Somatostatin Primes Endothelial Cells for Agonist-Induced Hyperpermeability and Angiogenesis In Vitro
Abstract
:1. Introduction
2. Results
2.1. HUVECs Mainly Express SST1 and SST5 Receptors
2.2. SST14 Primed HUVEC Monolayers for Agonist-Induced Endothelial Hyperpermeability
2.3. Role of Akt and MEK/ERK Pathways in SST14-Mediated Sensitisation of HUVEC Permeability
2.4. SST14 Primed Agonist-Induced Activation of RhoA/Rock Pathway
2.5. SST14 Moderately Increased HUVEC Proliferation and Primed HUVECs for VEGF-Mediated In Vitro Angiogenesis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture
4.3. Experimental Protocols
4.4. Immunocytochemistry and Fluorescence Microscopy
4.5. Endothelial Monolayer Permeability
4.6. Western Blotting
4.7. Cell Proliferation Assay
4.8. cAMP-GloTM Assay
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theodoropoulou, M.; Stalla, G.K. Somatostatin receptors: From signaling to clinical practice. Front. Neuroendocrinol. 2013, 34, 228–252. [Google Scholar] [CrossRef]
- Weckbecker, G.; Lewis, I.; Albert, R.; Schmid, H.A.; Hoyer, D.; Bruns, C. Opportunities in somatostatin research: Biological, chemical and therapeutic aspects. Nat. Rev. Drug Discov. 2003, 2, 999–1017. [Google Scholar] [CrossRef]
- Schally, A.V.; Huang, W.Y.; Chang, R.C.; Arimura, A.; Redding, T.W.; Millar, R.P.; Hunkapiller, M.W.; Hood, L.E. Isolation and structure of pro-somatostatin: A putative somatostatin precursor from pig hypothalamus. Proc. Natl. Acad. Sci. USA 1980, 77, 4489–4493. [Google Scholar] [CrossRef] [Green Version]
- Ampofo, E.; Nalbach, L.; Menger, M.D.; Laschke, M.W. Regulatory Mechanisms of Somatostatin Expression. Int. J. Mol. Sci. 2020, 21, 4170. [Google Scholar] [CrossRef]
- Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.J.; Lupp, A.; Korbonits, M.; Castano, J.P.; Wester, H.J.; et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol. Rev. 2018, 70, 763–835. [Google Scholar] [CrossRef] [Green Version]
- Pintér, E.; Pozsgai, G.; Hajna, Z.; Helyes, Z.; Szolcsányi, J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br. J. Clin. Pharmacol. 2014, 77, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Pintér, E.; Helyes, Z.; Szolcsányi, J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol. Ther. 2006, 112, 440–456. [Google Scholar] [CrossRef]
- Szolcsányi, J.; Pintér, E.; Helyes, Z.; Petho, G. Inhibition of the function of TRPV1-expressing nociceptive sensory neurons by somatostatin 4 receptor agonism: Mechanism and therapeutical implications. Curr. Top. Med. Chem. 2011, 11, 2253–2263. [Google Scholar] [CrossRef]
- Vörös, I.; Sághy, É.; Pohóczky, K.; Makkos, A.; Onódi, Z.; Brenner, G.B.; Baranyai, T.; Ágg, B.; Váradi, B.; Kemény, Á.; et al. Somatostatin and Its Receptors in Myocardial Ischemia/Reperfusion Injury and Cardioprotection. Front. Pharmacol. 2021, 12, 663655. [Google Scholar] [CrossRef]
- Shirahase, H.; Kanda, M.; Shimaji, H.; Usui, H.; Rorstad, O.P.; Kurahashi, K. Somatostatin-induced contraction mediated by endothelial TXA2 production in canine cerebral arteries. Life Sci. 1993, 53, 1539–1544. [Google Scholar] [CrossRef]
- Dézsi, L.; Szentiványi, M., Jr.; Dörnyei, G.; Löwenstein, L.; Faragó, M.; Tulassay, T.; Monos, E. Regional differences in nitric oxide-dependent vascular responses to somatostatin. Physiol. Res. 1996, 45, 291–296. [Google Scholar]
