4-Phenylcoumarin (4-PC) Glucoside from Exostema caribaeum as Corrosion Inhibitor in 3% NaCl Saturated with CO2 in AISI 1018 Steel: Experimental and Theoretical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Solution Preparation of the 4-PC from Exostema caribaeum
2.2. Electrochemical Evaluation
2.2.1. OCP vs. Time Change on Chronopotentiograms
2.2.2. Electrochemical Impedance Spectroscopy (EIS)
2.2.3. Immersion Time Effect
2.2.4. Polarization Curves
2.3. Surface Characterization
2.4. Computational Details
3. Results and Discussion
3.1. OCP Potential
3.2. Effect of Concentration and Turbulent Flow
Rotation Rate (rpm) | C (ppm) | Rs (Ω cm2) | n | Cdl (μF cm−2) | Rp (Ω cm2) | ղ (%) | ±SD |
---|---|---|---|---|---|---|---|
0 | 0.9 | 0.8 | 351.0 | 83.0 | - | - | |
0 | 5 | 27.0 | 0.7 | 687.0 | 321.4 | 72.7 | 6.4 |
10 | 26.6 | 0.8 | 359.9 | 282.3 | 68.3 | 8.5 | |
20 | 33.1 | 0.8 | 391.9 | 241.7 | 64.9 | 5.0 | |
50 | 27.5 | 0.9 | 343.9 | 337.8 | 75.4 | 0.3 | |
0 | 0.8 | 0.8 | 435.3 | 30.0 | 0.0 | 0.0 | |
100 | 5 | 8.0 | 0.8 | 377.6 | 558.0 | 94.6 | 0.2 |
10 | 10.6 | 0.9 | 245.6 | 823.1 | 96.0 | 1.2 | |
20 | 9.4 | 1.0 | 176.9 | 517.8 | 93.5 | 2.1 | |
50 | 13.1 | 0.9 | 165.9 | 968.6 | 96.4 | 1.3 | |
0 | 3.3 | 0.9 | 785.1 | 36.0 | 0.0 | 0.0 | |
500 | 5 | 17.0 | 0.7 | 333.4 | 428.8 | 91.1 | 2.1 |
10 | 14.2 | 0.7 | 123.7 | 764.6 | 94.0 | 2.8 | |
20 | 20.8 | 0.9 | 113.9 | 406.1 | 90.3 | 2.9 | |
50 | 6.6 | 0.9 | 43.3 | 416.2 | 91.3 | 0.1 |
3.3. Effect of Immersion Time
3.4. Polarization Curves
3.5. Adsorption Process
3.6. Surface Morphology
3.7. Adsorption Models
3.8. Global Parameters
3.9. Frontier Orbitals, Charge Transference, and Electrostatic Potential Maps
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdallah, M.; Helal, E.A.; Fouda, A.S. Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution. Corros. Sci. 2006, 48, 1639–1654. [Google Scholar] [CrossRef]
- Depenyou, F.; Doubla, A.; Le Breton, J.M. Corrosion resistance of AISI 1018 carbon steel in NaCl solution by plasma-chemical formation of a barrier layer. Corros. Sci. 2008, 50, 1422–1432. [Google Scholar] [CrossRef]
- ElBelghiti, M.; Karzazi, Y.; Dafali, A.; Hammouti, B.; Bentiss, F.; Obot, I.B.; Bahadu, I.; Ebenso, E.E. Experimental, quantum chemical and Monte Carlo simulation studies of 3,5-disubstituted-4-amino-1,2,4-triazoles as corrosion inhibitors on mild steel in acidic medium. J. Mol. Liq. 2016, 218, 281–293. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Schiff’s base of pyridyl substituted triazoles as new and effective corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci. 2014, 79, 5–15. [Google Scholar] [CrossRef]
- Chaitra, T.K.; Shetty Mohana, K.N.; Tandon, H.C. Thermodynamic, electrochemical and quantum chemical evaluation of some triazole Schiff bases as mild steel corrosion inhibitors in acid media. J. Mol. Liq. 2015, 211, 1026–1038. [Google Scholar] [CrossRef]
- Lebrini, M.; Traisnel, M.; Lagrenée, M.; Mernari, B.; Bentiss, F. Inhibitive properties, adsorption and a theoretical study of 3,5-bis (n-pyridyl)-4-amino-1,2,4-triazoles as corrosion inhibitors for mild steel in perchloric acid. Corros. Sci. 2008, 50, 473–479. [Google Scholar] [CrossRef]
- Ramya, K.; Mohan, R.; Anupama, K.K.; Joseph, A. Electrochemical and theoretical studies on the synergistic interaction and corrosion inhibition of alkyl benzimidazoles and thiosemicarbazide pair on mild steel in hydrochloric acid. Mat. Chem. Phys. 2015, 149, 632–647. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, F.; Hu, S.; Cao, Z.; Wu, Z.; Jing, W. Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: Gravimetric, electrochemical, SEM and XPS studies. Corros. Sci. 2013, 74, 271–282. [Google Scholar] [CrossRef]
