Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Results
2.1. Standard Therapeutic Protocols Used in Developed Countries
2.2. Genetic and Metabolic Mechanism of Resistance for Glucocorticoids and Cytostatics
2.3. Early Relapse as an Effect of Mutations in Genes Involved in the Metabolism of Purine Analogs
2.4. Hyperdiploidy—Better Prognosis?
2.5. Translocations Responsible for Worse Prognosis
2.5.1. TCF3::HLF
2.5.2. t(9;22) Chromosome Philadelphia
2.6. ALL Ph-like Subtype, Active Signal Pathways, and Resulting Treatment Opportunities
2.7. Monoclonal Antibodies, CAR-T Cell Therapy—Has There Been Any Resistance to the Newest Treatment Methods?
3. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Acute Lymphocytic Leukemia—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/alyl.html (accessed on 4 December 2021).
- Sant, M.; Allemani, C.; Tereanu, C.; De Angelis, R.; Capocaccia, R.; Visser, O.; Marcos-Gragera, R.; Maynadié, M.; Simonetti, A.; Lutz, J.M.; et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood 2010, 116, 3724–3734. [Google Scholar] [CrossRef] [PubMed]
- Noone, A.M.; Cronin, K.A.; Altekruse, S.F.; Howlader, N.; Lewis, D.R.; Petkov, V.I.; Penberthy, L. Cancer incidence and survival trends by subtype using data from the Surveillance Epidemiology and End Results Program, 1992–2013. Cancer Epidemiol. Biomark. Prev. 2017, 26, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, H.; Mullighan, C.G. Pediatric acute lymphoblastic leukemia. Haematologica 2020, 105, 2524–2539. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.H.; Nichols, K.E.; Yang, J.J. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat. Rev. Clin. Oncol. 2019, 16, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Hefazi, M.; Litzow, M.R. Recent advances in the biology and treatment of B-cell acute lymphoblastic leukemia. Blood Lymphat. Cancer Targets Ther. 2018, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Samra, B.; Jabbour, E.; Ravandi, F.; Kantarjian, H.; Short, N.J. Evolving therapy of adult acute lymphoblastic leukemia: State-of-the-art treatment and future directions. J. Hematol. Oncol. 2020, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Manabe, A. Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr. Int. 2018, 60, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Schieck, M.; Lentes, J.; Thomay, K.; Hofmann, W.; Behrens, Y.L.; Hagedorn, M.; Ebersold, J.; Davenport, C.F.; Fazio, G.; Möricke, A.; et al. Implementation of RNA sequencing and array CGH in the diagnostic workflow of the AIEOP-BFM ALL 2017 trial on acute lymphoblastic leukemia. Ann. Hematol. 2020, 99, 809–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treatment Protocol for Children and Adolescents with Acute Lymphoblastic Leukemia—AIEOP-BFM ALL 2017—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03643276 (accessed on 29 January 2022).
- Jolliffe, A. United Kingdom National Randomised Trial for Children and Young Adults with Acute Lymphoblastic Leukaemia and Lymphoma 2011–UKALL 2011 Trial. Children’s Cancer Trials Team; Version 3.0. 1 October 2013. [Google Scholar]
- Pui, C.H.; Evans, W.E. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin. Hematol. 2013, 50, 185–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, S.; Chen, X.; Cai, J.; Yu, J.; Gao, J.; Hu, S.; Zhai, X.; Liang, C.; Ju, X.; Jiang, H.; et al. Effect of Dasatinib vs Imatinib in the Treatment of Pediatric Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA Oncol. 2020, 6, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Hunger, S.P.; Mullighan, C.G. Acute lymphoblastic leukemia in children. N. Engl. J. Med. 2015, 373, 1541–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayakawa, F.; Sakura, T.; Yujiri, T.; Kondo, E.; Fujimaki, K.; Sasaki, O.; Miyatake, J.; Handa, H.; Ueda, Y.; Aoyama, Y.; et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol: A phase II study by the Japan Adult Leukemia Study Group. Blood Cancer J. 2014, 4, e252. [Google Scholar] [CrossRef] [Green Version]
- Maloney, K.W.; Devidas, M.; Wang, C.; Mattano, L.A.; Friedmann, A.M.; Buckley, P.; Borowitz, M.J.; Carroll, A.J.; Gastier-Foster, J.M.; Heerema, N.A.; et al. Outcome in Children With Standard-Risk B-Cell Acute Lymphoblastic Leukemia: Results of Children’s Oncology Group Trial AALL0331. J. Clin. Oncol. 2020, 38, 602–612. [Google Scholar] [CrossRef]
- Inaba, H.; Pui, C.H. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010, 11, 1096–1106. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.S.; Kumar, R. Steroid resistance in leukemia. World J. Exp. Med. 2013, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Abaya, R.; Jones, L.; Zorc, J.J. Dexamethasone Compared to Prednisone for the Treatment of Children With Acute Asthma Exacerbations. Pediatr. Emerg. Care 2018, 34, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagendorf, A.; Koper, J.W.; De Jong, F.H.; Brinkmann, A.O.; Lamberts, S.W.J.; Feelders, R.A. Expression of the human glucocorticoid receptor splice variants alpha, beta, and P in peripheral blood mononuclear leukocytes in healthy controls and in patients with hyper- and hypocortisolism. J. Clin. Endocrinol. Metab. 2005, 90, 6237–6243. [Google Scholar] [CrossRef] [Green Version]
- Hollenberg, S.M.; Weinberger, C.; Ong, E.S.; Cerelli, G.; Oro, A.; Lebo, R.; Brad Thompson, E.; Rosenfeld, M.G.; Evans, R.M. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 1985, 318, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Irving, J.A.E.; Minto, L.; Matheson, E.; Nicholson, L.; Ploner, A.; Parson, W.; Kofler, A.; Amort, M.; Erdel, M.; et al. Glucocorticoid resistance in two key models of acute lymphoblastic leukemia occurs at the level of the glucocorticoid receptor. FASEB J. 2006, 20, 2600–2602. [Google Scholar] [CrossRef]
- Fleury, I.; Primeau, M.; Doreau, A.; Costea, I.; Moghrabi, A.; Sinnett, D.; Krajinovic, M. Polymorphisms in Genes Involved in the Corticosteroid Response and the Outcome of Childhood Acute Lymphoblastic Leukemia. Am. J. Pharm. 2004, 4, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Labuda, M.; Gahier, A.; Gagné, V.; Moghrabi, A.; Sinnett, D.; Krajinovic, M. Polymorphisms in glucocorticoid receptor gene and the outcome of childhood acute lymphoblastic leukemia (ALL). Leuk. Res. 2010, 34, 492–497. [Google Scholar] [CrossRef]
- Brown, J.A.; Ferrando, A. Cancer Cell Previews Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: BIM Finally. Cancer Cell 2018, 34, 869–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkers, P.F.; Birkenkamp, K.U.; Lam, E.W.F.; Thomas, N.S.B.; Lammers, J.W.J.; Koenderman, L.; Coffer, P.J. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: Protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J. Cell Biol. 2002, 156, 531–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francke, U.; Foellmer, B.E. The glucocorticoid receptor gene is in 5q31-q32 [corrected]. Genomics 1989, 4, 610–612. [Google Scholar] [CrossRef]
