54 | |
RS for >4 days | 1.6942 | 0.3888 | <0.0001 | 5.44 | 2.58–11.89 | |
Mechanical ventilation | 1.1543 | 0.4444 | 0.01 | 3.17 | 1.33–7.70 | |
BPD | 1.6124 | 0.5457 | <0.01 | 5.01 | 1.77–15.56 | |
<35 | Severe RDS | 1.1170 | 0.4703 | 0.02 | 3.06 | 1.19–7.65 |
The need for Surfactant | 1.9849 | 0.4580 | <0.0001 | 7.28 | 3.03–18.47 | |
RS for >4 days | 1.6275 | 0.4570 | <0.001 | 5.09 | 2.13–12.97 | |
Mechanical ventilation | 1.4816 | 0.4756 | <0.01 | 4.40 | 1.72–11.24 | |
BPD | 2.2239 | 0.5575 | <0.0001 | 9.24 | 3.15–28.76 |
Outcome Variable | Input Variable | Coefficients | Estimate | Std. Error | p-Value | aOR | CI |
---|---|---|---|---|---|---|---|
Severe RDS | EGF < 35 pg/mL + GA | EGF < 35 | −0.3572 | 0.6234 | 0.567 | 0.7 | 0.19–2.26 |
GA | −0.4072 | 0.0874 | <0.0001 | 0.7 | 0.56–0.78 | ||
The need for Surfactant | EGF < 35 | 0.5996 | 0.6356 | 0.345 | 1.82 | 0.51–6.28 | |
GA | −0.6879 | 0.1179 | <0.0001 | 0.5 | 0.39–0.62 | ||
RS for >4 days | EGF < 35 | −0.0796 | 0.6755 | 0.906 | 0.92 | 0.23–3.38 | |
GA | −0.8263 | 0.1411 | <0.0001 | 0.44 | 0.32–0.56 | ||
Mechanical ventilation | EGF < 35 | 0.2768 | 0.5926 | 0.641 | 1.32 | 0.39–4.09 | |
GA | –0.3524 | 0.08561 | <0.0001 | 0.7 | 0.59–0.83 | ||
BPD | EGF < 35 | 0.3220 | 0.9240 | 0.73 | 1.38 | 0.19–2.26 | |
GA | –1.286 | 0.363 | <0.0001 | 0.28 | 0.11–0.47 | ||
Severe RDS | EGF < 35 pg/mL + 22–27 weeks GA ** | EGF < 35 | 0.2361 | 0.5796 | 0.68 | 1.27 | 0.38–3.77 |
GA | 2.2752 | 0.5507 | <0.0001 | 9.73 | 3.38–30.00 | ||
Mechanical ventilation | EGF < 35 | 0.6753 | 0.5704 | 0.24 | 1.96 | 0.61–5.84 | |
GA | 2.2915 | 0.5511 | <0.0001 | 9.9 | 3.41–30.19 | ||
BPD | EGF < 35 | 1.1423 | 0.8741 | 0.191 | 3.13 | 0.57–19.15 | |
GA | 5.3143 | 1.1132 | <0.0001 | 203.21 | 33.3–3997.7 | ||
Severe RDS | EGF < 35 pg/mL + 28–31 weeks GA | EGF < 35 | 1.0703 | 0.4744 | 0.024 | 2.92 | 1.13–7.35 |
GA | 0.5004 | 0.4962 | 0.31 | 1.65 | 0.60–4.26 | ||
The need for Surfactant | EGF < 35 | 1.9495 | 0.4616 | <0.0001 | 7.03 | 2.90–17.94 | |
GA | 0.6295 | 0.4737 | 0.184 | 1.88 | 0.73–4.72 | ||
RS for >4 days | EGF < 35 | 1.5894 | 0.4730 | <0.001 | 4.9 | 1.98–12.86 | |
GA | 1.3609 | 0.4551 | 0.003 | 3.9 | 1.62–9.76 | ||
Mechanical ventilation | EGF < 35 | 1.6155 | 0.4928 | 0.001 | 5.03 | 1.91–13.41 | |
GA | –1.0486 | 0.6885 | 0.13 | 0.35 | 0.07–1.19 | ||
BPD | EGF < 35 | 2.5074 | 0.5912 | <0.0001 | 12.27 | 3.95–41.13 | |
GA | –2.1194 | 1.1082 | 0.056 | 0.12 | 0.006–0.72 | ||