- Aljourani, J.; Raeissi, K.; Golozar, M.A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution. Corros. Sci. 2009, 51, 1836–1843. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, V.; Quraishi, M.A. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: Electrochemical, SEM, AFM, and XPS studies. J. Mol. Liq. 2016, 216, 164–173. [Google Scholar] [CrossRef]
- Zhao, J.; Duan, H.; Jiang, R. Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2 saturated brine solution. Corros. Sci. 2015, 91, 108–119. [Google Scholar] [CrossRef]
- Achary, G.; Sachin, H.; Naik, Y.A.; Venkatesha, T.V. The corrosion inhibition of mild steel by 3-formyl-8-hydroxy quinoline in hydrochloric acid medium. Mat. Chem. Phys. 2008, 107, 44–50. [Google Scholar] [CrossRef]
- Singh, A.; Lin, Y.; Ebenso, E.; Liu, W.; Pan, J.; Huang, B. Gingko biloba fruit extract as an eco-friendly corrosion inhibitor for J55 steel in CO2 saturated 3.5% NaCl solution. J. Ind. Eng. Chem. 2015, 24, 219–228. [Google Scholar] [CrossRef]
- Singh, A.; Lin, Y.; Liu, W.; Kuanhai, D.; Pan, J.; Huang, B.; Ren, C.; Zeng, D. Study on the inhibition of N80 steel in 3.5% NaCl solution saturated with CO2 by fruit extract of Gingko biloba. J. Tai. Inst. Chem. Eng. 2014, 45, 1918–1926. [Google Scholar] [CrossRef]
- Bammou, L.; Belkhaouda, M.; Salghi, R.; Benali, O.; Zarrouk, A.; Zarrok, H.; Hammouti, B. Corrosion inhibition of steel in sulfuric acidic solution by the Chenopodium Ambrosioides Extracts. J. Assoc. Arab Univ. Bas. Appl. Sci. 2014, 16, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Boumhara, K.; Tabyaoui, M.; Jama, C.; Bentiss, F. Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and XPS investigations. J. Ind. Eng. Chem. 2015, 29, 146–155. [Google Scholar] [CrossRef]
- Kamal, C.; Sethuraman, M.G. Spirulina platensis a novel green inhibitor for acid corrosion of mild Steel. Arab. J. Chem. 2012, 5, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Khadraoui, A.; Khelifa, A.; Hamitouche, H.; Mehdaoui, R. Inhibitive effect by extract of Mentha rotundifolia leaves on the corrosion of steel in 1 M HCl solution. Res. Chem. Intermed. 2014, 40, 961–972. [Google Scholar] [CrossRef] [Green Version]
- Ameh, P.O.; Eddy, N.O. Commiphora pedunculata gum as a green inhibitor for the corrosion of aluminium alloy in 0.1 M HCl. Res. Chem. Intermed. 2014, 40, 2641–2649. [Google Scholar] [CrossRef]
- Bouyanzer, A.; Salghi, R.; Hammouti, B.; Desjobert, J.; Costa, J.; Paolini, J.; Majidi, L. Inhibition of corrosion of mild steel in 1 M HCl by the essential oil or solvent extracts of Ptychotis verticillata. Res. Chem. Intermed. 2015, 41, 935–946. [Google Scholar]
- Bouknana, D.; Hammouti, B.; Messali, M.; Aouniti, A.; Sbaa, M. Olive pomace extract (OPE) as corrosion inhibitor for steel in HCl Médium. Asian Pac. J. Trop. Dis. 2014, 4 (Suppl. 2), S963–S974. [Google Scholar] [CrossRef]
- Jokar, M.; Farahani, T.S.; Ramezanzadeh, B. Electrochemical and surface characterizations of morus alba pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1 M HCl. J. Taiwan Inst. Chem. Eng. 2016, 63, 436–452. [Google Scholar] [CrossRef]
- Norm NACE1D-182; Wheel Test Method Used for Evaluation of Film-Persistent Corrosion Inhibitors for Oilfield Applications. NACE International: Houston, TX, USA, 2005.