- Fan, Y.S.; Eddy, R.L.; Byers, M.G.; Haley, L.L.; Henry, W.M.; Novvak, N.J.; Shows, T.B. The human mineralocorticoid receptor gene (MLR) is located on chromosome 4 at q31.2. Cytogenet. Cell Genet. 1989, 52, 83–84. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.N.; Korenberg, J.R. Localization of human CREBBP (CREB binding protein) to 16p13.3 by fluorescence in situ hybridization. Cytogenet. Genome Res. 1995, 71, 56–57. [Google Scholar] [CrossRef]
- Stec, I.; Wright, T.J.; Van Ommen, G.-J.B.; De Boer, P.A.J.; Van Haeringen, A.; Moorman, A.F.M.; Altherr, M.R.; Den Dunnen, J.T. WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum. Mol. Genet. 1998, 7, 1071–1082. [Google Scholar] [CrossRef]
- Vishnolia, K.K.; Hoene, C.; Tarhbalouti, K.; Revenstorff, J.; Aherrahrou, Z.; Erdmann, J. Studies in Zebrafish Demonstrate That CNNM2 and NT5C2 Are Most Likely the Causal Genes at the Blood Pressure-Associated Locus on Human Chromosome 10q24.32. Front. Cardiovasc. Med. 2020, 7, 135. [Google Scholar] [CrossRef]
- Becker, M.A.; Heidler, S.A.; Bell, G.I.; Seino, S.; Le Beau, M.M.; Westbrook, C.A.; Neuman, W.; Shapiro, L.J.; Mohandas, T.K.; Roessler, B.J.; et al. Cloning of cDNAs for human phosphoribosylpyrophosphate synthetases 1 and 2 and X chromosome localization of PRPS1 and PRPS2 genes. Genomics 1990, 8, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, N.; Nicolaides, N.C.; Liu, B.; Parsons, R.; Lengauer, C.; Palombo, F.; D’Arrigo, A.; Markowitz, S.; Willson, J.K.V.; Kinzler, K.W.; et al. Mutations of GTBP in genetically unstable cells. Science 1995, 268, 1915–1917. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Papadopoulos, N.; Liu, B.; Weit, Y.F.; Carter, K.C.; Ruben, S.M.; Rosen, C.A.; Haseltine, W.A.; Fleischmann, R.D.; Fraser, C.M.; et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 1994, 371, 75–80. [Google Scholar] [CrossRef]
- Isobe, M.; Emanuel, B.S.; Givol, D.; Oren, M.; Croce, C.M. Localization of gene for human p53 tumour antigen to band 17p13. Nature 1986, 320, 84–85. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Zhang, J.; Kasper, L.H.; Lerach, S.; Payne-Turner, D.; Phillips, L.A.; Heatley, S.L.; Holmfeldt, L.; Collins-Underwood, J.R.; Ma, J.; et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 2011, 471, 235–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ait-Si-Ali, S.; Polesskaya, A.; Filleur, S.; Ferreira, R.; Duquet, A.; Robin, P.; Vervish, A.; Trouche, D.; Cabon, F.; Harel-Bellan, A. CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene 2000, 19, 2430–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrpouri, M.; Safaroghli-Azar, A.; Pourbagheri-Sigaroodi, A.; Momeny, M.; Bashash, D. Anti-leukemic effects of histone deacetylase (HDAC) inhibition in acute lymphoblastic leukemia (ALL) cells: Shedding light on mitigating effects of NF-κB and autophagy on panobinostat cytotoxicity. Eur. J. Pharmacol. 2020, 875, 173050. [Google Scholar] [CrossRef]
- Rushworth, D.; Mathews, A.; Alpert, A.; Cooper, L.J.N. Dihydrofolate Reductase and Thymidylate Synthase Transgenes Resistant to Methotrexate Interact to Permit Novel Transgene Regulation. J. Biol. Chem. 2015, 290, 22970. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lin, J.; Kohen, A.; Singh, P.; Francis, K.; Cheatum, C.M. Evolution of Optimized Hydride Transfer Reaction and Overall Enzyme Turnover in Human Dihydrofolate Reductase. Biochemistry 2021, 60, 3822–3828. [Google Scholar] [CrossRef]
- Costa-Lima, M.A.; Barboza, H.N.; Aprigio, J.; de Melo Moura, C.; Quirico-Santos, T.F.; Ribeiro, M.G.; Amorim, M.R. Dihydrofolate Reductase (DHFR) del19bp Polymorphism and Down Syndrome Offspring. J. Mol. Neurosci. 2020, 70, 1410–1414. [Google Scholar] [CrossRef]
- Takeishi, K.; Kaneda, S.; Ayusawa, D.; Shimizu, K.; Gotoh, O.; Seno, T. Nucleotide sequence of a functional cDNA for human thymidylate synthase. Nucleic Acids Res. 1985, 13, 2035–2043. [Google Scholar] [CrossRef] [Green Version]
- Chu, E.; Allegra, C.J. The role of thymidylate synthase in cellular regulation. Adv. Enzym. Regul. 1996, 36, 143–163. [Google Scholar] [CrossRef]
- Walling, J. From methotrexate to pemetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Investig. New Drugs 2006, 24, 37–77. [Google Scholar] [CrossRef]
- Antosiewicz, A.; Jarmuła, A.; Przybylska, D.; Mosieniak, G.; Szczepanowska, J.; Kowalkowska, A.; Rode, W.; Cieśla, J. Human dihydrofolate reductase and thymidylate synthase form a complex in vitro and co-localize in normal and cancer cells. J. Biomol. Struct. Dyn. 2017, 35, 1474–1490. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.L.; Zhang, H.; Ho, B.C.; Yu, C.H.; Chang, C.C.; Hsu, Y.C.; Ni, Y.L.; Lin, K.H.; Jou, S.T.; Lu, M.Y.; et al. FPGS relapse-specific mutations in relapsed childhood acute lymphoblastic leukemia. Sci. Rep. 2020, 10, 12074. [Google Scholar] [CrossRef] [PubMed]
- Wojtuszkiewicz, A.; Peters, G.J.; Van Woerden, N.L.; Dubbelman, B.; Escherich, G.; Schmiegelow, K.; Sonneveld, E.; Pieters, R.; Van De Ven, P.M.; Jansen, G.; et al. Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia. J. Hematol. Oncol. 2015, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Cortese, A.; Simone, R.; Sullivan, R.; Vandrovcova, J.; Tariq, H.; Yan, Y.W.; Humphrey, J.; Jaunmuktane, Z.; Sivakumar, P.; Polke, J.; et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat. Genet. 2019, 51, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Uchiumi, F.; Ohta, T.; Tanuma, S.I. Replication factor C recognizes 5′-phosphate ends of telomeres. Biochem. Biophys. Res. Commun. 1996, 229, 310–315. [Google Scholar] [CrossRef]
- Kinahan, C.; Mangone, M.A.; Scotto, L.; Visentin, M.; Marchi, E.; Cho, H.J.; O’Connor, O.A.; Kinahan, C.; Mangone, M.A.; Scotto, L.; et al. The anti-tumor activity of pralatrexate (PDX) correlates with the expression of RFC and DHFR mRNA in preclinical models of multiple myeloma. Oncotarget 2020, 11, 1576–1589. [Google Scholar] [CrossRef]
- Carrillo, I.O.; Ramos Peñafiel, C.; Peralta, E.M.; Rozen Fuller, E.; Kassack Ipiña, J.J.; Centeno Cruz, F.; Garrido Guerrero, E.; Collazo Jaloma, J.; Nacho, K.; Tovar, A.M.; et al. Clinical significance of the ABCB1 and ABCG2 gene expression levels in acute lymphoblastic leukemia. Hematology 2016, 22, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Saha, V.; Kearns, P. New Agents for the Treatment of Acute Lymphoblastic Leukemia; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; p. 338. [Google Scholar]
- Elens, I.; Deprez, S.; Billiet, T.; Sleurs, C.; Labarque, V.; Uyttebroeck, A.; Van Gool, S.; Lemiere, J.; D’Hooge, R. Methylene tetrahydrofolate reductase A1298C polymorphisms influence the adult sequelae of chemotherapy in childhood-leukemia survivors. PLoS ONE 2021, 16, e0250228. [Google Scholar] [CrossRef]