Mechanical ventilation | EGF < 35 pg/mL + 32–34 weeks GA ** | EGF < 35 | 1.0043 | 0.5185 | 0.052 | 2.73 | 0.98–7.54 |
GA | –1.1414 | 0.4956 | 0.02 | 0.32 | 0.12–0.84 |
22–27 Weeks | 28–31 Weeks | 32–34 Weeks | ||||
---|---|---|---|---|---|---|
Median EGF | n | Median EGF | n | Median EGF | n | |
FIRS | 32.7 | 11 | 41.1 | 15 | 93.4 | 65 |
No FIRS | 34.4 | 13 | 84.6 | 14 | 91.6 | 27 |
p-value | 0.931 | 0.513 | 0.764 | |||
HCA | 32.7 | 9 | 38.1 | 18 | 92.5 | 64 |
No HCA | 34.4 | 15 | 97.1 | 11 | 103. | 28 |
p-value | 0.976 | 0.065 | 0.715 |
Total Cohort (n = 145) | 22–27 Weeks (n = 24) | 28–31 Weeks (n = 29) | 32–34 Weeks (n = 92) | p-Value | |
---|---|---|---|---|---|
Mothers’ characteristics | |||||
Age of mother (years) | 31.25 ± 5.62 | 29.8 ± 4.1 | 32.9 (±5.74) | 31.1 (±5.82) | 0.048 |
Latency period (hours) | 17.7 (6.2–51) | 28.33 (12.2–60.3) | 15.87 (4–40.6) | 17.44 (6.03–52.2) | 0.321 |
Hypertensive disorders | 31 (21.38%) | 4 (16.7%) | 9 (31%) | 18 (19.6%) | 0.358 |
Gestational Diabetes | 34 (23.61%) | 2 (8.3%) | 4 (14.3%) | 28 (30.4%) | 0.035 |
Gestational anemia | 38 (26.21%) | 4 (16.7%) | 9 (31%) | 25 (27.2%) | 0.502 |
GBS positive | 17 (11.72%) | 2 (8.3%) | 4 (13.8%) | 11 (12.0%) | 0.721 |
Gravidity: | |||||
Primigravida | 50 (34.48%) | 8 (33.3%) | 10 (34.5%) | 32 (34.8%) | 0.991 |
Multigravida | 95 (65.52%) | 16 (66.7%) | 19 (65.5%) | 60 (65.2%) | |
Parity: | |||||
Primiparous | 68 (46.9%) | 9 (37.5%) | 14 (48.3%) | 45 (48.9%) | 0.599 |
Multiparous | 77 (53.1%) | 15 (62.5) | 15 (51.7%) | 47 (51.1%) | |
Histological chorioamnionitis | 54 (37.24%) | 15 (62.5%) | 11 (37.9%) | 28 (30.4%) | 0.015 |
Funisitis | 21 (14.48%) | 5 (20.8%) | 8 (27.6%) | 8 (8.7%) | 0.004 |
Neonates’ characteristics | |||||
GA at birth (weeks) | 32 (30–34) | 26 (25.8–27) | 30 (29–30) | 33 (33–34) | <0.0001 |
Birth weight (grams) | 1840 (±634) | 868(±205) | 1438 (±264) | 2221 (±396) | <0.0001 |
Apgar scores < 7 at 1 min. | 22 (15.17%) | 14 (58.3%) | 5 (17.2%) | 3 (3.3%) | <0.0001 |
Apgar scores < 7 at 5 min. | 7 (25%) | 6 (85.7%) | 1 (3.4%) | 0 | <0.0001 |
Umbilical cord arterial pH | 7.34 (7.28–7.39) | 7.38 (7.25–7.42) | 7.32 (7.26–7.4) | 7.34 (7.29–7.39) | 0.462 |
FIRS | 54 (37.24%) | 13 (54.2%) | 14 (48.3%) | 27 (29.3) | 0.032 |
Neonatal death | 1 (0.69%) | 1(4.2%) | 0 | 0 | |
EOS | 9 (6.2%) | 6 (25%) | 2 (6.9%) | 1(1.1%) | <0.0001 |
LOS | 6 (4.13%) | 4 (17.4%) | 1(3.4%) | 1(1.1%) | 0.005 |
Respiratory Outcomes | Total Cohort n = 145 | 22–27 Weeks n = 24 | 28–31 Weeks n = 29 | 32–34 Weeks n = 92 | p-Value |