- Finšgar, M.; Jackson, J. Application of corrosion inhibitors for the oil and gas industry: A review. Corros. Sci. 2014, 86, 17–41. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Vásquez, A.; Castillejos-Ramírez, E.; Cristians, S.; Mata, R. Development of a UHPLC-PDA Method for the Simultaneous Quantification of 4-Phenylcoumarins and Chlorogenic Acid in Exostema caribaeum Stem Bark. J. Nat. Prod. 2014, 77, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Analco, A.; Medina-Campos, J.; Brindis, O.; Bye, F.; Pedraza-Chaverri, R.; Navarrete, J.; Mata, A. Antidiabetic properties of selected Mexican copalchis of the Rubiaceae family. Phytochemistry 2007, 68, 2087–2095. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W. Highly correlated systems. Excitation energies of first row transition metals Sc–Cu. J. Chem. Phys. 1989, 91, 1062–1065. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2260. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Density functional theory with London dispersion corrections. Adv. Rev. 2011, 1, 211–228. [Google Scholar] [CrossRef]
- Gutsev, G.L.; Bauschlicher, C.W. Electron Affinities, Ionization Energies, and Fragmentation Energies of Fen Clusters (n = 2−6): A Density Functional Theory Study. J. Phys. Chem. A 2003, 107, 7013–7023. [Google Scholar] [CrossRef]
- Limon, P.; Miralrio, A.; Gómez-Balderas, R.; Castro, M. Small Transition-Metal Mixed Clusters as Activators of the C–O Bond. FenCum–CO (n + m = 6): A Theoretical Approach. J. Phys. Chem. A 2021, 125, 7940–7955. [Google Scholar] [CrossRef]
- Castro, M.; Mareca, P. Theoretical Study of Neutral and Charged Fe7-(C6H6)m, m = 1, 2 Rice-Ball Clusters. J. Phys. Chem. A 2014, 118, 5548–5558. [Google Scholar] [CrossRef]
- Valencia, I.; Guevara-García, A.; Castro, M. Bonding and Magnetism of Fe6−(C6H6)m, m = 1, 2. J. Phys. Chem. A 2009, 113, 6222–6238. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Rodríguez-Gómez, F.J.; Negrón-Silva, G.E.; González-Olvera, R.; Ángeles-Beltrán, D.; Palomar-Pardavé, M.; Miralrio, A.; Castro, M. Fluconazole and fragments as corrosion inhibitors of API 5L X52 steel immersed in 1 M HCl. Corros. Sci. 2020, 174, 108853. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, F.J.; Perez Valdelamar, M.; Espinoza Vazquez, A.; Del Valle Perez, P.; Mata, R.; Miralrio, A.; Castro, M. Mycophenolic acid as a corrosion inhibitor of carbon steel in 3% wt. NaCl solution. An experimental and theoretical study. J. Mol. Struct. 2019, 1183, 168–181. [Google Scholar] [CrossRef]
- Vainio, M.J.; Johnson, M.S. Generating Conformer Ensembles Using a Multiobjective Genetic Algorithm. J. Chem. Inf. Model. 2007, 47, 2462–2474. [Google Scholar] [CrossRef] [PubMed]
- Santeri, J.; Vainio, M.J.; Johnson, M.S. Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery. J. Comput. Chem. 2010, 31, 1722–1732. [Google Scholar]
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Rahal, C.; Masmoudi, M.; Abdelhedi, R.; Sabot, R.; Jeannin, M.; Bouaziz, M.; Refait, P. Olive leaf extract as natural corrosion inhibitor for pure copper in 0.5 M NaCl solution: A study by voltammetry around OCP. J. Electroanal. Chem. 2016, 769, 53–61. [Google Scholar] [CrossRef]