- Liani, E.; Rothem, L.; Bunni, M.A.; Smith, C.A.; Jansen, G.; Assaraf, Y.G. Loss of folylpoly-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. Int. J. Cancer 2002, 103, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H. Asparaginase Therapy in Pediatric Acute Lymphoblastic Leukemia: A Focus on the Mode of Drug Resistance. Pediatr. Neonatol. 2015, 56, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arfin, S.M.; Cirullo, R.E.; Arredondo-Vega, F.X.; Smith, M. Assignment of structural gene for asparagine synthetase to human chromosome 7. Somat. Cell Genet. 1983, 9, 517–531. [Google Scholar] [CrossRef] [Green Version]
- Pieters, R.; Hunger, S.P.; Boos, J.; Rizzari, C.; Silverman, L.; Baruchel, A.; Goekbuget, N.; Schrappe, M.; Pui, C.H. L-asparaginase treatment in acute lymphoblastic leukemia. Cancer 2011, 117, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, B.; Madras, B.K.; Meister, A.; Old, L.J.; Boyse, E.A.; Stockert, E. Asparagine synthetase activity of mouse leukemias. Science 1968, 160, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Stams, W.A.G.; Den Boer, M.L.; Beverloo, H.B.; Meijerink, J.P.P.; Stigter, R.L.; Van Wering, E.R.; Janka-Schaub, G.E.; Slater, R.; Pieters, R. Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL. Blood 2003, 101, 2743–2747. [Google Scholar] [CrossRef] [PubMed]
- Aslanian, A.M.; Fletcher, B.S.; Kilberg, M.S. Asparagine synthetase expression alone is sufficient to induce L-asparaginase resistance in MOLT-4 human leukaemia cells. Biochem. J. 2001, 357, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Pan, Y.X.; Zhou, M.; Harvey, R.C.; Hunger, S.P.; Kilberg, M.S. Correlation between asparaginase sensitivity and asparagine synthetase protein content, but not mRNA, in acute lymphoblastic leukemia cell lines. Pediatr. Blood Cancer 2008, 50, 274–279. [Google Scholar] [CrossRef]
- Chien, W.W.; Le Beux, C.; Rachinel, N.; Julien, M.; Lacroix, C.E.; Allas, S.; Sahakian, P.; Cornut-Thibaut, A.; Lionnard, L.; Kucharczak, J.; et al. Differential mechanisms of asparaginase resistance in B-type acute lymphoblastic leukemia and malignant natural killer cell lines. Sci. Rep. 2015, 5, 8068. [Google Scholar] [CrossRef] [Green Version]
- Cohen, H.; Bielorai, B.; Harats, D.; Toren, A.; Pinhas-Hamiel, O. Conservative treatment of L-asparaginase-associated lipid abnormalities in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 2010, 54, 703–706. [Google Scholar] [CrossRef]
- Dieck, C.L.; Ferrando, A. Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed ALL. Blood 2019, 133, 2263. [Google Scholar] [CrossRef] [PubMed]
- Dieck, C.L.; Tzoneva, G.; Forouhar, F.; Carpenter, Z.; Ambesi-Impiombato, A.; Sánchez-Martín, M.; Kirschner-Schwabe, R.; Lew, S.; Seetharaman, J.; Tong, L.; et al. Structure and Mechanisms of NT5C2 Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic Leukemia. Cancer Cell 2018, 34, 136–147.e6. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, H.; Bai, Y.; Kirschner-Schwabe, R.; Yang, J.J.; Chen, Y.; Lu, G.; Tzoneva, G.; Ma, X.; Wu, T.; et al. Negative feedback–defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat. Med. 2015, 21, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancaster, D.L.; Patel, N.; Lennard, L.; Lilleyman, J.S. 6-Thioguanine in children with acute lymphoblastic leukaemia: Influence of food on parent drug pharmacokinetics and 6-thioguanine nucleotide concentrations. Br. J. Clin. Pharmacol. 2001, 51, 531. [Google Scholar] [CrossRef] [Green Version]
- Hedeland, R.L.; Hvidt, K.; Nersting, J.; Rosthøj, S.; Dalhoff, K.; Lausen, B.; Schmiegelow, K. DNA incorporation of 6-thioguanine nucleotides during maintenance therapy of childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma. Cancer Chemother. Pharmacol. 2010, 66, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evensen, N.A.; Madhusoodhan, P.P.; Meyer, J.; Saliba, J.; Chowdhury, A.; Araten, D.J.; Nersting, J.; Bhatla, T.; Vincent, T.L.; Teachey, D.; et al. MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica 2018, 103, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradia, S.; Subramanian, D.; Wilson, T.; Acharya, S.; Makhov, A.; Griffith, J.; Fishel, R. hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 1999, 3, 255–261. [Google Scholar] [CrossRef]
- Xu, Q.; Xiang, Y.; Wang, Q.; Wang, L.; Brind’Amour, J.; Bogutz, A.B.; Zhang, Y.; Zhang, B.; Yu, G.; Xia, W.; et al. SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development. Nat. Genet. 2019, 51, 844–856. [Google Scholar] [CrossRef]
- Al Sarakbi, W.; Sasi, W.; Jiang, W.G.; Roberts, T.; Newbold, R.F.; Mokbel, K. The mRNA expression of SETD2 in human breast cancer: Correlation with clinico-pathological parameters. BMC Cancer 2009, 9, 290. [Google Scholar] [CrossRef] [Green Version]
- Mar, B.G.; Bullinger, L.B.; McLean, K.M.; Grauman, P.V.; Harris, M.H.; Stevenson, K.; Neuberg, D.S.; Sinha, A.U.; Sallan, S.E.; Silverman, L.B.; et al. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia. Nat. Commun. 2014, 5, 3469. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Sun, Y.; Xie, W.; Wang, S.A.; Hu, S.; Li, S.; Tang, Z.; Toruner, G.; Medeiros, L.J.; Tang, G. Is hyperdiploidy a favorable cytogenetics in adults with B-lymphoblastic leukemia? Cancer Med. 2019, 8, 4093. [Google Scholar] [CrossRef] [Green Version]
- de Smith, A.J.; Lavoie, G.; Walsh, K.M.; Aujla, S.; Evans, E.; Hansen, H.M.; Smirnov, I.; Kang, A.Y.; Zenker, M.; Ceremsak, J.J.; et al. Predisposing germline mutations in high hyperdiploid acute lymphoblastic leukemia in children. Genes Chromosomes Cancer 2019, 58, 723–730. [Google Scholar] [CrossRef]
- Wood, B.; Wu, D.; Crossley, B.; Dai, Y.; Williamson, D.; Gawad, C.; Borowitz, M.J.; Devidas, M.; Maloney, K.W.; Larsen, E.; et al. Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood 2018, 131, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Enshaei, A.; Vora, A.; Harrison, C.J.; Moppett, J.; Moorman, A.V. Defining low-risk high hyperdiploidy in patients with paediatric acute lymphoblastic leukaemia: A retrospective analysis of data from the UKALL97/99 and UKALL2003 clinical trials. Lancet Haematol. 2021, 8, e828–e839. [Google Scholar] [CrossRef]
- de Smith, A.J.; Ojha, J.; Francis, S.S.; Sanders, E.; Endicott, A.A.; Hansen, H.M.; Smirnov, I.; Termuhlen, A.M.; Walsh, K.M.; Metayer, C.; et al. Clonal and microclonal mutational heterogeneity in high hyperdiploid acute lymphoblastic leukemia. Oncotarget 2016, 7, 72733–72745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, J.R.; Adjei, A.A. The Ras/Raf/MAPK Pathway. J. Thorac. Oncol. 2006, 1, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Neri, A.; Knowles, D.M.; Greco, A.; McCormick, F.; Dalla-Favera, R. Analysis of RAS oncogene mutations in human lymphoid malignancies. Proc. Natl. Acad. Sci. USA 1988, 85, 9268. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.; Rago, C.; Cheong, I.; Pagliarini, R.; Angenendt, P.; Rajagopalan, H.; Schmidt, K.; Willson, J.K.V.; Markowitz, S.; Zhou, S.; et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009, 325, 1555–1559. [Google Scholar] [CrossRef] [Green Version]