---|---|---|---|---|---|
Respiratory distress | 121 (83.45%) | 24 (100%) | 29 (100%) | 68 (73.9%) | <0.0001 |
The need for Surfactant | 41 (28.47%) | 23 (95.8%) | 12 (41.4%) | 6 (6.6%) | <0.0001 |
Duration of RS: | |||||
no RS | 23 (15.86%) | 0 | 0 | 23 (25.0%) | <0.001 2 |
≤24 h | 38 (26.39%) | 0 | 1 (3.4%) | 37 (40.2%) | |
24–96 h | 32 (22.22%) | 0 | 10 (34.5%) | 22 (23.9%) | |
≥96 h | 51 (35.42%) | 23 (100%) 1 | 18 (62.1%) | 10 (10.9%) | |
Method of RS: | |||||
Mechanical ventilation | 26 (17.93%) | 14 (58.3%) | 3 (10.3%) | 9 (9.8%) | <0.0001 2 |
Non–invasive RS | 95 (65.52%) | 10 (41.7%) | 26 (89.7%) | 59 (64.1%) | |
no RS | 24 (16.55%) | 0 | 0 | 24 (26.1%) | |
RDS grade: | |||||
No RDS | 25 (17.24%) | 0 | 0 | 25 (27.2%) | <0.001 2 |
Mild RDS | 48 (33.1%) | 2 (8.3%) | 7 (24.1%) | 39 (42.4%) | |
Moderate RDS | 44 (30.34%) | 8 (33.3%) | 14 (48.3%) | 22 (23.9%) | |
Severe RDS | 28 (19.31%) | 14 (58.3%) | 8 (27.6%) | 6 (6.5%) | |
BPD | 17 (11.81%) | 16 (69.6%) | 1 (3.4%) | 0 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulbiniene, V.; Balciuniene, G.; Petroniene, J.; Viliene, R.; Dumalakiene, I.; Pilypiene, I.; Ramasauskaite, D. The Significance of Epidermal Growth Factor in Noninvasively Obtained Amniotic Fluid Predicting Respiratory Outcomes of Preterm Neonates. Int. J. Mol. Sci. 2022, 23, 2978. https://doi.org/10.3390/ijms23062978
Gulbiniene V, Balciuniene G, Petroniene J, Viliene R, Dumalakiene I, Pilypiene I, Ramasauskaite D. The Significance of Epidermal Growth Factor in Noninvasively Obtained Amniotic Fluid Predicting Respiratory Outcomes of Preterm Neonates. International Journal of Molecular Sciences. 2022; 23(6):2978. https://doi.org/10.3390/ijms23062978
Chicago/Turabian StyleGulbiniene, Violeta, Greta Balciuniene, Justina Petroniene, Rita Viliene, Irena Dumalakiene, Ingrida Pilypiene, and Diana Ramasauskaite. 2022. "The Significance of Epidermal Growth Factor in Noninvasively Obtained Amniotic Fluid Predicting Respiratory Outcomes of Preterm Neonates" International Journal of Molecular Sciences 23, no. 6: 2978. https://doi.org/10.3390/ijms23062978
APA StyleGulbiniene, V., Balciuniene, G., Petroniene, J., Viliene, R., Dumalakiene, I., Pilypiene, I., & Ramasauskaite, D. (2022). The Significance of Epidermal Growth Factor in Noninvasively Obtained Amniotic Fluid Predicting Respiratory Outcomes of Preterm Neonates. International Journal of Molecular Sciences, 23(6), 2978. https://doi.org/10.3390/ijms23062978