Serum-Induced Expression of Brain Natriuretic Peptide Contributes to Its Increase in Patients with HFpEF
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Development of a BNP Reporter Mouse and Investigation of Patient iBNP Expression
2.3. The iBNP-to-BNP Ratio Was Significantly Higher in HFpEF Patients Than in HFrEF Patients
3. Discussion
4. Materials and Methods
4.1. Animal Preparation
4.2. Development of BNP Reporter Mice
4.3. Assessment of NPPB Promotor Activation by CCD Camera/IVIS Imaging
4.4. Myocardial Infarction in Mice
4.5. Serum-Induced under Promotor of BNP (pBNP) Luciferase Analysis
4.6. Study Population
4.7. Diagnosis of HFpEF and HFrEF
4.8. Statistics
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Seferovic, P.M.; Ponikowski, P.; Anker, S.D.; Bauersachs, J.; Chioncel, O.; Cleland, J.G.F.; de Boer, R.A.; Drexel, H.; Ben Gal, T.; Hill, L.; et al. Clinical practice update on heart failure 2019: Pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 1169–1186. [Google Scholar] [CrossRef] [PubMed]
- Edelmann, F.; Musial-Bright, L.; Gelbrich, G.; Trippel, T.; Radenovic, S.; Wachter, R.; Inkrot, S.; Loncar, G.; Tahirovic, E.; Celic, V.; et al. Tolerability and Feasibility of Beta-Blocker Titration in HFpEF Versus HFrEF: Insights from the CIBIS-ELD Trial. JACC Heart Fail. 2016, 4, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Wu, M.; Liao, B.; Pang, X.; Chen, Q.; Yuan, J.; Dong, S. Comparison of Pharmacological Treatment Effects on Long-Time Outcomes in Heart Failure with Preserved Ejection Fraction: A Network Meta-analysis of Randomized Controlled Trials. Front. Pharmacol. 2021, 12, 707777. [Google Scholar] [CrossRef] [PubMed]
- Nassif, M.E.; Windsor, S.L.; Borlaug, B.A.; Kitzman, D.W.; Shah, S.J.; Tang, F.; Khariton, Y.; Malik, A.O.; Khumri, T.; Umpierrez, G.; et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: A multicenter randomized trial. Nat. Med. 2021, 27, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Fonarow, G.C.; Zile, M.R.; Lam, C.S.; Roessig, L.; Schelbert, E.B.; Shah, S.J.; Ahmed, A.; Bonow, R.O.; Cleland, J.G.; et al. Developing therapies for heart failure with preserved ejection fraction: Current state and future directions. JACC. Heart Fail. 2014, 2, 97–112. [Google Scholar] [CrossRef] [PubMed]
- de Lemos, J.A.; McGuire, D.K.; Drazner, M.H. B-type natriuretic peptide in cardiovascular disease. Lancet 2003, 362, 316–322. [Google Scholar] [CrossRef]
- Maisel, A.S.; Krishnaswamy, P.; Nowak, R.M.; McCord, J.; Hollander, J.E.; Duc, P.; Omland, T.; Storrow, A.B.; Abraham, W.T.; Wu, A.H.; et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 2002, 347, 161–167. [Google Scholar] [CrossRef]
- Kohno, M.; Horio, T.; Yokokawa, K.; Yasunari, K.; Ikeda, M.; Minami, M.; Kurihara, N.; Takeda, T. Brain natriuretic peptide as a marker for hypertensive left ventricular hypertrophy: Changes during 1-year antihypertensive therapy with angiotensin-converting enzyme inhibitor. Am. J. Med. 1995, 98, 257–265. [Google Scholar] [CrossRef]