- Charbel, C.; Fontaine, R.H.; Malouf, G.G.; Picard, A.; Kadlub, N.; El-Murr, N.; How-Kit, A.; Su, X.; Coulomb-L’Hermine, A.; Tost, J.; et al. NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi. J. Investig. Dermatol. 2014, 134, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Oshima, K.; Khiabanian, H.; da Silva-Almeida, A.C.; Tzoneva, G.; Abate, F.; Ambesi-Impiombato, A.; Sanchez-Martin, M.; Carpenter, Z.; Penson, A.; Perez-Garcia, A.; et al. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 2016, 113, 11306–11311. [Google Scholar] [CrossRef] [Green Version]
- Paulsson, K.; Horvat, A.; Strö Mbeck, B.; Nilsson, F.; Heldrup, J.; Behrendtz, M.; Forestier, E.; Andersson, A.; Fioretos, T.; Johansson, B. Mutations of FLT3, NRAS, KRAS, and PTPN11 are Frequent and Possibly Mutually Exclusive in High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Genes Chromosomes Cancer 2008, 47, 26–33. [Google Scholar] [CrossRef]
- Gary Gilliland, D.; Griffin, J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002, 100, 1532–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.; Polly, P.; Liu, T. The histone methyltransferase DOT1L: Regulatory functions and a cancer therapy target. Am. J. Cancer Res. 2015, 5, 2823. [Google Scholar] [PubMed]
- Spinella, J.F.; Cassart, P.; Garnier, N.; Rousseau, P.; Drullion, C.; Richer, C.; Ouimet, M.; Saillour, V.; Healy, J.; Autexier, C.; et al. A novel somatic mutation in ACD induces telomere lengthening and apoptosis resistance in leukemia cells. BMC Cancer 2015, 15, 621. [Google Scholar] [CrossRef] [Green Version]
- Vemulapalli, V.; Donovan, K.A.; Seegar, T.C.M.; Rogers, J.M.; Bae, M.; Lumpkin, R.J.; Cao, R.; Henke, M.T.; Ray, S.S.; Fischer, E.S.; et al. Targeted Degradation of the Oncogenic Phosphatase SHP2. Biochemistry 2021, 60, 2593–2609. [Google Scholar] [CrossRef]
- Reshmi, S.C.; Harvey, R.C.; Roberts, K.G.; Stonerock, E.; Smith, A.; Jenkins, H.; Chen, I.M.; Valentine, M.; Liu, Y.; Li, Y.; et al. Targetable kinase gene fusions in high-risk B-ALL: A study from the Children’s Oncology Group. Blood 2017, 129, 3352–3361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueyama, J.-I.; Miki, M.; Okuno, K.; Eto, S.; Shimada, A. MSH2 deletion with CREBBP and KRAS mutations in pediatric high-hyperdiploid acute lymphoblastic leukemia. Pediatr. Int. 2017, 59, 1103–1105. [Google Scholar] [CrossRef]
- Sun, B.; Jensen, N.R.; Chung, D.; Yang, M.; Larue, A.C.; Cheung, H.W.; Wang, Q. Synergistic effects of SHP2 and PI3K pathway inhibitors in GAB2-overexpressing ovarian cancer. Am. J. Cancer Res. 2019, 9, 145. [Google Scholar] [PubMed]
- Birchmeier, C.; O’Neill, K.; Riggs, M.; Wigler, M. Characterization of ROS1 cDNA from a human glioblastoma cell line. Proc. Natl. Acad. Sci. USA 1990, 87, 4799–4803. [Google Scholar] [CrossRef] [Green Version]
- Fischer, U.; Forster, M.; Rinaldi, A.; Risch, T.; Sungalee, S.; Warnatz, H.-J.; Bornhauser, B.; Gombert, M.; Kratsch, C.; Stütz, A.M.; et al. Genomics and drug profiling of fatal TCF3-HLF−positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat. Genet. 2015, 47, 1020–1029. [Google Scholar] [CrossRef]
- Honda, H.; Inaba, T.; Suzuki, T.; Oda, H.; Ebihara, Y.; Tsuiji, K.; Nakahata, T.; Ishikawa, T.; Yazaki, Y.; Hirai, H. Expression of E2A-HLF Chimeric Protein Induced T-Cell Apoptosis, B-Cell Maturation Arrest, and Development of Acute Lymphoblastic Leukemia. Blood 1999, 93, 2780–2790. [Google Scholar] [CrossRef]
- Salim, M.; Heldt, F.; Thomay, K.; Lentes, J.; Behrens, Y.L.; Kaune, B.; Möricke, A.; Cario, G.; Schieck, M.; Hofmann, W.; et al. Cryptic TCF3 fusions in childhood leukemia: Detection by RNA sequencing. Genes Chromosomes Cancer 2022, 61, 22–26. [Google Scholar] [CrossRef]
- Felice, M.S.; Gallego, M.S.; Alonso, C.N.; Alfaro, E.M.; Guitter, M.R.; Bernasconi, A.R.; Rubio, P.L.; Zubizarreta, P.A.; Rossi, J.G. Prognostic impact of t(1;19)/TCF3–PBX1 in childhood acute lymphoblastic leukemia in the context of Berlin–Frankfurt–Münster-based protocols. Leuk. Lymphoma 2011, 52, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Boller, S.; Grosschedl, R. The regulatory network of B-cell differentiation: A focused view of early B-cell factor 1 function. Immunol. Rev. 2014, 261, 102–115. [Google Scholar] [CrossRef]
- Hunger, S.P.; Ohyashiki, K.; Toyama, K.; Cleary, M.L. Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev. 1992, 6, 1608–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagag, A.A.; Nosair, N.A.; Ghaith, F.M.; Elshenawy, E.H. Prognostic Value of Protease Activated Receptor-1 in Children with Acute Lymphoblastic Leukemia. Mediterr. J. Hematol. Infect. Dis. 2014, 6, 2014029. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.; Yeung, J.; Ellu, J.; Ramanujachar, R.; Bornhauser, B.; Solarska, O.; Hubank, M.; Williams, O.; Brady, H.J.M. The E2A-HLF oncogenic fusion protein acts through Lmo2 and Bcl-2 to immortalize hematopoietic progenitors. Leukemia 2010, 25, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaux, D.L.; Cory, S.; Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988, 335, 440–442. [Google Scholar] [CrossRef]
- Lasica, M.; Anderson, M.A. Review of Venetoclax in CLL, AML and Multiple Myeloma. J. Pers. Med. 2021, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- Sanaei, M.; Kavoosi, F. Effect of Valproic Acid on the Class I Histone Deacetylase 1, 2 and 3, Tumor Suppressor Genes p21WAF1/CIP1 and p53, and Intrinsic Mitochondrial Apoptotic Pathway, Pro- (Bax, Bak, and Bim) and anti-(Bcl-2, Bcl-xL, and Mcl-1) Apoptotic Genes Expression, Cell Viability, and Apoptosis Induction in Hepatocellular Carcinoma HepG2 Cell Line. Asian Pac. J. Cancer Prev. 2021, 22, 89–95. [Google Scholar] [CrossRef]
- Pasqualucci, L.; Neumeister, P.; Goossens, T.; Nanjangud, G.; Chaganti, R.S.K.; Küppers, R.; Dalla-Favera, R. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001, 412, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Sola, D.; Ying, C.Y.; Grandori, C.; Ruggiero, L.; Chen, B.; Li, M.; Galloway, D.A.; Gu, W.; Gautier, J.; Dalla-Favera, R. Non-transcriptional control of DNA replication by c-Myc. Nature 2007, 448, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Bourquin, J.-P. Targeting the oncogenic activity of TCF3-HLF in leukemia. Mol. Cell. Oncol. 2020, 7, 1709391. [Google Scholar] [CrossRef]
- Koretzky, G.A. The legacy of the Philadelphia chromosome. J. Clin. Investig. 2007, 117, 2030–2032. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am. J. Hematol. 2018, 93, 442–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Z.J.; Liu, Y.F.; Xu, L.Z.; Long, Z.J.; Huang, D.; Yang, Y.; Liu, B.; Feng, J.X.; Pan, Y.J.; Yan, J.S.; et al. The Philadelphia chromosome in leukemogenesis. Chin. J. Cancer 2016, 35, 48. [Google Scholar] [CrossRef] [Green Version]
- Haider, M.Z.; Anwer, F. Genetics, Philadelphia Chromosome; StatPearls, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560689/ (accessed on 6 February 2022).