- De Martino, M.C.; Auriemma, R.S.; Brevetti, G.; Vitale, G.; Schiano, V.; Galdiero, M.; Grasso, L.; Lombardi, G.; Colao, A.; Pivonello, R. The treatment with growth hormone receptor antagonist in acromegaly: Effect on vascular structure and function in patients resistant to somatostatin analogues. J. Endocrinol. Investig. 2010, 33, 663–670. [Google Scholar] [CrossRef]
- Lauder, H.; Sellers, L.A.; Fan, T.P.; Feniuk, W.; Humphrey, P.P. Somatostatin sst5 inhibition of receptor mediated regeneration of rat aortic vascular smooth muscle cells. Br. J. Pharmacol. 1997, 122, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Schiller, N.K.; Timothy, A.M.; Aurora, H.S.; Chen, I.L.; Coy, D.H.; Murphy, W.A.; Akers, D.L.; Fonseca, V.A.; Kadowitz, P.J.; McNamara, D.B. A selective somatostatin type-2 receptor agonist inhibits neointimal thickening and enhances endothelial cell growth and morphology following aortic balloon injury in the rabbit. Mol. Cell. Biochem. 2002, 240, 31–37. [Google Scholar] [CrossRef]
- Curtis, S.B.; Hewitt, J.; Yakubovitz, S.; Anzarut, A.; Hsiang, Y.N.; Buchan, A.M. Somatostatin receptor subtype expression and function in human vascular tissue. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1815-22. [Google Scholar] [CrossRef]
- Kumar, U.; Grigorakis, S.I.; Watt, H.L.; Sasi, R.; Snell, L.; Watson, P.; Chaudhari, S. Somatostatin receptors in primary human breast cancer: Quantitative analysis of mRNA for subtypes 1–5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res. Treat. 2005, 92, 175–186. [Google Scholar] [CrossRef]
- Aslam, M.; Tanislav, C.; Troidl, C.; Schulz, R.; Hamm, C.; Gunduz, D. cAMP controls the restoration of endothelial barrier function after thrombin-induced hyperpermeability via Rac1 activation. Physiol. Rep. 2014, 2, e12175. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Zeng, M.; Curry, F.E. Dominant role of cAMP in regulation of microvessel permeability. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1124–H1133. [Google Scholar] [CrossRef]
- Ghitescu, L.; Robert, M. Diversity in unity: The biochemical composition of the endothelial cell surface varies between the vascular beds. Microsc. Res. Tech. 2002, 57, 381–389. [Google Scholar] [CrossRef]
- Vandenbroucke, E.; Mehta, D.; Minshall, R.; Malik, A.B. Regulation of endothelial junctional permeability. Ann. N. Y. Acad. Sci. 2008, 1123, 134–145. [Google Scholar] [CrossRef]
- Claesson-Welsh, L.; Dejana, E.; McDonald, D.M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol. Med. 2021, 27, 314–331. [Google Scholar] [CrossRef]
- Mehta, D.; Malik, A.B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 2006, 86, 279–367. [Google Scholar] [CrossRef]
- Aslam, M.; Pfeil, U.; Gündüz, D.; Rafiq, A.; Kummer, W.; Piper, H.M.; Noll, T. Intermedin/adrenomedullin2 stabilises endothelial barrier and antagonises thrombin-induced barrier failure. Br. J. Pharmacol. 2012, 165, 208–222. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.; Hartel, F.V.; Arshad, M.; Gunduz, D.; Abdallah, Y.; Sauer, H.; Piper, H.M.; Noll, T. cAMP/PKA antagonizes thrombin-induced inactivation of endothelial myosin light chain phosphatase: Role of CPI-17. Cardiovasc. Res. 2010, 87, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Kecskés, A.; Pohóczky, K.; Kecskés, M.; Varga, Z.V.; Kormos, V.; Szőke, É.; Henn-Mike, N.; Fehér, M.; Kun, J.; Gyenesei, A.; et al. Characterization of Neurons Expressing the Novel Analgesic Drug Target Somatostatin Receptor 4 in Mouse and Human Brains. Int. J. Mol. Sci. 2020, 21, 7788. [Google Scholar] [CrossRef]