- Nishikimi, T.; Kuwahara, K.; Nakao, K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J. Cardiol. 2011, 57, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, R.; Ali, Y.; Hashizume, R.; Suzuki, N.; Ito, M. BNP as a Major Player in the Heart-Kidney Connection. Int. J. Mol. Sci. 2019, 20, 3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaPointe, M.C. Molecular regulation of the brain natriuretic peptide gene. Peptides 2005, 26, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Peyronnet, R.; Nerbonne, J.M.; Kohl, P. Cardiac Mechano-Gated Ion Channels and Arrhythmias. Circ. Res. 2016, 118, 311–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libby, P.; Bonow, R.O.; Mann, D.L.; Zipes, D.P. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 8th ed.; Saunders, Elsevier: Philadelphia, PA, USA, 2007; p. 595. [Google Scholar]
- Ho, J.E.; Lyass, A.; Lee, D.S.; Vasan, R.S.; Kannel, W.B.; Larson, M.G.; Levy, D. Predictors of new-onset heart failure: Differences in preserved versus reduced ejection fraction. Circ. Heart Fail. 2013, 6, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ather, S.; Chan, W.; Bozkurt, B.; Aguilar, D.; Ramasubbu, K.; Zachariah, A.A.; Wehrens, X.H.; Deswal, A. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J. Am. Coll. Cardiol. 2012, 59, 998–1005. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.M.; Lam, C.S. How do patients with heart failure with preserved ejection fraction die? Eur. J. Heart Fail. 2013, 15, 604–613. [Google Scholar] [CrossRef]
- Hamaguchi, S.; Kinugawa, S.; Sobirin, M.A.; Goto, D.; Tsuchihashi-Makaya, M.; Yamada, S.; Yokoshiki, H.; Tsutsui, H. Mode of death in patients with heart failure and reduced vs. preserved ejection fraction: Report from the registry of hospitalized heart failure patients. Circ. J. 2012, 76, 1662–1669. [Google Scholar] [CrossRef] [Green Version]
- Schwartzenberg, S.; Redfield, M.M.; From, A.M.; Sorajja, P.; Nishimura, R.A.; Borlaug, B.A. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J. Am. Coll. Cardiol. 2012, 59, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.D.; Long, M.; Li, F.; Hu, X.; Liao, X.X.; Du, Z.M. PDE5 inhibitor sildenafil in the treatment of heart failure: A meta-analysis of randomized controlled trials. Int. J. Cardiol. 2014, 172, 581–587. [Google Scholar] [CrossRef]
- Nochioka, K.; Sakata, Y.; Miyata, S.; Miura, M.; Takada, T.; Tadaki, S.; Ushigome, R.; Yamauchi, T.; Takahashi, J.; Shimokawa, H. Prognostic impact of statin use in patients with heart failure and preserved ejection fraction. Circ. J. 2015, 79, 574–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherbakov, N.; Bauer, M.; Sandek, A.; Szabo, T.; Topper, A.; Jankowska, E.A.; Springer, J.; von Haehling, S.; Anker, S.D.; Lainscak, M.; et al. Insulin resistance in heart failure: Differences between patients with reduced and preserved left ventricular ejection fraction. Eur. J. Heart Fail. 2015, 17, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Zordoky, B.N.; Sung, M.M.; Ezekowitz, J.; Mandal, R.; Han, B.; Bjorndahl, T.C.; Bouatra, S.; Anderson, T.; Oudit, G.Y.; Wishart, D.S.; et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PLoS ONE 2015, 10, e0124844. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.E. Prognostication in Different Heart Failure Phenotypes: The Role of Circulating Biomarkers. J. Circ. Biomark. 2016, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, C.J.; Gupta, S.K.; O’Connell, E.; Thum, S.; Glezeva, N.; Fendrich, J.; Gallagher, J.; Ledwidge, M.; Grote-Levi, L.; McDonald, K.; et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur. J. Heart Fail. 2015, 17, 405–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, N.; Gupta, S.; Collier, I.X.; Gongora, E.; Vijayaraghavan, K. Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF? Int. J. Cardiol. 2014, 175, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, B.P.; Malhotra, R.; Murphy, R.M.; Pappagianopoulos, P.P.; Baggish, A.L.; Weiner, R.B.; Houstis, N.E.; Eisman, A.S.; Hough, S.S.; Lewis, G.D. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: The role of abnormal peripheral oxygen extraction. Circ. Heart Fail. 2015, 8, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiese, S.; Breyer, T.; Dragu, A.; Wakili, R.; Burkard, T.; Schmidt-Schweda, S.; Fuchtbauer, E.M.; Dohrmann, U.; Beyersdorf, F.; Radicke, D.; et al. Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: Influence of angiotensin II and diastolic fiber length. Circulation 2000, 102, 3074–3079. [Google Scholar] [CrossRef] [Green Version]
- Putko, B.N.; Wang, Z.; Lo, J.; Anderson, T.; Becher, H.; Dyck, J.R.; Kassiri, Z.; Oudit, G.Y. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: Evidence for a divergence in pathophysiology. PLoS ONE 2014, 9, e99495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tromp, J.; Khan, M.A.F.; Mentz, R.J.; O’Connor, C.M.; Metra, M.; Dittrich, H.C.; Ponikowski, P.; Teerlink, J.R.; Cotter, G.; Davison, B.; et al. Biomarker Profiles of Acute Heart Failure Patients with a Mid-Range Ejection Fraction. JACC Heart Fail. 2017, 5, 507–517. [Google Scholar] [CrossRef]
- Loffredo, F.S.; Nikolova, A.P.; Pancoast, J.R.; Lee, R.T. Heart failure with preserved ejection fraction: Molecular pathways of the aging myocardium. Circ. Res. 2014, 115, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bold, A.J. Cardiac natriuretic peptides gene expression and secretion in inflammation. J. Investig. Med. 2009, 57, 29–32. [Google Scholar] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Taylor, R.; Waggoner, A.D. Doppler assessment of left ventricular diastolic function: A review. J. Am. Soc. Echocardiogr. 1992, 5, 603–612. [Google Scholar] [CrossRef]
- Maddox, T.M.; Januzzi, J.L., Jr.; Allen, L.A.; Breathett, K.; Butler, J.; Davis, L.L.; Fonarow, G.C.; Ibrahim, N.E.; Lindenfeld, J.; Masoudi, F.A.; et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure with Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021, 77, 772–810. [Google Scholar] [PubMed]
- Savji, N.; Meijers, W.C.; Bartz, T.M.; Bhambhani, V.; Cushman, M.; Nayor, M.; Kizer, J.R.; Sarma, A.; Blaha, M.J.; Gansevoort, R.T.; et al. The Association of Obesity and Cardiometabolic Traits With Incident HFpEF and HFrEF. JACC Heart Fail. 2018, 6, 701–709. [Google Scholar] [CrossRef] [PubMed]