- Siveen, K.S.; Prabhu, K.S.; Achkar, I.W.; Kuttikrishnan, S.; Shyam, S.; Khan, A.Q.; Merhi, M.; Dermime, S.; Uddin, S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol. Cancer 2018, 17, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 2009, 9, 28–39. [Google Scholar] [CrossRef]
- Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 36. [Google Scholar] [CrossRef]
- Schultz, K.R.; Paul Bowman, W.; Aledo, A.; Slayton, W.B.; Sather, H.; Devidas, M.; Wang, C.; Davies, S.M.; Gaynon, P.S.; Trigg, M.; et al. Improved Early Event-Free Survival with Imatinib in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A Children’s Oncology Group Study. J. Clin. Oncol. 2009, 27, 5175–5181. [Google Scholar] [CrossRef]
- Biondi, A.; Schrappe, M.; De Lorenzo, P.; Castor, A.; Lucchini, G.; Gandemer, V.; Pieters, R.; Stary, J.; Escherich, G.; Campbell, M.; et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): A randomised, open-label, intergroup study. Lancet Oncol. 2012, 13, 936–945. [Google Scholar] [CrossRef]
- Biondi, A.; Gandemer, V.; De Lorenzo, P.; Cario, G.; Campbell, M.; Castor, A.; Pieters, R.; Baruchel, A.; Vora, A.; Leoni, V.; et al. Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): A prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol. 2018, 5, e641–e652. [Google Scholar] [CrossRef] [Green Version]
- Zawitkowska, J.; Lejman, M.; Płonowski, M.; Bulsa, J.; Szczepański, T.; Romiszewski, M.; Mizia-Malarz, A.; Derwich, K.; Karolczyk, G.; Ociepa, T.; et al. Clinical outcome in pediatric patients with philadelphia chromosome positive all treated with tyrosine kinase inhibitors plus chemotherapy—The experience of a Polish pediatric leukemia and lymphoma study group. Cancers 2020, 12, 3751. [Google Scholar] [CrossRef]
- Yaghmaie, M.; Yeung, C.C. Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors. Curr. Hematol. Malig. Rep. 2019, 14, 395–404. [Google Scholar] [CrossRef]
- Melo, J.V.; Chuah, C. Resistance to imatinib mesylate in chronic myeloid leukaemia. Cancer Lett. 2007, 249, 121–132. [Google Scholar] [CrossRef] [PubMed]
- O’hare, T.; Eide, C.A.; Deininger, M.W. New Bcr-Abl inhibitors in chronic myeloid leukemia: Keeping resistance in check. Expert Opin. Investig. Drugs 2008, 17, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Talpaz, M.; Shah, N.P.; Kantarjian, H.; Donato, N.; Nicoll, J.; Paquette, R.; Cortes, J.; O’Brien, S.; Nicaise, C.; Bleickardt, E.; et al. Dasatinib in Imatinib-Resistant Philadelphia Chromosome–Positive Leukemias. N. Engl. J. Med. 2006, 354, 2531–2541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijiya, N.; Michel Zwaan, C.; Rizzari, C.; Foà, R.; Abbink, F.; Lancaster, D.; Landman-Parker, J.; Millot, F.; Moppett, J.; Nelken, B.; et al. Pharmacokinetics of Nilotinib in Pediatric Patients with Philadelphia Chromosome-Positive Chronic Myeloid Leukemia or Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2020, 26, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.; Saglio, G.; Branford, S.; Soverini, S.; Kim, D.-W.; Müller, M.C.; Martinelli, G.; Cortes, J.; Beppu, L.; Gottardi, E.; et al. Impact of Baseline BCR-ABL Mutations on Response to Nilotinib in Patients With Chronic Myeloid Leukemia in Chronic Phase. J. Clin. Oncol. 2009, 27, 4204–4210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soverini, S.; Colarossi, S.; Gnani, A.; Castagnetti, F.; Rosti, G.; Bosi, C.; Paolini, S.; Rondoni, M.; Piccaluga, P.P.; Palandri, F.; et al. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica 2007, 92, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Kimura, S. Abl tyrosine kinase inhibitors for overriding Bcr-Abl/T315I: From the second to third generation. Expert Rev. Anticancer Ther. 2008, 8, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Mahon, F.X.; Hayette, S.; Lagarde, V.; Belloc, F.; Turcq, B.; Nicolini, F.; Belanger, C.; Manley, P.W.; Leroy, C.; Etienne, G.; et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res. 2008, 68, 9809–9816. [Google Scholar] [CrossRef] [Green Version]
- Mahon, F.X.; Belloc, F.; Lagarde, V.; Chollet, C.; Moreau-Gaudry, F.; Reiffers, J.; Goldman, J.M.; Melo, J.V. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 2003, 101, 2368–2373. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.; Kantarjian, H.; Ravandi, F.; Thomas, D.; Faderl, S.; Pemmaraju, N.; Daver, N.; Garcia-Manero, G.; Sasaki, K.; Cortes, J.; et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: A single-centre, phase 2 study. Lancet Oncol. 2015, 16, 1547–1555. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, H.; Wang, F.; Zhang, Y.; Chen, X.; Nie, D.; Li, Y.; Tan, Y.; Xu, Y.; Ma, X. Dynamic Evolution of Ponatinib Resistant BCR-ABL1 T315 and Compound Mutations. Blood 2019, 134, 3796. [Google Scholar] [CrossRef]
- Roberts, K.G. Why and how to treat Ph-like ALL? Best Pract. Res. Clin. Haematol. 2018, 31, 351–356. [Google Scholar] [CrossRef]
- Perez-Andreu, V.; Roberts, K.G.; Harvey, R.C.; Yang, W.; Cheng, C.; Pei, D.; Xu, H.; Gastier-Foster, J.; Shuyu, E.; Lim, J.Y.S.; et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 2013, 45, 1494–1498. [Google Scholar] [CrossRef] [Green Version]
- Roberts, K.G.; Morin, R.D.; Zhang, J.; Hirst, M.; Zhao, Y.; Su, X.; Chen, S.C.; Payne-Turner, D.; Churchman, M.L.; Harvey, R.C.; et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012, 22, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Młynarski, W.; Pediatrii, K.; Diabetologii, H.; Madzio, J.; Pastorczak, A.; Młynarski Klinika Pediatrii, W. Molecular background and therapeutic perspectives of acute lymphoblastic leukemia BCR-ABL1-like. Hematol. Clin. Pract. 2014, 5, 154–161. [Google Scholar]
- Mullighan, C.G.; Collins-Underwood, J.R.; Phillips, L.A.A.; Loudin, M.G.; Liu, W.; Zhang, J.; Ma, J.; Coustan-Smith, E.; Harvey, R.C.; Willman, C.L.; et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 2009, 41, 1243–1246. [Google Scholar] [CrossRef] [Green Version]
- Harrison, D.A. The JAK/STAT Pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, H.; Azzato, E.M.; Mullighan, C.G. Integration of Next-Generation Sequencing to Treat Acute Lymphoblastic Leukemia with Targetable Lesions: The St. Jude Children’s Research Hospital Approach. Front. Pediatr. 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Downes, C.E.J.; McClure, B.J.; Bruning, J.B.; Page, E.; Breen, J.; Rehn, J.; Yeung, D.T.; White, D.L. Acquired JAK2 mutations confer resistance to JAK inhibitors in cell models of acute lymphoblastic leukemia. npj Precis. Oncol. 2021, 5, 75. [Google Scholar] [CrossRef]