- Florio, T.; Morini, M.; Villa, V.; Arena, S.; Corsaro, A.; Thellung, S.; Culler, M.D.; Pfeffer, U.; Noonan, D.M.; Schettini, G.; et al. Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. Endocrinology 2003, 144, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Li, M.; Chai, H.; Yang, H.; Lin, P.H.; Yao, Q.; Chen, C. TNF-alpha decreases expression of somatostatin, somatostatin receptors, and cortistatin in human coronary endothelial cells. J. Surg. Res. 2005, 123, 294–301. [Google Scholar] [CrossRef]
- Adams, R.L.; Adams, I.P.; Lindow, S.W.; Zhong, W.; Atkin, S.L. Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium. Br. J. Cancer 2005, 92, 1493–1498. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, F.; Bajetto, A.; Pattarozzi, A.; Gatti, M.; Wurth, R.; Thellung, S.; Corsaro, A.; Villa, V.; Nizzari, M.; Florio, T. Peptide receptor targeting in cancer: The somatostatin paradigm. Int. J. Pept. 2013, 2013, 926295. [Google Scholar] [CrossRef]
- Vazquez-Borrego, M.C.; Gupta, V.; Ibanez-Costa, A.; Gahete, M.D.; Venegas-Moreno, E.; Toledano-Delgado, A.; Cano, D.A.; Blanco-Acevedo, C.; Ortega-Salas, R.; Japon, M.A.; et al. A Somatostatin Receptor Subtype-3 (SST3) Peptide Agonist Shows Antitumor Effects in Experimental Models of Nonfunctioning Pituitary Tumors. Clin. Cancer Res. 2020, 26, 957–969. [Google Scholar] [CrossRef] [Green Version]
- Murasawa, S.; Kageyama, K.; Sugiyama, A.; Ishigame, N.; Niioka, K.; Suda, T.; Daimon, M. Inhibitory effects of SOM230 on adrenocorticotropic hormone production and corticotroph tumor cell proliferation in vitro and in vivo. Mol. Cell. Endocrinol. 2014, 394, 37–46. [Google Scholar] [CrossRef]
- Arena, S.; Pattarozzi, A.; Corsaro, A.; Schettini, G.; Florio, T. Somatostatin receptor subtype-dependent regulation of nitric oxide release: Involvement of different intracellular pathways. Mol. Endocrinol. 2005, 19, 255–267. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tang, Z.; Lin, W.; Yuan, X.; Jia, J.; Sun, C.; Li, W. Molecular identification, tissue distribution and functional analysis of somatostatin receptors (SSTRs) in red-spotted grouper (Epinephelus akaara). Gen. Comp. Endocrinol. 2019, 274, 87–96. [Google Scholar] [CrossRef]
- Bodmer, D.; Brand, Y.; Radojevic, V. Somatostatin receptor types 1 and 2 in the developing mammalian cochlea. Dev. Neurosci. 2012, 34, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Adlung, L.; Kar, S.; Wagner, M.C.; She, B.; Chakraborty, S.; Bao, J.; Lattermann, S.; Boerries, M.; Busch, H.; Wuchter, P.; et al. Protein abundance of AKT and ERK pathway components governs cell type-specific regulation of proliferation. Mol. Syst. Biol. 2017, 13, 904. [Google Scholar] [CrossRef]
- Walker, A.M.N.; Warmke, N.; Mercer, B.; Watt, N.T.; Mughal, R.; Smith, J.; Galloway, S.; Haywood, N.J.; Soomro, T.; Griffin, K.J.; et al. Endothelial insulin receptors promote VEGF-A signaling via ERK1/2 and sprouting angiogenesis. Endocrinology 2021, 162, bqab104. [Google Scholar] [CrossRef]
- Liu, W.; Ahmad, S.A.; Reinmuth, N.; Shaheen, R.M.; Jung, Y.D.; Fan, F.; Ellis, L.M. Endothelial cell survival and apoptosis in the tumor vasculature. Apoptosis 2000, 5, 323–328. [Google Scholar] [CrossRef]
- Fadini, G.P.; Dassie, F.; Albiero, M.; Boscaro, E.; Albano, I.; Martini, C.; de Kreutzenberg, S.V.; Agostini, C.; Avogaro, A.; Vettor, R.; et al. Endothelial progenitor cells are reduced in acromegalic patients and can be restored by treatment with somatostatin analogs. J. Clin. Endocrinol. Metab. 2014, 99, E2549–E2556. [Google Scholar] [CrossRef] [Green Version]