- McHugh, K.; DeVore, A.D.; Wu, J.; Matsouaka, R.A.; Fonarow, G.C.; Heidenreich, P.A.; Yancy, C.W.; Green, J.B.; Altman, N.; Hernandez, A.F. Heart Failure With Preserved Ejection Fraction and Diabetes: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Kiyonari, H.; Kaneko, M.; Abe, S.; Aizawa, S. Three inhibitors of FGF receptor, ERK, and GSK3 establishes germline-competent embryonic stem cells of C57BL/6N mouse strain with high efficiency and stability. Genesis 2010, 48, 317–327. [Google Scholar] [CrossRef]
- Okamoto, R.; Goto, I.; Nishimura, Y.; Kobayashi, I.; Hashizume, R.; Yoshida, Y.; Ito, R.; Kobayashi, Y.; Nishikawa, M.; Ali, Y.; et al. Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish. PLoS ONE 2020, 15, e0240129. [Google Scholar] [CrossRef]
- Okamoto, R.; Li, Y.; Noma, K.; Hiroi, Y.; Liu, P.Y.; Taniguchi, M.; Ito, M.; Liao, J.K. FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2. FASEB J. 2013, 27, 1439–1449. [Google Scholar] [CrossRef] [Green Version]
Variables | All, n = 196 | HFrEF, n = 82 | HFpEF, n = 114 | p Value |
---|---|---|---|---|
Age, y | 69 ± 14 | 67 ± 15 | 71 ± 14 | 0.14 |
Male gender, n (%) | 118 (60) | 56 (68) | 62 (54) | 0.007 |
Body Mass Index, kg/m2 | 23.5 ± 3.9 | 22.8 ± 4.2 | 23.9 ± 3.6 | 0.067 |
Systolic blood pressure, mmHg | 138 ± 17 | 114 ± 26 | 133 ± 26 | 7.1 × 10−8 |
Diastolic blood pressure, mmHg | 84 ± 11 | 68 ± 14 | 74 ± 15 | 0.006 |
Heart rate in ECG, beats/min | 72 ± 16 | 77 ± 16 | 69 ± 15 | 1.9 × 10−4 |
BNP (pg/mL) | 552.4 ± 1190.7 | 899.9 ± 1766.4 | 302.6 ± 244.0 | 6.6 × 10−7 |
No of hospitalizations for heart failure during the past 12 months (%) | 43 (42) | 77 (94) | 65 (57) | 1.2 × 10−8 |
Comorbidities, n (%) | ||||
Atrial Fibrillation | 49 (26) | 14 (17) | 35 (31) | 1.9 × 10−7 |
Coronary artery disease | 58 (30) | 34 (42) | 24 (21) | 0.002 |
Hypertension | 110 (56) | 35 (43) | 75 (66) | 0.001 |
Chronic kidney disease (eGFR < 60) | 111 (57) | 61 (74) | 50 (44) | 1.8 × 10−4 |
Diabetes mellitus | 64 (33) | 36 (44) | 28 (25) | 0.024 |
Dyslipidemia | 78 (40) | 35 (43) | 43 (38) | 0.86 |
Ever smokers | 104 (53) | 52 (63) | 52 (46) | 0.011 |
Current smokers | 24 (12) | 9 (11) | 15 (13) | 0.78 |
Medications, n (%) | ||||
ACE inhibitors/ARB | 131 (67) | 70 (85) | 61 (54) | 6.0 × 10−7 |
β-blockers | 123 (63) | 65 (79) | 58 (51) | 1.1 × 10−4 |
Calcium channel blockers | 47 (24) | 15 (18) | 32 (28) | 0.040 |
MRA | 55 (28) | 36 (44) | 19 (17) | 1.8 × 10−5 |
Diuretics | 100 (51) | 53 (65) | 47 (41) | 0.001 |
Statin | 63 (32) | 29 (35) | 34 (30) | 0.79 |
Physiological experiments | ||||
RV5 + SV1 in ECG, mV | 2.65 ± 1.61 | 2.19 ± 1.35 | 2.98 ± 1.70 | 0.001 |
LAD, mm | 45.2 ± 8.3 | 46.5 ± 8.6 | 44.3 ± 7.9 | 0.072 |
IVST, mm | 10.8 ± 3.7 | 8.8 ± 2.6 | 12.2 ± 3.8 | 2.2 × 10−10 |
PWT, mm | 10.0 ± 2.5 | 8.8 ± 1.9 | 10.8 ± 2.5 | 1.3 × 10−7 |
LVDd, mm | 53.1 ± 11.4 | 61.6 ± 11.6 | 47.0 ± 6.2 | 2.6 × 10−21 |
LVDs, mm | 40.0 ± 14.9 | 53.1 ± 13.2 | 30.4 ± 6.3 | 2.6 × 10−29 |
LVMI, g/m2 | 133 ± 45 | 140 ± 43 | 127 ± 46 | 0.001 |
EF, % | 51.4 ± 18.8 | 32.7 ± 11.9 | 64.2 ± 8.6 | 1.4 × 10−31 |
E wave, cm/s | 83.4 ± 29.5 | 84.0 ± 30.7 | 82.9 ± 28.7 | 0.778 |