- Sadras, T.; Heatley, S.L.; Kok, C.H.; McClure, B.J.; Yeung, D.; Hughes, T.P.; Sutton, R.; Ziegler, D.S.; White, D.L. A novel somatic JAK2 kinase-domain mutation in pediatric acute lymphoblastic leukemia with rapid on-treatment development of LOH. Cancer Genet. 2017, 216–217, 86–90. [Google Scholar] [CrossRef]
- Tavakoli Shirazi, P.; Eadie, L.N.; Page, E.C.; Heatley, S.L.; Bruning, J.B.; White, D.L. Constitutive JAK/STAT signaling is the primary mechanism of resistance to JAKi in TYK2-rearranged acute lymphoblastic leukemia. Cancer Lett. 2021, 512, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.L.; Deshmukh, S.; Jessa, S.; Hadjadj, D.; Lisi, V.; Andrade, A.F.; Faury, D.; Jawhar, W.; Dali, R.; Suzuki, H.; et al. Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell 2020, 183, 1617–1633.e22. [Google Scholar] [CrossRef]
- Konno, T.; Kasanuki, K.; Ikeuchi, T.; Dickson, D.W.; Wszolek, Z.K. CSF1R-related leukoencephalopathy: A major player in primary microgliopathies. Neurology 2018, 91, 1092–1104. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.; Ryan, S.L.; Chilton, L.; Elliott, A.; Murray, J.; Richardson, S.; Wragg, C.; Moppett, J.; Cummins, M.; Tunstall, O.; et al. EBF1-PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): Genetic profile and clinical implications. Blood 2016, 127, 2214–2218. [Google Scholar] [CrossRef]
- Tanasi, I.; Ba, I.; Sirvent, N.; Braun, T.; Cuccuini, W.; Ballerini, P.; Duployez, N.; Tanguy-Schmidt, A.; Tamburini, J.; Maury, S.; et al. Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements. Blood 2019, 134, 1351–1355. [Google Scholar] [CrossRef]
- Liang, D.-C.; Chen, S.-H.; Liu, H.-C.; Yang, C.-P.; Yeh, T.-C.; Jaing, T.-H.; Hung, I.-J.; Hou, J.-Y.; Lin, T.-H.; Lin, C.-H.; et al. Mutational status of NRAS, KRAS, and PTPN11 genes is associated with genetic/cytogenetic features in children with B-precursor acute lymphoblastic leukemia. Pediatr. Blood Cancer 2018, 65, e26786. [Google Scholar] [CrossRef]
- Roberts, K.G. Genetics and prognosis of ALL in children vs. adults. Hematology 2018, 2018, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Stegmaier, K.; Pendse, S.; Barker, G.F.; Bray-Ward, P.; Ward, D.C.; Montgomery, K.T.; Krauter, K.S.; Reynolds, C.; Sklar, J.; Donnelly, M.; et al. Frequent Loss of Heterozygosity at the TEL Gene Locus in Acute Lymphoblastic Leukemia of Childhood. Blood 1995, 86, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Y.; Churpek, J.E.; Keel, S.B.; Walsh, T.; Lee, M.K.; Loeb, K.R.; Gulsuner, S.; Pritchard, C.C.; Sanchez-Bonilla, M.; Delrow, J.J.; et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat. Genet. 2015, 47, 180–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGregor, L.M.; Baylin, S.B.; Griffin, C.A.; Hawkins, A.L.; Nelkin, B.D. Molecular cloning of the cDNA for human TrkC (NTRK3), chromosomal assignment, and evidence for a splice variant. Genomics 1994, 22, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Lamballe, F.; Klein, R.; Barbacid, M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 1991, 66, 967–979. [Google Scholar] [CrossRef]
- Roberts, K.G.; Janke, L.J.; Zhao, Y.; Seth, A.; Ma, J.; Finkelstein, D.; Smith, S.; Ebata, K.; Tuch, B.B.; Hunger, S.P.; et al. ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood 2018, 132, 861–865. [Google Scholar] [CrossRef] [Green Version]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Sawczuk-Chabin, J.; Ejduk, A.; Lech-Marańda, E. Blinatumomab—A novel drug in patients with relapsed/refractory acute lymphoblastic leukemia. Hematol. Clin. Pract. 2016, 7, 312–326. [Google Scholar] [CrossRef] [Green Version]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.-M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836. [Google Scholar] [CrossRef]
- Orlando, E.J.; Han, X.; Tribouley, C.; Wood, P.A.; Leary, R.J.; Riester, M.; Levine, J.E.; Qayed, M.; Grupp, S.A.; Boyer, M.; et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 2018, 24, 1504–1506. [Google Scholar] [CrossRef]
- Deng, K.; Yao, J.; Huang, J.; Ding, Y.; Zuo, J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl. Oncol. 2021, 14, 101077. [Google Scholar] [CrossRef] [PubMed]
- Jumaa, H.; Guénet, J.L.; Nielsen, P.J. Regulated expression and RNA processing of transcripts from the Srp20 splicing factor gene during the cell cycle. Mol. Cell. Biol. 1997, 17, 3116–3124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lareau, L.F.; Inada, M.; Green, R.E.; Wengrod, J.C.; Brenner, S.E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 2007, 446, 926–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braig, F.; Brandt, A.; Goebeler, M.; Tony, H.P.; Kurze, A.K.; Nollau, P.; Bumm, T.; Böttcher, S.; Bargou, R.C.; Binder, M. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 2017, 129, 100–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, M.M.; Ji, L.; Shah, N.N.; Rheingold, S.R.; Bhojwani, D.; Yi, J.S.; Yuan, C.M.; Harris, A.C.; Brown, P.A.; Borowitz, M.J.; et al. A Phase 2 Trial of Inotuzumab Ozogamicin (InO) in Children and Young Adults with Relapsed or Refractory (R/R) CD22+ B-Acute Lymphoblastic Leukemia (B-ALL): Results from Children’s Oncology Group Protocol AALL1621. Blood 2019, 134, 741. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.M.; Jabbour, E.; Wang, T.; Liang White, J.; et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer 2019, 125, 2474–2487. [Google Scholar] [CrossRef] [Green Version]
- Bhojwani, D.; Sposto, R.; Shah, N.N.; Rodriguez, V.; Yuan, C.; Stetler-Stevenson, M.; O’Brien, M.M.; McNeer, J.L.; Quereshi, A.; Cabannes, A.; et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 2018, 33, 884–892. [Google Scholar] [CrossRef]
- Paul, M.R.; Wong, V.; Aristizabal, P.; Kuo, D.J. Treatment of Recurrent Refractory Pediatric Pre-B Acute Lymphoblastic Leukemia Using Inotuzumab Ozogamicin Monotherapy Resulting in CD22 Antigen Expression Loss as a Mechanism of Therapy Resistance. J. Pediatr. Hematol. Oncol. 2019, 41, E546–E549. [Google Scholar] [CrossRef]
- Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol. 2014, 32, 4134–4140. [Google Scholar] [CrossRef]