- Gatto, F.; Barbieri, F.; Arvigo, M.; Thellung, S.; Amaru, J.; Albertelli, M.; Ferone, D.; Florio, T. Biological and Biochemical Basis of the Differential Efficacy of First and Second Generation Somatostatin Receptor Ligands in Neuroendocrine Neoplasms. Int. J. Mol. Sci. 2019, 20, 3940. [Google Scholar] [CrossRef] [Green Version]
- Birukova, A.A.; Smurova, K.; Birukov, K.G.; Kaibuchi, K.; Garcia, J.G.; Verin, A.D. Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvasc. Res. 2004, 67, 64–77. [Google Scholar] [CrossRef]
- Gorovoy, M.; Neamu, R.; Niu, J.; Vogel, S.; Predescu, D.; Miyoshi, J.; Takai, Y.; Kini, V.; Mehta, D.; Malik, A.B.; et al. RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs. Circ. Res. 2007, 101, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Ito, M.; Amano, M.; Chihara, K.; Fukata, Y.; Nakafuku, M.; Yamamori, B.; Feng, J.; Nakano, T.; Okawa, K.; et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996, 273, 245–248. [Google Scholar] [CrossRef]
- Tong, J.; Li, L.; Ballermann, B.; Wang, Z. Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation. PLoS ONE 2016, 11, e0147103. [Google Scholar] [CrossRef]
- Qiao, J.; Huang, F.; Lum, H. PKA inhibits RhoA activation: A protection mechanism against endothelial barrier dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, L972–L980. [Google Scholar] [CrossRef] [Green Version]
- Oishi, A.; Makita, N.; Sato, J.; Iiri, T. Regulation of RhoA signaling by the cAMP-dependent phosphorylation of RhoGDIalpha. J. Biol. Chem. 2012, 287, 38705–38715. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Holian, O.; Lee, B.S.; Huang, F.; Zhang, J.; Lum, H. Phosphorylation of GTP Dissociation Inhibitor (GDI) by PKA Negatively Regulates RhoA. Am. J. Physiol. Cell Physiol. 2008, 295, C1161–C1168. [Google Scholar] [CrossRef]
- Aslam, M.; Gündüz, D.; Schuler, D.; Li, L.; Sharifpanah, F.; Sedding, D.; Piper, H.M.; Noll, T. Intermedin induces loss of coronary microvascular endothelial barrier via derangement of actin cytoskeleton: Role of RhoA and Rac1. Cardiovasc. Res. 2011, 92, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Buchan, A.M.; Lin, C.Y.; Choi, J.; Barber, D.L. Somatostatin, acting at receptor subtype 1, inhibits Rho activity, the assembly of actin stress fibers, and cell migration. J. Biol. Chem. 2002, 277, 28431–28438. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, M.; Idrees, H.; Ferdinandy, P.; Helyes, Z.; Hamm, C.; Schulz, R. Somatostatin Primes Endothelial Cells for Agonist-Induced Hyperpermeability and Angiogenesis In Vitro. Int. J. Mol. Sci. 2022, 23, 3098. https://doi.org/10.3390/ijms23063098
Aslam M, Idrees H, Ferdinandy P, Helyes Z, Hamm C, Schulz R. Somatostatin Primes Endothelial Cells for Agonist-Induced Hyperpermeability and Angiogenesis In Vitro. International Journal of Molecular Sciences. 2022; 23(6):3098. https://doi.org/10.3390/ijms23063098
Chicago/Turabian StyleAslam, Muhammad, Hafiza Idrees, Peter Ferdinandy, Zsuzsanna Helyes, Christian Hamm, and Rainer Schulz. 2022. "Somatostatin Primes Endothelial Cells for Agonist-Induced Hyperpermeability and Angiogenesis In Vitro" International Journal of Molecular Sciences 23, no. 6: 3098. https://doi.org/10.3390/ijms23063098
APA StyleAslam, M., Idrees, H., Ferdinandy, P., Helyes, Z., Hamm, C., & Schulz, R. (2022). Somatostatin Primes Endothelial Cells for Agonist-Induced Hyperpermeability and Angiogenesis In Vitro. International Journal of Molecular Sciences, 23(6), 3098. https://doi.org/10.3390/ijms23063098