- Tawfik, S. Corrosion inhibition efficiency and adsorption behavior of N, N-dimethyl-4-(((1-methyl-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)-N alkylbenzenaminium bromide surfactant at carbon steel/hydrochloric acid interface. J. Mol. Liq. 2015, 207, 185. [Google Scholar] [CrossRef]
- Shabani-Nooshabadi, M.; Ghandchi, M.S. Santolina chamaecyparissus extract as a natural source inhibitor for 304 stainless steel corrosion in 3.5% NaCl. J. Ind. Eng. Chem. 2015, 31, 231–237. [Google Scholar] [CrossRef]
- Jiang, X.; Zheng, Y.G.; Ke, W. Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution. Corros. Sci. 2005, 47, 2636. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Ebenso, E.E.; Obot, I.B.; El Assyry, A. 3-Amino alkylated indoles as corrosion inhibitors for mild steel in 1M HCl: Experimental and theoretical studies. J. Mol. Liq. 2016, 219, 647–660. [Google Scholar] [CrossRef]
- Espinoza, A.; Negrón, G.E.; Angeles, D.; Herrera, H.; Palomar, M.E. EIS Evaluation of Pantoprazole as Corrosion Inhibitor for Mild Steel Immersed in HCl 1 M. Effect of [Pantoprazole], Hydrodynamic Conditions, Temperature and Immersion Times. Int. J. Electrochem. Sci. 2014, 9, 493–509. [Google Scholar]
- Espinoza-Vázquez, A.; Negrón-Silva, G.E.; González-Olvera, R.; Angeles-Beltrán, D.; Herrera-Hernández, H.; Romero-Romo, M.; Palomar-Pardavé, M.E. Mild steel corrosion inhibition in HCl by di-alkyl and di-1,2,3-triazole derivatives of uracil and thymine. Mater. Chem. Phys. 2014, 145, 407–417. [Google Scholar] [CrossRef]
- Odewunmia, N.A.; Umorena, S.A.; Gasema, Z.M.; Ganiyub, S.A.; Muhammad, Q. l-Citrulline:An active corrosion inhibitor component of water melon rind extract for mild Steel in HCl medium. J. Taiwan Inst. Chem. Eng. 2015, 51, 177–185. [Google Scholar] [CrossRef]
- Daoud, D.; Douadi, T.; Hamani, H.; Chafaa, S.; Al-oaimi, M. Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experimental and computational study. Corros. Sci. 2015, 94, 21–37. [Google Scholar] [CrossRef]
- Khaled, K.F. Corrosion control of copper in nitric acid solutions using some aminoacids—Acombined experimental and theoretical study. Corros. Sci. 2010, 52, 3225–3234. [Google Scholar] [CrossRef]
- Obi-Egbedia, N.O.; Obot, I.B.; El-Khaiary, I. Quantum chemical investigation and statistic alanalys is of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid. J. Mol. Struct. 2011, 1002, 86–96. [Google Scholar] [CrossRef]
- Zhang, H.H.; Chen, Y. Experimental and theoretical studies of benzaldehyde thio semicarbazone derivatives as corrosion inhibitors for mild steel in acid media. J. Mol. Struct. 2019, 1177, 90–100. [Google Scholar] [CrossRef]
- KantiSarkar, T.; Saraswat, V.; Kumar, R.; Obot, I.B.; Yadav, M. Mitigation of corrosion in petroleum oil well/tubing steel using pyrimidines as efficient corrosion inhibitor: Experimental and theoretical investigation. Mat. Today Commun. 2021, 26, 101862. [Google Scholar]