- Pehlivan, K.C.; Duncan, B.B.; Lee, D.W. CAR-T Cell Therapy for Acute Lymphoblastic Leukemia: Transforming the Treatment of Relapsed and Refractory Disease. Curr. Hematol. Malig. Rep. 2018, 13, 396–406. [Google Scholar] [CrossRef]
- Skorka, K.; Ostapinska, K.; Malesa, A.; Giannopoulos, K. The Application of CAR-T Cells in Haematological Malignancies. Arch. Immunol. Ther. Exp. 2020, 68, 34. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Clubb, J.D.; Chen, Y.Y. Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell 2020, 38, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, Z.; Liu, Y.; Han, W. New development in CAR-T cell therapy. J. Hematol. Oncol. 2017, 10, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, L. Tragedy, Perseverance, and Chance—The Story of CAR-T Therapy. N. Engl. J. Med. 2017, 377, 1313–1315. [Google Scholar] [CrossRef] [PubMed]
- Styczyński, J. Where dreams come true: CAR-T cell therapy in Poland! Acta Haematol. Pol. 2020, 51, 1. [Google Scholar] [CrossRef] [Green Version]
- Gökbuget, N.; Dombret, H.; Bonifacio, M.; Reichle, A.; Graux, C.; Faul, C.; Diedrich, H.; Topp, M.S.; Brüggemann, M.; Horst, H.A.; et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 2018, 131, 1522–1531. [Google Scholar] [CrossRef] [Green Version]
- Rambaldi, A.; Ribera, J.M.; Kantarjian, H.M.; Dombret, H.; Ottmann, O.G.; Stein, A.S.; Tuglus, C.A.; Zhao, X.; Kim, C.; Martinelli, G. Blinatumomab compared with standard of care for the treatment of adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia. Cancer 2020, 126, 304–310. [Google Scholar] [CrossRef]
- Jacoby, E.; Bielorai, B.; Avigdor, A.; Itzhaki, O.; Hutt, D.; Nussboim, V.; Meir, A.; Kubi, A.; Levy, M.; Zikich, D.; et al. Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. Am. J. Hematol. 2018, 93, 1485–1492. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, E.; Barrett, D.M.; Black, K.L.; Bagashev, A.; Oldridge, D.; Wu, G.; Sussman, R.; Lanauze, C.; Ruella, M.; Gazzara, M.R.; et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015, 5, 1282–1295. [Google Scholar] [CrossRef] [Green Version]
- Panuciak, K.; Margas, M.; Makowska, K.; Lejman, M. Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias. Cells 2022, 11, 139. [Google Scholar] [CrossRef]
- Shah, N.N.; Fry, T.J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 2019, 16, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Sermer, D.; Brentjens, R. CAR T-cell therapy: Full speed ahead. Hematol. Oncol. 2019, 37, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Fry, T.J.; Shah, N.N.; Orentas, R.J.; Stetler-Stevenson, M.; Yuan, C.M.; Ramakrishna, S.; Wolters, P.; Martin, S.; Delbrook, C.; Yates, B.; et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018, 24, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, N.; Porter, D. Cytokine Release Syndrome with Chimeric Antigen Receptor T Cell Therapy. Biol. Blood Marrow Transplant. 2019, 25, e123–e127. [Google Scholar] [CrossRef] [Green Version]
- Frey, N.V.; Porter, D.L. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematol. Am. Soc. Hematol. Educ. Progr. 2016, 2016, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Imamura, M.; Hashino, S.; Tanaka, J. Graft-versus-leukemia effect and its clinical implications. Leuk. Lymphoma 1996, 23, 477–492. [Google Scholar] [CrossRef]
- Marsters, S.A.; Sheridan, J.P.; Pitti, R.M.; Huang, A.; Skubatch, M.; Baldwin, D.; Yuan, J.; Gurney, A.; Goddard, A.D.; Godowski, P.; et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr. Biol. 1997, 7, 1003–1006. [Google Scholar] [CrossRef] [Green Version]
- Walczak, H.; Degli-Esposti, M.A.; Johnson, R.S.; Smolak, P.J.; Waugh, J.Y.; Boiani, N.; Timour, M.S.; Gerhart, M.J.; Schooley, K.A.; Smith, C.A.; et al. TRAIL-R2: A novel apoptosis-mediating receptor for TRAIL. EMBO J. 1997, 16, 5386–5397. [Google Scholar] [CrossRef]
- Ren, Y.G.; Wagner, K.W.; Knee, D.A.; Aza-Blanc, P.; Nasoff, M.; Deveraux, Q.L. Differential Regulation of the TRAIL Death Receptors DR4 and DR5 by the Signal Recognition Particle. Mol. Biol. Cell 2004, 15, 5064. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, A.; Miyake, K.; Akahane, K.; Goi, K.; Kagami, K.; Yagita, H.; Inukai, T. Epigenetic Modification of Death Receptor Genes for TRAIL and TRAIL Resistance in Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Genes 2021, 12, 864. [Google Scholar] [CrossRef] [PubMed]
Protocol | Genetic Anomalies Characteristic for HR | Drugs Used in Induction | Drugs Used in Consolidation | Drugs Used in Intensification | Maintenance of Remission—Drugs Used and Duration | Radiotherapy | Curability | Reference |
---|---|---|---|---|---|---|---|---|
AIEOP BFM ALL 2017 | KMT2A-AFF1 TCF3-HLF hypodiploidy not ETV6-RUNX1 + any KMT2A rearrangement | Prednisone VCR DNR Oncaspar MTX i.t. | Dexamethasone ARA-C VCR Oncaspar CMP 6-MP MTX i.t. | Dexamethasone VCR DOXO Oncaspar CMP TG MTX i.t. | MTX p.o. 6-MP MTX i.t (every 6 weeks for HR patients) 74 weeks for boys and girls | Only for patient with CNS3 status; older than 4 years old | 95% | [10,11] |
UK ALL 2011 | iAMP21 t(17;19) q(22;p13)//TCF3(E2A)-HLF MLL rearrangement near haploidy hypodiploidy | Dexamethasone VCR Oncaspar 6-MP MTX i.t. | 6-MP MTX i.t. CMP ARA-C VCR Oncaspar | Dexamethasone VCR DOXO Oncaspar MTX i.t. CMP ARA-C 6-MP | 4 regimens of maintenance depending on the risk group; dexamethasone VCR 6-MP MTX p.o. MTX i.t. 2 years for girls 3 years for boys | Only for patient with CNS3 status | 91.5% | [12,13] |
CCG-ALL-2015 | t (1;19), t (9;22), MLL rearrangement hypodiploidy iAMP21 BCR-ABL fusion E2A-PBX1 fusion | Dexamethasone (day 1–4) prednisone (day 5–28) VCR DBR Oncaspar CMP ARA-C 6-MP Triple IT = MTX + H-C + ARA-C | HD-MTX 6-MP | Dexamethasone VCR DNR ARA-C Oncaspar Triple IT | 6-MP + MTX p.o. + Triple IT every 4 or 7 weeks: dexamethasone VCR CMP ARA-C 76 weeks for boys and girls | Only for patient with CNS3 status; older than 3 years old | 90% | [14,15] |
JACLS | t(4;11) or t(1;19) KMT2A/AFF1 hypodiploidy TCF3/PBX1 | prednisone (day 1–7) Dexamethasone (day 8–14) prednisone (day 15–28) VCR CMP THP-adriamycin Oncaspar MTX i.t. on day 1 Triple IT on day 8.2 | CMP ARA-C THP-adriamycin 6-MP Triple IT | Prednisone VCR THP-adriamycin CMP Oncaspar Triple IT | 98 weeks; divided into 4 stages 1A—MTX p.o + 6-MP + Triple IT 1B—MTX p.o. + 6-MP + Triple IT + radiotherapy 2—prednisone + VCR + CMP + Oncaspar 3—MTX p.o + 6-MP + Triple IT 4—prednisone + VCR + THP-adriamycin + Oncaspar | During maintenance 1B for CNS-positive status | 96.4% | [16] |