A wave, cm/s | 64.0 ± 31.2 | 58.2 ± 30.3 | 68.7 ± 31.4 | 0.022 |
E to A ratio | 1.73 ± 2.07 | 1.86 ± 1.28 | 1.63 ± 2.54 | 0.070 |
Deceleration time, ms | 221 ± 83 | 205 ± 79 | 232 ± 85 | 0.022 |
E’ wave, cm/s | 7.4 ± 3.0 | 6.6 ± 2.8 | 8.0 ± 3.1 | 1.5 × 10−4 |
E to E’ ratio | 12.9 ± 7.8 | 14.9 ± 8.8 | 11.5 ± 6.7 | 0.001 |
Laboratory experiments | ||||
Hemoglobin, g/dl | 12.5 ± 2.2 | 12.5 ± 2.2 | 12.4 ± 2.2 | 0.93 |
Na, mEq/L | 139.7 ± 3.7 | 139.0 ± 3.6 | 140.2 ± 3.7 | 0.009 |
K, mEq/L | 4.39 ± 0.56 | 4.38 ± 0.55 | 4.40 ± 0.57 | 0.904 |
Cl, mEq/L | 103.2 ± 8.6 | 102.7 ± 4.7 | 103.5 ± 10.5 | 0.012 |
Low-density lipoprotein, mg/dL | 95.3 ± 32.7 | 93.0 ± 33.0 | 96.8 ± 32.6 | 0.14 |
High-density lipoprotein, mg/dL | 55.2 ± 15.5 | 50.4 ± 12.4 | 58.3 ± 16.6 | 0.002 |
Triglyceride, mg/dL | 130.0 ± 123.6 | 144.9 ± 175.0 | 120.0 ± 67.8 | 0.664 |
eGFR, ml/min/1.73 m2 | 49.8 ± 23.6 | 44.6 ± 24.9 | 53.5 ± 22.1 | 0.002 |
Cre, mg/dl | 1.52 ± 1.60 | 1.87 ± 2.07 | 1.28 ± 1.11 | 1.5 × 10−5 |
HbA1c, % | 6.20 ± 1.10 | 6.30 ± 1.00 | 6.12 ± 1.16 | 0.259 |
Fasting glucose, mg/dL | 118.8 ± 38.4 | 120.3 ± 40.6 | 117.8 ± 37.0 | 0.508 |
U-Alb/gCre, mg/g | 307 ± 1207 | 108 ± 283 | 392 ± 1430 | 0.958 |
Urine β2-microglobulin, μg/L | 4611 ± 9874 | 2037 ± 3268 | 6508 ± 12,517 | 1.00 |
Variables | Univariate | Multivariate | ||
---|---|---|---|---|
β | p Value | β | p Value | |
HFpEF | 0.194 | 0.007 | 0.154 | 0.032 |
Age | 0.175 | 0.014 | 0.167 | 0.025 |
Hemoglobin | 0.167 | 0.020 | 0.203 | 0.006 |
Calcium channel blockers | 0.153 | 0.032 | 0.138 | 0.049 |
Deceleration time | 0.167 | 0.022 | 0.143 | 0.049 |
Male | 0.067 | 0.351 | 0.029 | 0.692 |
Body mass index | 0.058 | 0.418 | 0.024 | 0.740 |
Diabetes mellitus | −0.032 | 0.661 | −0.007 | 0.925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okamoto, R.; Hashizume, R.; Suzuki, N.; Ito, R.; Tokuhara, T.; Fujiwara, H.; Zhe, Y.; Ito, H.; Abe, T.; Dohi, K. Serum-Induced Expression of Brain Natriuretic Peptide Contributes to Its Increase in Patients with HFpEF. Int. J. Mol. Sci. 2022, 23, 2991. https://doi.org/10.3390/ijms23062991
Okamoto R, Hashizume R, Suzuki N, Ito R, Tokuhara T, Fujiwara H, Zhe Y, Ito H, Abe T, Dohi K. Serum-Induced Expression of Brain Natriuretic Peptide Contributes to Its Increase in Patients with HFpEF. International Journal of Molecular Sciences. 2022; 23(6):2991. https://doi.org/10.3390/ijms23062991
Chicago/Turabian StyleOkamoto, Ryuji, Ryotaro Hashizume, Noboru Suzuki, Rie Ito, Tomoko Tokuhara, Hiroshi Fujiwara, Ye Zhe, Hiromasa Ito, Takaya Abe, and Kaoru Dohi. 2022. "Serum-Induced Expression of Brain Natriuretic Peptide Contributes to Its Increase in Patients with HFpEF" International Journal of Molecular Sciences 23, no. 6: 2991. https://doi.org/10.3390/ijms23062991
APA StyleOkamoto, R., Hashizume, R., Suzuki, N., Ito, R., Tokuhara, T., Fujiwara, H., Zhe, Y., Ito, H., Abe, T., & Dohi, K. (2022). Serum-Induced Expression of Brain Natriuretic Peptide Contributes to Its Increase in Patients with HFpEF. International Journal of Molecular Sciences, 23(6), 2991. https://doi.org/10.3390/ijms23062991