- Obot, I.B.; Onyeachu, I.B.; Wazzan, N.; Al-Amri, A.H. Theoretical and experimental investigation of two alkylcarboxylates as corrosion inhibitors for steel in acidic medium. J. Mol. Liq. 2019, 279, 190–207. [Google Scholar] [CrossRef]
- Lukovits, I.; Kálmán, E.; Zucchi, F. Corrosion Inhibitors—Correlation between Electronic Structure and Efficiency. Corrosion 2001, 57, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sastri, V.S.; Perumareddi, J.R. Molecular Orbital Theoretical Studies of Some Organic Corrosion Inhibitors. Corrosion 1997, 53, 617–622. [Google Scholar] [CrossRef]
Rotation rate (rpm) | ΔG° ads (KJ mol−1) | Linear Regression Equation (M) | R2 |
---|---|---|---|
0 | −37.34 | C/Ɵ = 1.3058 C + 4 × 10−6 | 0.9782 |
100 | −43.22 | C/Ɵ = 1.0522 C + 3 × 10−7 | 0.9995 |
500 | −41.00 | C/Ɵ = 1.0902 C + 8 × 10−7 | 0.9995 |
System | EHOMO (eV) | ELUMO (eV) | Egap (eV) | I (eV) | A (eV) | η (eV) | χ (eV) | ω (eV) | ΔN |
---|---|---|---|---|---|---|---|---|---|
4-PC | −5.532 | −2.768 | 2.764 | 7.313 | −0.835 | 4.074 | 3.239 | 0.644 | 0.462 |
Fe6 | −4.333 (−3.969) | −2.369 (−3.531) | 0.438 | 6.222 | 1.500 | 2.361 | 3.861 | 1.58 | |
Fe6 + 4-PC | −3.970 (−3.762) | −3.421 (−3.391) | 0.341 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza-Vázquez, A.; Rodríguez-Gómez, F.J.; Figueroa-Vargas, I.A.; Pérez-Vásquez, A.; Mata, R.; Miralrio, A.; Galván-Martínez, R.; Castro, M.; Orozco-Cruz, R. 4-Phenylcoumarin (4-PC) Glucoside from Exostema caribaeum as Corrosion Inhibitor in 3% NaCl Saturated with CO2 in AISI 1018 Steel: Experimental and Theoretical Study. Int. J. Mol. Sci. 2022, 23, 3130. https://doi.org/10.3390/ijms23063130
Espinoza-Vázquez A, Rodríguez-Gómez FJ, Figueroa-Vargas IA, Pérez-Vásquez A, Mata R, Miralrio A, Galván-Martínez R, Castro M, Orozco-Cruz R. 4-Phenylcoumarin (4-PC) Glucoside from Exostema caribaeum as Corrosion Inhibitor in 3% NaCl Saturated with CO2 in AISI 1018 Steel: Experimental and Theoretical Study. International Journal of Molecular Sciences. 2022; 23(6):3130. https://doi.org/10.3390/ijms23063130
Chicago/Turabian StyleEspinoza-Vázquez, Araceli, Francisco Javier Rodríguez-Gómez, Ignacio Alejandro Figueroa-Vargas, Araceli Pérez-Vásquez, Rachel Mata, Alan Miralrio, Ricardo Galván-Martínez, Miguel Castro, and Ricardo Orozco-Cruz. 2022. "4-Phenylcoumarin (4-PC) Glucoside from Exostema caribaeum as Corrosion Inhibitor in 3% NaCl Saturated with CO2 in AISI 1018 Steel: Experimental and Theoretical Study" International Journal of Molecular Sciences 23, no. 6: 3130. https://doi.org/10.3390/ijms23063130
APA StyleEspinoza-Vázquez, A., Rodríguez-Gómez, F. J., Figueroa-Vargas, I. A., Pérez-Vásquez, A., Mata, R., Miralrio, A., Galván-Martínez, R., Castro, M., & Orozco-Cruz, R. (2022). 4-Phenylcoumarin (4-PC) Glucoside from Exostema caribaeum as Corrosion Inhibitor in 3% NaCl Saturated with CO2 in AISI 1018 Steel: Experimental and Theoretical Study. International Journal of Molecular Sciences, 23(6), 3130. https://doi.org/10.3390/ijms23063130