COG-AALL | BCR-ABL fusion transcript t(9;22)(q34;q11) hypodiploid MLL rearrangement | Dexamethasone VCR Oncaspar MTX i.t. ARA-C i.t. extended induction: DNR | Dexamethasone VCR 6-MP MTX p.o. MTX i.t. | Dexamethasone VCR DOXO CMP ARA-C Oncaspar TG MTX i.t. | Dexamethasone 6-MP MTX p.o. VCR MTX i.t. on day 1 2 years for girls 3 years for boys | Only for patients with CNS3 status | 95% | [17] |
Gene and Locus | Gene’s Mutation | Effects on Pathology | Effects on Treatment |
---|---|---|---|
NR3C1 (locus 5q31.3) | Point mutations | Disordered transmission of signals via the NR3C1 receptor | Resistance to prednisone and dexamethasone |
CREBBP (locus 16p13.3) | Sequence, deletion, missense mutations | amino acid substitutions in the histone acetyltransferase (HAT) domain | Resistance to steroids |
DHFR (locus 5q14.1) | Single amino acid changes in DHFR, increased DHFR overexpression, decreased affinity of MTX for DHFR | Changes in metabolism of MTX | Resistance to MTX |
TYMS (locus 18p11.32) | High expression of TYMS | Enhances purine production, cell proliferation | Resistance to MTX |
FPGS (locus 9q34.11) | Low expression of FPGS | Plays role in MTX long-chain creation | Resistance to MTX |
RFC1 (locus 4p14) | Less expression of RFC | insensitivity to apoptosis mechanisms | Resistance to MTX |
ASNS (locus 7q21.3) | High expression of ASNS | Excessive synthesis of asparagine | Resistance to asparaginase |
Gene and Locus | Gene Mutation | Effects on Pathology | Effects on Treatment |
---|---|---|---|
NT5C2 (locus 10q24.32-q24.33) | High expression | Controls the number of purine nucleotides in the cell and their outflow | Resistance to 6-MP |
PRSP1 (locus Xq22.2), PRSP2 (locus Xq22.3) | Low expression | Purine and pyrimidine biosynthesis disorder | Resistance to 6-MP and 6-TG |
MSH6 (locu 2p16.3) | Hemizygous deletion, downregulation | Despite the presence of thiopurines, the loss of MSH6 produces a lack of cell apoptosis, which leads to an increase in blast survival | Resistance to 6-MP and prednisone |
SETD2 (locus 3p21.3) | Loss-of-function, frameshift, nonsense mutations, low expression | Tumor suppression is absent | Resistance to 6-MP |
Gene and Locus | Gene Mutation | Effects on Pathology | Effects on Treatment |
---|---|---|---|
KRAS (locus 1p13.2) | High expression | Attracts and activates growth factor-related proteins, as well as c-Raf and PI 3-kinase. | Increased resistance to MTX, increased sensitivity to vincristine |
FLT3 (locus 13q12.2) | Tandem duplication, high expression | Ras/Raf/MAPK pathway activation, misregulation of cellular activities, growth of B-Cells | Resistance to RTK and FLT3 inhibitors |
DOTL1 (locus 19p13.3) | High expression | Ras/Raf/MAPK pathway activation, misregulation of gene transcription, development, cell cycle progression, somatic reprogramming, and DNA damage repair | Resistance to RTK inhibitors |
PTPN11 (locus 12q24.13) | High expression | Increases SHP2 protein production, which leads to activation of Ras/Raf/MAPK pathway | Resistance to PTP inhibitors |
Gene and Locus | Gene Mutation | Effects on Pathology | Effects on Treatment |
---|---|---|---|
TCF3 (locus 17q22) | Fusion with HLF | Drives lineage identity and self-renewal by recruiting HLF binding sites to hematopoietic stem cell/myeloid lineage-associated enhancers | Resistance to cell apoptosis and venetoclax |
BCL2 (locus 18q21.33) | High expression | Prolongs cell life by preventing the cell’s scheduled demise | Resistance to cell apoptosis and venetoclax |
MYC (locus 8q24.21) | Deregulation of MYC expression | Has constitutive MYC activity and promotes oncogenesis | Resistance to treatment |
Imatinib | Dasatinib | Nilotinib |
---|---|---|
L248R E255V T315I T315V G250E Y253H E255K F359I | L248R T315I T315A T315V F317R F317V | L248R Y253H E255V T315I T315V F359I L248R G250E |
Gene and Locus | Gene’s Mutation | Effects on Pathology | Effects on Treatment |
---|---|---|---|
BCR::ABL1 fusion (locus 9q34::22q11) | Point mutations | Hydrogen bonding break—critical for drug binding | Resistant to first and second generations of TKIs |
MRD1 (locus 2q23.1) | Presence in blast cells | Increased drug efflux | Resistance to TKIs of all generations |
Gene and Locus | Gene Mutation | Effects on Pathology | Effects on Treatment |
---|---|---|---|
CRLF2 (locus Xp22.33) | Rearrangements and point mutations | JAK/STAT pathway activation | Use of JAK/STAT pathway inhibitor |
IKZF1 (locus 7p12.2) | Rearrangements and point mutations | JAK/STAT pathway activation | Use of a JAK/STAT pathway inhibitor |
NTRK3 (locus 15q25.3) | Fusion with ETV6 | Activation of the TRK pathway | Use of a TRK inhibitor |
Gene and Locus | Gene’s Mutation | Effects on Pathology | Effects on Treatment |
---|---|---|---|
SRS3 (locus 6p21.31-p21.2) | Rearrangements, point mutations, decreased expression | Misregulation of splicing factor leads to lack of recognition of terminal exons | Resistance to blinatumomab |
DR4 (locus 8p21.3) DR5 (locus 8p21.3) | Rearrangements, point mutations, decreased expression | Absence of apoptosis-induced selective apoptosis to eliminate cancerous cells | Increase in survival rate, frequent recurrences |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jędraszek, K.; Malczewska, M.; Parysek-Wójcik, K.; Lejman, M. Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2022, 23, 3067. https://doi.org/10.3390/ijms23063067
Jędraszek K, Malczewska M, Parysek-Wójcik K, Lejman M. Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences. 2022; 23(6):3067. https://doi.org/10.3390/ijms23063067
Chicago/Turabian StyleJędraszek, Krzysztof, Marta Malczewska, Karolina Parysek-Wójcik, and Monika Lejman. 2022. "Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia" International Journal of Molecular Sciences 23, no. 6: 3067. https://doi.org/10.3390/ijms23063067
APA StyleJędraszek, K., Malczewska, M., Parysek-Wójcik, K., & Lejman, M. (2022). Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 23(6), 3067. https://doi.org/10.3390/ijms23063067